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t. This paper dis
usses the minimal area re
tangular pa
king prob-lem of how to pa
k a set of spe
i�ed, non-overlapping re
tangles into a re
t-angular 
ontainer of minimal area. We investigate di�erent mathemati
alprogramming approa
hes for this and introdu
e a novel approa
h based onnon-linear optimization and the �tunneling e�e
t� a
hieved by a relaxation ofthe non-overlapping 
onstraints. We 
ompare our optimization algorithm toa simulated annealing and a 
onstraint programming approa
h and show thatour approa
h is 
ompetitive. Additionally, sin
e it is easy to extend, it is alsoappli
able to a larger 
lass of problems.Keywords: re
tangular pa
king, non-overlapping 
on-straints, non-linear optimization, regularization, relax-ation 1. Introdu
tionPa
king problems of obje
ts with arbitrary shapes arise in a multitude of impor-tant real world appli
ations. In parti
ular, pa
king problems of re
tangular-shapedobje
ts are intensively studied. Su
h problems for example o

ur in industry, when
ontainers or pallets have to be loaded with pa
ked goods, or in s
heduling, wherejobs that require a 
ertain amount of resour
e and pro
essing time have to beplanned.In mi
roele
troni
s design, the layout of an ele
troni
 system in
ludes the pla
e-ment of its devi
es. Being part of the �oorplanning design, the pla
ement problemis to pla
e inter
onne
ted ele
troni
 devi
es on a board devi
e su
h that 
ertain ob-je
tives are optimized and diverse 
onstraints are met, e.g. to minimize the boardarea. As the number of devi
es and 
omplex design 
onstraints grows, so does theimportan
e of the pla
ement problem. An essential subproblem is the re
tangularpa
king problem.In this paper, we fo
us on the following spe
i�
 optimization problem fundamen-tal to re
tangular pa
king:De�nition 1.1. The minimal area re
tangular pa
king problem (MARPP) is toarrange a set of non-rotatable re
tangles into a re
tangular 
ontainer of minimalarea, su
h that the 
ontainer in
ludes all re
tangles and no two re
tangles overlap.0Corresponding author 1



2 V. MAAG, M. BERGER, A. WINTERFELD, K.-H. KÜFERThe re
tangular 
ontainer is also 
alled bounding box. The non-overlapping 
on-straint is that no two re
tangles overlap and the 
ontainment 
onstraint is that allre
tangles are in the 
ontainer.A large variety of models and optimization approa
hes have been developed andstudied for re
tangular pa
king problems. Approximation algorithms are mainlystudied in the 
ontext of the theory of bin pa
king problems (Co�man et al., 1996;Bansal and Sviridenko, 2004). They rely on the design of 
lever heuristi
s whi
h arealso used in the appli
ation to spe
i�
 pa
king problems. Mixed integer program-ming (MIP) is another method to formulate re
tangular pa
king problems (Fasano,2004; Goets
hal
kx and Irohara, 2007). In se
tion three of this paper we dis
ussmetaheuristi
s, 
onstraint programming (CP) and non-linear approa
hes to re
tan-gular pa
king problems in more detail. Metaheuristi
s and non-linear approa
hesare traditionally used for pla
ement problems. CP is a relatively new program-ming paradigm, is strongly related to operations resear
h and has been su

essfullyapplied to pa
king problems in s
heduling (Hooker, 2007).For the MARPP we propose a novel non-linear model, motivated by methodsused for general semi-in�nite programming (GSIP). As re
ently stated (Winterfeld,2007), GSIP 
an also be used to �t several geometri
 obje
ts Oi into a 
ontainer
C while optimizing the shape of both the obje
ts and the 
ontainer and preservingthe non-overlapping 
onstraints. In the 
ontext of MARPP the Oi 
orrespondto the re
tangles ri to be arranged and the C to the bounding box. However,formulating the MARPP as a semi-in�nite problem is not ne
essary as for thesimple shapes of obje
ts and 
ontainer the problem 
an be stated dire
tly usinginequality 
onstraints. That means, the 
ontainment 
onstraint Oj ⊂ C redu
es toa linear 
ondition like Ax ≤ b and the non-overlapping 
onstraint int(Oj ∩Oi) = ∅
an be expressed as the maximum of two smooth fun
tions being smaller than zero.Sin
e the resulting fun
tion is non-di�erentiable this might seem inadequate fornon-linear optimization approa
hes. Yet, smoothing te
hniques to 
ir
umvent thisproblem are well-known. In our approa
h we use su
h a te
hnique for approximat-ing the maximum fun
tion by a di�erentiable substitute while at the same timeexploiting it in order to 
ope with the globality of the problem. The essential pointis that the approximation is a relaxation of the original problem in whi
h the re
t-angles 
an 
hange their relative positions more easily. We refer to this behaviouras the �tunneling e�e
t�. In 
ommon numeri
al approa
hes for GSIP (Stein, 2003)it is also ne
essary to regularize the minimum fun
tion. Therefore our non-linearprogramming (NLP) solver was inspired by a solver for general semi-in�nite pro-grams.The outline of this paper is as follows: In the se
ond se
tion we brie�y providethe notation used in this paper. In the next se
tion we give a broad survey ofmetaheuristi
s, CP and non-linear approa
hes to re
tangular pa
king problems. Inthe main se
tion we present our novel non-linear model, propose an optimizationalgorithm for it and dis
uss properties of our approa
h. We show experiments inwhi
h we 
ompare our method to a simulated annealing approa
h and the optimalsolutions given by a CP approa
h. We 
on
lude the paper with perspe
tives andan outline for future resear
h work.2. NotationThroughout this paper we use the following notation:

• R = {r1, . . . , rn} denotes the set of re
tangles.
• l

(i)
1 , l

(i)
2 represent the width and the height of re
tangle ri.

