Skip to main content
Log in

Tools of mathematical modeling of arbitrary object packing problems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The article reviews the concept of and further develops phi-functions (Φ-functions) as an efficient tool for mathematical modeling of two-dimensional geometric optimization problems, such as cutting and packing problems and covering problems. The properties of the phi-function technique and its relationship with Minkowski sums and the nofit polygon are discussed. We also describe the advantages of phi-functions over these approaches. A clear definition of the set of objects for which phi-functions may be derived is given and some exceptions are illustrated. A step by step procedure for deriving phi-functions illustrated with examples is provided including the case of continuous rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennell, J. A., & Song, X. (2008). A comprehensive and robust procedure for obtaining the nofit polygon using Minkowski sums. Computers and Operational Research, 35(1), 267–281.

    Article  Google Scholar 

  • Burke, E. K., Hellier, R. S. R., Kendall, G., & Whitwell, G. (2007). Complete and robust no-fit polygon generation for the irregular stock cutting problem. European Journal of Operational Research, 179(1), 27–49.

    Article  Google Scholar 

  • Culberson, J. C., & Reckhow, R. A. (1988). Covering polygons is hard. In Proceedings of 29th IEEE conference on foundations of computer science (pp. 601–611).

  • Cunninghame-Green, R. (1989). Geometry. Shoemaking and the milk tray problem. New Scientist, 1677, 50–53.

    Google Scholar 

  • Daniels, K., & Inkulu, R. (2001). Translational polygon covering using intersection graphs. In Proceedings of the thirteenth Canadian conference on computational geometry (pp. 61–64).

  • Daniels, K., Mathur, A., & Grinde, R. (2003). A combinatorial maximum cover approach to 2D translational geometric covering. In Proceeedings of 15th Canadian conference on computational geometry (pp. 2–5). Halifax, Nova Scotia, Canada, August 11–13, 2003.

  • Fomenko, A., Fuchs, D., & Gutenmacher, V. (1986). Homotopic topology. Akademiai Kiado: Budapest.

    Google Scholar 

  • Ghosh, P. K. (1991). An algebra of polygons through the notation of negative shapes. CVGIP: Imag Understand, 17, 357–378.

    Google Scholar 

  • Scheithauer, G., Stoyan, Y., Gil, N., & Romanova, T. (2003). Phi-functions for circular segments. Prepr. Technische Univarsitat Dresden, MATH-NM-7-2003. Dresden.

  • Stoyan, Y. (1983). Mathematical methods for geometric design. In Advances in CAD/CAM//. Proceeding PROLAMAT82. Leningrad, USSR, 16–18 May, 1982 (pp. 67–86). Amsterdam: North-Holland.

    Google Scholar 

  • Stoyan, Y. (2003). Phi-function of non-convex polygons with rotations. Journal of Mechanical Engineering, 6(1), 74–86.

    Google Scholar 

  • Stoyan, Y., & Gil, N. (1976). Methods and algorithms of placement of 2D geometric objects. Ukrainian SSR academy of sciences. Kiev: Naukova Dumka (In Russian).

    Google Scholar 

  • Stoyan, Y., & Pankratov, A. V. (1999). Regular packing of congruent polygons on the rectangular sheet. European Journal of Operational Research, 113, 653–675.

    Article  Google Scholar 

  • Stoyan, Y., & Patsuk, V. N. (2000). A method of optimal lattice packing of congruent oriented polygons in the plane. European Journal of Operational Research, 124, 204–216.

    Article  Google Scholar 

  • Stoyan, Y., & Ponomarenko, L. D. (1977). Minkowski’s sum and the hodograph of the dense allocation vector function. Reports of the Ukrainian SSR Academy of Science, A(10), 888–890 (In Russian).

    Google Scholar 

  • Stoyan, Y., Novozhilova, M., & Kartashov, A. (1996). Mathematical model and method of searching for a local extremum for the non-convex oriented polygons allocation problem. European Journal of Operational Research, 92, 193–210.

    Article  Google Scholar 

  • Stoyan, Y., Terno, J., Scheithauer, G., Gil, N., & Romanova, T. (2002a). Phi-functions for primary 2D-objects. Studia Informatica Universalis, 2(1), 1–32.

    Google Scholar 

  • Stoyan, Y., Terno, J., Gil, M., Romanova, T., & Scheithauer, G. (2002b). Construction of a Phi-function for two convex polytopes. Applicationes Mathematicae, 29(2), 199–218.

    Article  Google Scholar 

  • Stoyan, Y., Scheithauer, G., Gil, N., & Romanova, T. (2004). Phi-functions for complex 2D-objects. 4OR (Operations Research): Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 2, 69–84.

    Google Scholar 

  • Stoyan, Y., Scheithauer, G., & Romanova, T. (2005a). Mathematical modeling of interaction of primary geometric 3D objects. Cybernetics and Systems Analysis, 41(3), 332–342. Translated from Kibernetika i Sistemnyi Analiz, 3, 19–31.

    Article  Google Scholar 

  • Stoyan, Y., Gil, N., Scheithauer, G., Pankratov, A., & Magdalina, I. (2005b). Packing of convex polytopes into a parallelepiped. Optimization, 54(2), 215–235.

    Article  Google Scholar 

  • Toth, G. F. (1997). Packing and covering. In J. Goodman & J. O’Rourke (Eds.), Handbook of discrete and computational geometry. New York: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Romanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennell, J., Scheithauer, G., Stoyan, Y. et al. Tools of mathematical modeling of arbitrary object packing problems. Ann Oper Res 179, 343–368 (2010). https://doi.org/10.1007/s10479-008-0456-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0456-5

Keywords

Navigation