• c
(i)
1 , c

(i)
2 represent the 
enter 
oordinate of re
tangle ri.

• b1, b2 represent the width and the height of the bounding box B.
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• The area as obje
tive fun
tion is denoted by A = b1b2.3. Survey of other approa
hes3.1. Formulation of the problem. In this se
tion we fo
us on MARPP formu-lated in the following way:
min b1b2(P) subje
t to

1

2
l
(i)
k ≤ c

(i)
k ≤ bk −

1

2
l
(i)
k for k ∈ {1, 2} and i ∈ {1, . . . , n}(1)

(c
(i)
1 +

1

2
l
(i)
1 ≤ c

(j)
1 −

1

2
l
(j)
1 ) ∨ (c

(j)
1 +

1

2
l
(j)
1 ≤ c

(i)
1 −

1

2
l
(i)
1 ) ∨(2)

(c
(i)
2 +

1

2
l
(i)
2 ≤ c

(j)
2 −

1

2
l
(j)
2 ) ∨ (c

(j)
2 +

1

2
l
(j)
2 ≤ c

(i)
2 −

1

2
l
(i)
2 )for 0 < i < j ≤ nWe assume that the bounding box is an
hored at the origin. Condition (1) guar-antees that the re
tangles are within the 
ontainer B whereas (2) assures that notwo re
tangles overlap. For the dis
ussion of metaheuristi
s and CP approa
hes,we emphasize the formulation of the non-overlapping 
onstraints as disjun
tionsof linear inequalities. The non-overlapping 
onstraints express that re
tangle ri iseither left, right, in front of or behind re
tangle rj .3.2. Metaheuristi
s. In the following we brie�y overview metaheuristi
s and fo-
us on simulated annealing, the predominant metaheuristi
 applied to pla
ementproblems. Furthermore, we show how to represent a re
tangular pa
king in a meta-heuristi
 and sket
h how one 
an solve MARPP in this way.3.2.1. Overview of metaheuristi
s. Many optimization problems appearing in realworld appli
ations are, in pra
ti
e, not solvable with 
omplete solution methods dueto exponential 
omputation times. Metaheuristi
s have su

essfully been appliedto su
h optimization problems, espe
ially to 
ombinatorial optimization problems.Metaheuristi
s are lo
al sear
h methods whi
h start from an initial solution anditeratively try to repla
e the 
urrent solution by a better solution of the neigh-borhood of the 
urrent solution. Intensi�
ation and diversi�
ation are the drivingfor
es behind these methods and have to be dynami
ally balan
ed in the lo
alsear
h pro
ess (Blum and Roli, 2003). "Intensi�
ation is to sear
h 
arefully andintensively around good solutions found in the past sear
h. Diversi�
ation, on the
ontrary, is to guide the sear
h to unvisited regions." (Yagiura and Ibaraki, 2001)The 
on
ept of a metaheuristi
 is independent of any spe
i�
 properties of the op-timization problem. The spe
i�
s only in�uen
e the neighborhood de�nition andthe ways neighborhoods are explored. Metaheuristi
s are non-deterministi
 andguarantee no optimal solution, but a good solution in moderate running time."The 
lass of metaheuristi
s in
ludes � but is not restri
ted to � Ant 
olonyoptimization, Evolutionary 
omputation in
luding Geneti
 algorithm, Iterated lo
alsear
h, Simulated annealing (SA) and Tabu sear
h." (Blum and Roli, 2003)Metaheuristi
s are 
ategorized in single point and population-based sear
h te
h-niques. The sear
h spa
e is explored along traje
tories in the former 
ategorywhereas it is sear
hed through evolution of a set of points in the latter (Blum andRoli, 2003).
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ation to MARPP. In order to apply a metaheuristi
 to MARPP wehave to en
ode a re
tangular pa
king solution and de�ne neighborhoods of the
urrent solution. We fo
us on simulated annealing as it is predominant in pla
e-ment problems. The en
oding of a solution strongly depends on the optimizationproblem.How to en
ode an arrangement of re
tangles as a 
ombinatorial obje
t has beenintensively studied. For pla
ement problems, su
h an en
oding of a pa
king is 
alleda �oorplan representation. Yao et al. (2003) gave a broad overview of the multitudeof di�erent �oorplan en
oding s
hemes and how they are related.All these representations 
ommonly model the geometri
 or topologi
al relation-ship of the re
tangles, but not their a
tual positions. Usually, the representationsare built up from dire
ted graphs, trees and/or permutations. We fo
us on thesequen
e pair, a simple and often used en
oding s
heme.3.2.3. Simulated annealing. Simulated annealing (SA) is a metaheuristi
 inspiredby annealing pro
esses in metallurgy where te
hniques involving heating and 
on-trolled 
ooling of a material result in a low energy 
on�guration of the material.The fundamental idea of SA applied to a minimization problem is to a

ept anintermediate solution to have a worse obje
tive fun
tion value than the 
urrent so-lution. The probability of su
h an a

eptan
e de
reases during sear
h (Blum andRoli, 2003). The algorithm is analogous to 
ooling the material and the a

eptedintermediate in
reases of the obje
tive fun
tion 
orrespond to revisited high energy
on�gurations. A pseudo-
ode of SA is given in algorithm 3.2.3.Algorithm 1 Pseudo 
ode of SAInitialize random starting solution spInitialize temperature Twhile termination 
ondition not met doPi
k neighbour sp′ ∈ N (sp) through a random moveif f(sp') < f(sp) thenRepla
e sp with sp′elseA

ept sp′ as sp with probability p(T, sp′, sp)end ifUpdate Tend whileThe algorithm starts by generating an initial solution (either randomly or heuris-ti
ally 
onstru
ted) and by initializing the temperature parameter T . Then, atea
h iteration a solution sp′ ∈ N (sp) is randomly sampled and is a

epted as new
urrent solution depending on f(sp), f(sp′) and T . sp′ repla
es sp if f(sp′) <
f(sp) or, in 
ase f(sp′) ≥ f(sp), with a probability whi
h is a fun
tion of T and
f(sp′) − f(sp). The probability is generally 
omputed following the Boltzmanndistribution exp(− f(sp′)−f(sp)

T
). The update of the temperature T usually followsa geometri
al law, i.e. Tk+1 = αTk for α ∈ (0, 1). This yields an exponential de
ayof the temperature (Blum and Roli, 2003).3.2.4. Sequen
e pair en
oding. The �oorplan representation sequen
e pair is one ofthe most popular en
oding s
hemes and was proposed in Murata et al. (1996). Thefollowing de�nition states the sequen
e pair for the MARPP:De�nition 3.1 (Sequen
e Pair). Suppose the re
tangles ri ∈ R are to be pa
ked.Then, a sequen
e pair sp := (Γ+, Γ−) is a pair of re
tangle sequen
es. Both se-quen
es Γ+ and Γ− are permutations of R.
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onstraints between ea
h pair of re
tangles are disjun
tionsof linear inequalities. Depending on the linear order in both sequen
es, the sequen
epair en
odes exa
tly one geometri
 relationG ∈ {left of, right of, in front of, behind}between ea
h pair (ri, rj) of re
tangles of R, i < j. Therefore, at least one linearinequality holds. In order to satisfy more than one linear inequality, transitiverelations between triples of re
tangles are relevant.The 
onsistent assignment of exa
tly one linear inequality for ea
h re
tangle pair
an be transformed to a lower-left 
ompa
ted pa
king. This 
an be formulated asa linear program or as longest path problems on two dire
ted a
y
li
 graphs, onefor the horizontal and the verti
al dimension. For further properties and details ofthe sequen
e pair we refer to Murata et al. (1996).3.2.5. Details of the appli
ation to MARPP. When we represent a pa
king solu-tion with a sequen
e pair sp and apply SA, we only have to de�ne neighborhoodstru
tures N and to de�ne our obje
tive fun
tion f .A move de�nes how to traverse randomly from a solution sp to a neighbourhoodsolution sp′ ∈ N . Moves for the sequen
e pair are based on randomly shifting orswapping re
tangles in either one or both sequen
es. Typi
ally, a re
tangle is shiftedin one sequen
e and pairs of re
tangles are swapped in one or both sequen
es. Inorder to guarantee the diversi�
ation of the SA, moves should be 
hosen randomlyout of several di�erent move types. However, any sequen
e pair 
an be simplyrea
hed from any other sequen
e pair by 
onse
utively applying any single moveout of the des
ribed move types. More details on neighborhood de�nitions andtheir properties 
an be found in Berger (2006).The obje
tive fun
tion for the MARPP is the area f(sp) := b1b2 of the boundingbox, where b1(sp) = maxi=1,...,n(c
(i)
1 (sp)+l

(i)
1 /2) and b2(sp) = maxi=1,...,n(c

(i)
2 (sp)+

l
(i)
2 /2).3.3. Constraint programming. In the following we brie�y overview 
onstraintprogramming and how it is applied to re
tangular pa
king. Therefore, we studyhow to represent the 
onstraints of MARPP and sket
h how to solve MARPP.3.3.1. Overview of CP. �Constraint programming is a powerful paradigm for solv-ing 
ombinatorial sear
h problems that draws on a wide range of te
hniques fromarti�
ial intelligen
e, 
omputer s
ien
e, databases, programming languages, andoperations resear
h.� (Rossi et al., 2006) From the CP viewpoint, the de
ision oroptimization problem is to satisfy relations between variables stated in the form of
onstraints. �A 
onstraint between variables expresses whi
h 
ombination of valuesfor the variables are allowed.� (Clautiaux et al., 2007) A multitude of di�erentgeneri
 
onstraints yield a powerful, expressive and �exible modeling language. Inorder to redu
e the sear
h e�ort CP develops strong inferen
e and propagationmethods for 
onstraints.3.3.2. Relevant 
onstraints for MARPP. The 
ontainment 
onstraint is simply ex-pressed as bounding 
onstraints on domain variables for the 
enter 
oordinates ofthe re
tangles. For the non-overlapping 
onstraint, there are the following fewmeta-
onstraint formulations:(1) The disjun
tive 
onstraint is for s
heduling problems and may, in general,be written disjun
tive(s|p), where s = (s1, . . . , sn) are the start times of thejobs to be s
heduled, and p = (p1, . . . , pn) are the pro
essing times (Hooker,2007). The 
onstraint is satis�ed when the jobs do not overlap. Edge-�ndingis a 
onstraint propagation te
hnique for identifying the pre
eden
e of jobs(must be �rst/last) and has been applied very su

essfully to s
hedulingproblems (Baptiste et al., 2001).
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onstraint 
umulative di�ers from the disjun
tive 
onstraint inthat several jobs may run simultaneously but 
an only 
onsume a 
ertainamount of resour
e. Edge �nding for disjun
tive s
heduling 
an be gener-alized to 
umulative s
heduling (Baptiste et al., 2001).(3) The di�n 
onstraint was developed in order to handle multidimensionalpla
ement problems that o

ur in s
heduling, 
utting or geometri
al pla
e-ment problems. Its intuitive idea is to extend the alldi�erent 
onstraintwhi
h works on a set of domain variables all have to be assigned with dif-ferent values, to a non-overlapping 
onstraint between a set of k-dimensionalre
tangles de�ned in an k-dimensional spa
e. The de
laration of the di�n
onstraint may, in general, be writtendi�n([[O
(1)
1 , . . . , O

(1)
k , L

(1)
1 , . . . , L

(1)
k ], . . . , [O

(n)
1 , . . . , O

(n)
k , L

(n)
1 , . . . , L

(n)
k ]])where O

(i)
j and L

(i)
j are respe
tively the origin and the length of the k-dimensional re
tangle in the jth dimension i = 1, . . . , n, j = 1, . . . , k(Beldi
eanu and Contjean, 1994). In Beldi
eanu and Carlsson (2001) pro-pose the sweep algorithm as a pruning and propagation algorithm for thenon-overlapping 
onstraint of re
tangles.3.3.3. Appli
ation to MARPP. Re
tangular pa
king has also been a 
hallenge forresear
hers form CP and several CP approa
hes are proposed for problems related toMARPP. Brie�y, they di�er in the way they model the non-overlapping 
onstraint,how it is propagated and how sear
h is bran
hed. In general, bran
hing is eitherdone on the alternative disjun
ts of the non-overlapping 
onstraint or done on the
oordinates of the re
tangles.Beldi
eanu et al. (1999) proposed a CP model for the perfe
t square problemwhi
h uses the global 
onstraints di�n and 
umulative. The perfe
t square problemis to pa
k a set of squares with given di�erent sizes into a bigger square in su
ha way that no squares overlap ea
h other, all squares borders are parallel to theborder of the big square, and no area of the big square is left blank.A 
onstraint-based s
heduling model for the two-dimensional orthogonal pa
kingproblem 
an be found in Clautiaux et al. (2007). The two-dimensional orthogonalpa
king problem 
onsists in determining if a set of re
tangles 
an be pa
ked in alarger re
tangle of �xed size. They use energeti
 reasoning together with a subset-sum propagation algorithm to e�e
tively prune the sear
h tree in a bran
h-and-bound framework.Amossen and Pisinger (2006) proposed to solve multi-dimensional bin pa
kingproblems with guillotine 
onstraints through a depth-�rst sear
h with 
onstru
tiveassignment of the disjun
ts of the non-overlapping 
onstraints. During sear
h,feasibility with respe
t to the guillotine 
onstraints is maintained.Mo�tt and Polla
k (2006) also applied a ba
ktra
king sear
h for 
onstru
tivelyassigning disjun
ts of the non-overlapping 
onstraints of MARPP. They proposeseveral new problem-spe
i�
 as well as well-known problem-independent pruningand propagation te
hniques in order to explore 
onsistent solutions of a redu
edsear
h tree. In their approa
h, all-pair shortest path matri
es for the two dimensionsare maintained. During sear
h, these matri
es are e�
iently used to 
he
k if anassignment of a geometri
 relation between re
tangles is 
onsistent with respe
t toother 
onstraints.They evaluate their approa
h by proving optimal solutions for pa
king squares of
onse
utive size into a 
ontainer of minimal area. To our knowledge, their resultsare the best in terms of running time for the prove of optimality. In se
tion 5 we
ompare the generated solutions of our approa
h to the optimal solutions provenby them.
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hes. There are also several ways to use a 
ontinuousmodel for pa
king problems. Formulating the MARPP as a non-linear problem maynot seem like an obvious 
hoi
e. Sin
e the non-overlapping 
onstraints are highlynon-
onvex, standard gradient-based approa
hes likely stop in a lo
al optimumand rarely �nd a good global solution (Horst and Tuy, 1996). There are severalstrategies to 
ome 
lose to the global optimum nevertheless. One is to divide thesolution spa
e in subsets and 
hooses representatives whi
h are used as startingsolutions. Alternatively one 
an also generates them randomly. However, dependingon the problem the number of starting solution ne
essary to provide a good �nalsolution 
an be very large. Further strategies 
an be found in (Levy and Montalvo,1985; Ali et al., 1997; Wang and Zhang, 2007).In the 
ontext of re
tangular pa
king problems several approa
hes exists: In Zhanet al. (2006) and Ababei et al. (2005) the main issue is a �oorplanning algorithm.The size of the 
ontainer is �xed but beside the positioning also the sizing of there
tangles is variable within a prede�ned range. The algorithm 
onsists of twostages: In the �rst stage a uniform distribution of the re
tangles is 
al
ulatedwhi
h needs not be 
ompletely feasible; in the se
ond stage the overlapping isexpli
itly penalized to enfor
e feasibility. Sin
e the overlapping is des
ribed byan approximation of maximum and minimum fun
tions, a �nal post-pro
essing isne
essary to eliminate remaining overlaps. The main obje
tive here is to minimizethe length of wires 
onne
ting the re
tangles in some prede�ned way.In Birgin et al. (2006) the 
ontainer is supposed to be 
onvex but need not bebox shaped. The algorithm 
onsists of an iterative loop where in ea
h iterationthe number of re
tangles is in
reased and the violation of the 
ontainment andnon-overlapping 
onstraints is minimized. If the violation is not 
lose to zero thealgorithm terminates. For the 
ontainment 
onstraints it is enough to 
he
k the four
orners of a re
tangle, for the non-overlapping 
onstraints a smooth approximationof the maximum fun
tion is used.In Dornei
h and Sahinidis (1995) a mixed integer non-linear programming ap-proa
h is used. The shape of the re
tangles 
an be 
hanged to a 
ertain amount andthere are further 
onstraints like some pairs of re
tangles have to share a 
ommonborder. A 
ombination of a non-linear solver and a bran
h-and-bound algorithm isproposed to solve the problem.In Herrigel and Fi
htner (1989) the model also allows 90◦ rotations and severalother obje
tives. However, the resulting non-linear program has a stru
ture whi
his not very easy to handle. The way the non-overlapping 
onstraints are smoothedis similar to our approa
h, ex
ept that the regularization parameter is 
onstant.As a 
onsequen
e, the error introdu
ed by the regularization is not driven to zerowhi
h leaves a slight infeasibility in the end of the algorithm.Alon and As
her (1988) also deal with a pla
ement problem. Here the non-overlapping 
onstraints are enfor
e by lower bounds on the Eu
lidean distan
e ofthe re
tangle's midpoints. This is a signi�
ant overestimation, however, it allowsthe rotation by any degree without mu
h extra work. The main obje
tive is againminimal length of wires and 
onstraints are added as a penalty term.Also related is the problem of pa
king 
ir
les with di�erent or identi
al sizesin a re
tangle as for instan
e in George et al. (1995). Sin
e the non-overlapping
onstraints have a simple stru
ture non-di�erentiable fun
tions 
an be avoided.3.5. Remarks on the di�erent approa
hes. Naturally the question arises whenwhi
h of the generi
 approa
hes, CP, metaheuristi
s and non-linear formulation ismost appropriate.Obviously CP is the �rst 
hoi
e if an exa
t optimum is needed, the problemis highly 
onstrained and it is hard to �nd a feasible solution, or the problem
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e is small. It is most e�e
tive when spe
i�
 properties or 
onstraints of theproblem 
an be e�
iently used to dedu
e information and prune the sear
h tree.Yet, the implementation of su
h propagation algorithms 
an be laborious. If theproblem instan
e is large, this approa
h applied with a 
omplete sear
h is obviouslyinadequate.Metaheuristi
s 
an also deal with large-s
ale problems. The basi
 algorithms areeasy to adapt and implement. The main issue is to design me
hanisms for intensi-�
ation and diversi�
ation. When the stru
ture of a problem is hardly known, it israrely possible to apply metaheuristi
s well. However, if an en
oding of a problem iswell-designed, these te
hniques may have the ability to handle global optimizationproblems.Finally, formulating a given problem using di�erentiable fun
tions and solving itwith methods from 
ontinuous optimization 
an be a very �exible approa
h, sin
e
hanges in the obje
tive or 
onstraints 
an easily be adapted without 
hanging thesolver. For instan
e, it is easy to add a 
ontinuous formulation of the obje
tive�minimize the wire length� or �make heat distribution uniform�. Gradient-basedmethods usually improve the obje
tive in ea
h iteration. But then, one has todevelop te
hniques to avoid bad lo
al optima. Furthermore, the design of a goodsolver, whi
h 
an deal with a large 
lass of problem instan
es is an art. Oftenenough, it is ne
essary to tune the solver for a new 
lass based on trial and error,sin
e it is sometimes not obvious how the stru
ture of the problem in�uen
es thebehaviour of the solver.In any 
ase the possibilities to express a given problem in formulae making it
omprehensible for 
omputational evaluation limits the 
hoi
e of methods. Yet forthe MARPP we 
an use methods from ea
h of the three generi
 approa
hes and
ompare them. 4. The novel non-linear approa
h4.1. Reformulation of the problem. An equivalent formulation of P is the fol-lowing:
min b1b2(P ′) subje
t to

1

2
l
(i)
k ≤ c

(i)
k ≤ bk −

1

2
l
(i)
k for k ∈ {1, 2} and i ∈ {1, . . . , n}

max
k∈{1,2}

(

|c
(i)
k − c

(j)
k | −

1

2
(l

(i)
k − l

(j)
k )

)

≥ 0 for 0 < i < j ≤ n(3)It is easy to see that (3) is just a reformulation of (2). Even though (3) avoids thedisjun
tions of (2) it is still non-linear, non-
onvex and non-di�erentiable. Sin
edi�erentiability is an essential pre
ondition for most NLP solvers, we approximatethe 
onstraints by di�erentiable fun
tions, a pro
edure whi
h is known as smoothingor regularization.4.2. Regularization of the problem. Our approa
h is based on a variant ofthe Chen-Harker-Kanzow-Smale fun
tion f(a, b) = 1
2 (a + b −

√

(a − b)2 ) whi
h isequivalent to the minimum fun
tion (Chen and Harker, 1993). The 
ounterpartfor the maximum fun
tion is f(a, b) = 1
2 (a + b +

√

(a − b)2 ). There are a fewsimilar fun
tions (Sun and Qi (1999), Chen et al. (2000)) whi
h are known as non-linear 
omplementary problem (NCP) fun
tions1. As indi
ated by the name theyare used to express the 
omplementarity 
onstraints whi
h appear for instan
e in1We do not have any eviden
e that one of the fun
tions is preferable. The 
omparison of thenumeri
al behaviour of di�erent NCP fun
tions in our 
ontext 
ould be subje
t to further resear
h.
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ker optimality 
onditions. For primal-dual and interior pointmethods these 
onditions arise expli
itly and need to be regularized. This is usuallydone by inserting a regularization parameter τ in an appropriate way su
h that when
τ goes to zero the regularized fun
tion 
onverges to the original fun
tion (Wright,1997; Ye, 1997; Burke and Xu, 2000).By introdu
ing the fun
tion gl(1),l(2)(x, y) := (x− y)2 − 1

4 (l(1) + l(2))2 we get thenew formulation of the non-overlapping 
onstraints:(4) f
(

g
l
(i)
1 ,l

(j)
1

(c
(i)
1 , c

(j)
1 ), g

l
(i)
2 ,l

(j)
2

(c
(i)
2 , c

(j)
2 )

)

≥ 0 for 0 < i < j ≤ nThe regularized form2 of the Chen-Harker-Kanzow-Smale fun
tion f is fτ (a, b) :=
1
2 (a + b +

√

(a − b)2 + 4τ ). For τ > 0, fτ is di�erentiable everywhere and theregularized problem is
min b1b2(Pτ ) subje
t to

1

2
l
(i)
k ≤ c

(i)
k ≤ bk −

1

2
l
(i)
k for k ∈ {1, 2} and i ∈ {1, . . . , n}(5)

fτ

(

g
l
(i)
1 ,l

(j)
1

(c
(i)
1 , c

(j)
1 ), g

l
(i)
2 ,l

(j)
2

(c
(i)
2 , c

(j)
2 )

)

≥ 0 for 0 < i < j ≤ n(6)Note that f0 ≡ f ≡ max and fτ (a, b) ≥ f(a, b). Therefore, the set of feasiblesolutions of (P) is 
ontained in the one for (Pτ ). That means that repla
ing the
ondition (4) by (6) 
auses not only a smoothing but also a relaxation of the prob-lem. The relaxation has a spe
i�
 interpretation: Depending on the size of τ
ondition (6) allows partially overlapping or even 
ontainment of the re
tangles. Inthe 
ontext of the global optimization problem this 
an be used to get away fromlo
al minima. The e�e
t of this me
hanism is illustrated in �gure 3 in se
tion 5.1.Winterfeld (2007) des
ribes an analog observation in the 
ontext of semi-in�niteprogramming.4.3. Analysis of the tunneling e�e
t. In order to give a proper analysis of thee�e
t 
aused by the relaxation we need a stri
ter notion of the overlapping. Toease the presentation we restri
t ourselves now to squares, i.e. we assume l
(i)
1 = l

(i)
2and omit the subs
ript. In this way, we 
an 
on
entrate on the main idea withouthaving to take 
are of several sub-
ases.De�nition 4.1. Given two squares with midpoints c, e ∈ R

2 and side lengths
l(1), l(2), respe
tively. The degree of overlapping is given by d(c, e) = max{0, 1

2 (l(1)+

l(2)) − maxk∈{1,2}{| ck − ek |}}.Note that d(c, e) > 0 if and only if the 
orresponding squares overlap, i.e. theinterior of their interse
tion is non-empty. Furthermore, d(c, e) ≤ 1
2 (l(1) + l(2)) andequality holds when the midpoints 
oin
ide. In �gure 1 the degree of overlappingis indi
ated by o.Lemma 4.2. Given two squares with side lengths l(1) and l(2). For r := 1

2 (l(1) +

l(2)), any o ∈ [0, r] and τ0 := (2ro − o2)r2 equation (6) guarantees a degree ofoverlapping smaller or equal than o.Proof. Assume that the midpoints c and e of the two squares have a distan
e of δ1and δ2 in the 
orresponding dimension and d(c, e) > o. Furthermore without loss2Often also stated as fτ (a, b) := 1

2
(a + b +

p

(a − b)2 + 4τ2 )
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δ

δ

2

o
1

Figure 1. Illustration of the meaning of the variablesof generality δ1 ≥ δ2. Then δ1 < r − o, gr(ck, ek) = δ2
k − r2 for k ∈ {1, 2} and wehave

fτ0(gr(c1, e1), gr(c2, e2)) =
1

2

(

δ2
1 − r2 + δ2

2 − r2 +
√

(δ2
1 − δ2

2)
2 + 4(2ro − o2)r2

)

≤ −r2 +
1

2

(

δ2
1 +

√

δ4
2 + 4(2ro − o2)r2

)

< −r2 +
1

2

(

(r − o)2 +
√

(r − o)4 + 8r3o − 4r2o2
)

= −r2 +
1

2

(

r2 − 2ro + o2 +
√

(−r2 − 2ro + o2)2
)

= 0 using that − r2 − 2ro + o2 ≤ 0whi
h 
ontradi
ts equation (6). �Corollary 4.3. For the setup of Lemma 4.2 and given τ ∈ [0, r4] the equation (6)guarantees a degree of overlapping smaller or equal than r −
√

r2 − τ
r2 .Corollary 4.4. There exists a τ su
h that the relaxed problem holds if and only ifthe 
ontainment 
onstraints are ful�lled.The above statements show how to 
ontrol the maximal overlapping for a givenpair of re
tangles expli
itly. However, this depends also on the spe
i�
 sizes of thetwo re
tangles.4.4. The novel algorithm. The algorithm 
onsists of three nested loops. In theouter loop we determine the starting solution and in the middle loop an initial τ is�xed. The inner loop is within the regularized NLP solver, there the a
tual problemis solved.Algorithm 2 Pseudo 
ode of the novel algorithmfor i := 1 to n1 doInitialize random starting solutionfor j := 1 to n2 doInitialize τ

(j)
1Run regularized NLP solverif no signi�
ant improvement was a
hieved thenleave inner loopend ifend forend for



MINIMAL AREA RECTANGULAR PACKING 114.4.1. The regularized NLP solver. The non-linear solver used here is based onpenalty su

essive linear programming (PSLP, Zhang et al. (1985)) extended by astrategy to redu
e the regularization parameter τ to zero3. The essential ingredientsof PSLP are:
• The non-linear 
onstraints are handled as a penalty term for the obje
tive(multiplied by a penalty fa
tor µ).
• In ea
h iteration the new interim solution is 
al
ulated by solving a lin-earization of the problem at the 
urrent solution within a trust region.
• The trust region is adapted depending on the ratio of the improvement ofthe obje
tives of the linearized model and of the non-linear model. If theratio is 
lose to one, the trust region size is in
reased. If it is not too farfrom zero the trust region size is de
reased. If it is nearly zero or negative,the interim solution is reje
ted and the 
urrent iteration is repeated with asmaller trust region.
• The stopping 
riterion is that the gradient of the penalized obje
tive is 
loseto zero and there is no 
hange in the obje
tive value.If the initial solution is feasible and µ is 
hosen large enough, this algorithm termi-nates with a Karush-Kuhn-Tu
ker point whi
h is usually a lo
al optimum.For the extension to handle the regularization, τ is 
onsidered as another variablewith a separate kind of trust region. τ also appears as an additional term in theextended obje
tive weighted by a fa
tor. In this way, it is automati
ally driven tozero during the iterations.4.4.2. The starting solution. The quality of the �nal solution depends signi�
antlyon the starting solution. Yet, the dependen
y seems to be arbitrary. We 
annotexpe
t to �nd starting solutions in a general way su
h that our algorithm always
onverges to a �nal solution 
lose to a global optimum.Therefore, we did not use sophisti
ated heuristi
s, but rather arranged the re
t-angles in su
h a way that the lower right 
orner of the i-th box tou
hes the upperright 
orner of the i + 1-th box. The order of the re
tangles is subje
t to random-ization. In the �rst iterations of the inner loop the re
tangles are pushed togetherwithout any bias to a parti
ular arrangement, whi
h is a ne
essary requirement forgood starting solutions.It is worth noting that the starting solution need not be feasible for P but onlyfor P

τ
(0)
1
. If τ

(1)
0 is 
hosen large enough, one 
ould even put all re
tangles on top ofea
h other.4.4.3. The 
hoi
e of parameters of the regularized NLP solver. The behaviour ofthe solver depends on the values of a few parameters. Those whi
h proved to bemost in�uential are:

• τ
(1)
1

• α whi
h determines the adaptation of τ : τ
(j+1)
1 = ατ

(j)
1

• The penalty fa
tor µSin
e the behaviour of the problem 
hanges depending on the size of the probleminstan
e, we did not expe
t to �nd values for this parameters whi
h suits all probleminstan
es equally well. Instead, we used an evolutionary algorithm (Hanne, 2007) todetermine the values for several sizes of problem instan
es. The results are shownin table 2.3In our implementation this means a
tually τ < 10−6
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Figure 2. Comparison of the three di�erent methods.5. Numeri
al resultsTo enable the 
omparison with an optimal solution we used the same problemsetup as Mo�tt and Polla
k (2006), that is, n squares of 
onse
utive sizes.For our algorithm refered to as BMW the runtimes are the needed CPU times inse
onds whi
h are more reliable than the time span from start to termination. Thea
tually elapsed time was a fra
tion of it sin
e the 
al
ulations for di�erent startingsolutions were done in parallel. For the SA algorithm whi
h was not parallelized theellapsed time was measured. Table 1 shows the di�erent parameter 
on�gurationsVariant # starting solutions τ
(1)
1 α µA 128 372 0.48 240835B 128 394 0.68 76827C 32 380 0.63 46084D 16 270 0.77 100000Table 1. Choi
e of parameters for table 2used for our approa
h. The 
orresponding results for di�erent problem instan
esizes are given in table 2.Variant # squares best area average area usage runtimeA 15 1344 1495 0.92 257B 15 1350 1478 0.92 239C 15 1363 1489 0.91 88.0D 15 1363 1475 0.91 40.0A 25 6106 6621 0.90 1.29 · 103B 25 6138 6561 0.90 1.27 · 103C 25 6084 6565 0.91 427D 25 6203 6518 0.89 255A 100 398750 689093 0.85 2.13 · 105B 100 385541 1028145 0.88 2.86 · 105C 100 386640 426158 0.87 8.15 · 104D 100 396500 674944 0.85 5.43 · 104A 150 1444114 4708489 0.79 7.08 · 105C 150 1390212 6399340 0.88 3.08 · 104Table 2. Comparison for di�erent 
hoi
es of parameters



MINIMAL AREA RECTANGULAR PACKING 13In Figure 2 the optimal values taken from Mo�tt and Polla
k (2006), the SAimplementation and our approa
h are 
ompared. Here we used variant A as pa-rameter 
on�guration. For larger problem instan
es table 3 presents results using# squares area SA usage SA time SA area BMW usage BMW time BMW10 408 0.944 1.71 425 0.906 25.625 5772 0.957 11.9 6084 0.908 26650 45045 0.953 31.3 48585 0.884 3.60 · 10375 149946 0.957 86.9 163710 0.876 2.22 · 104100 356136 0.950 193 386640 0.875 8.15 · 104125 690336 0.954 489 755094 0.873 1.76 · 105150 1193865 0.952 588 1390212 0.817 3.08 · 105Table 3. Results for larger number of squaresvariant C. To our knowledge, optimal solutions are not available for these 
ases.The SA implementation proved to be less sensitive regarding the 
hoi
e of thestarting solution and of the moves. Di�erent runs did not yield signi�
ant dif-feren
es in the quality of the solutions. Therefore, we abstained from presentingdi�erent results for this method.For problem instan
es with up to 19 squares the BMW algorithm yields resultsof similar quality as SA, even though it needs more time. For larger instan
esthe out
ome is not as good any more. As table 1 indi
ates, the 
riti
al point isthe number of starting solutions. A possibility to allow more starting solution byde
reasing the runtime is shown in se
tion 6.We tried to adapt τ for ea
h non-overlapping 
onstraint in su
h a way thatthe degree of overlapping is bounded from above. For this we used max{τ, τi,j}instead of τ where τi,j is given for ea
h pair of re
tangles (ri, rj). Thus, 
omplete
ontainments like in �gure 3(d) are avoided. However, our tests did not show anysigni�
ant improvement.In 
ontrast to other non-linear approa
hes the �nal solution is a feasible one andno further post-pro
essing is ne
essary. This is an highly desirable property as wedo not need a se
ond model whi
h fo
uses on feasibility and may have to deterioratethe obje
tive fun
tion value.The 
hoi
e of parameters e�e
ts the runtime and the quality of the solution.The in�uen
e of most of the parameters on that two properties of the optimizationis unapparent. However, for the most essential parameter, the number of startingsolutions, the following is observed: The larger the number of starting solutions,the longer takes the algorithm but the better is the resulting �nal solution.Besides the spe
i�
 
hoi
es of the parameters, our algorithm is not restri
ted tothe 
hara
teristi
s of MARPP. Even though the result are not better than what weget from SA, the great strength of our approa
h is its expressiveness and extensi-bility. As far as the runtime is 
on
erned, the possibilities for improvement are notexhausted:
• For large problem instan
es most of the non-overlapping 
onstraints are nota
tive. Therefore, if su
h non-overlapping 
onstraints for re
tangles thatare far apart are ignored, the number of 
onstraints is signi�
antly redu
edwithout risking infeasibility. However, the �being-far-apart-property� hasto be re
he
ked by the algorithm from time to time. The trust region size
an be a good indi
ator when to re
he
k this property. This ǫ-a
tive setstrategy 
ertainly leads to a improvement of the runtime, sin
e the size ofthe non-linear program is 
onsiderably redu
ed.
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(a) Starting solution
(b) 21st iteration (
) 30th itera-tion (d) 35th itera-tion (e) 40th itera-tion

(f) 77th itera-tion (g) 80th itera-tion (h) 106th iteration (i) �nal solution af-ter 132 iterationsFigure 3. Sele
ted iterations of one optimization run with ten squares.
• One 
ould use di�erent τ for ea
h non-overlapping 
onstraint. Sin
e for agiven τ the degree of overlapping depends on the sizes of the re
tangles thee�e
t of τ is di�erent for ea
h su
h 
onstraint.
• The way τ is redu
ed within the regularized NLP solver 
an be designedmore adaptively. Espe
ially the speed of redu
tion seems to have somein�uen
e on the solution �nally found. Alternatively, one 
ould also addthe 
ondition τ = 0 to the set of 
onstraints and start with a solution whi
his infeasible with respe
t to this 
ondition.5.1. Detailed study of the behaviour of the BMW Algorithm. Figure 3demonstrates how the outer loop of the algorithm works. Starting from the initialsolution a lo
al optimum is rea
hed qui
kly whi
h 
annot be improved dire
tly.When the NLP solver is restarted and the non-overlapping 
onstraints are relaxed,situations like in �gure 3(
) o

ur. The relative positions of the larger squares are



MINIMAL AREA RECTANGULAR PACKING 15maintained but for the smaller squares the relaxation is so strong that the non-overlapping 
onstraints are 
ompletely suppressed. When the allowed relaxation isredu
ed, overlaps of squares disappear as it 
an be seen in �gures 3(d) and 3(e).Then, another lo
al optimum is rea
hed in 3(g) and the relaxation yields a 
hangein the relative positions of the squares. This 
hange leads to a redu
ed obje
tivevalue. This behaviour reo

urs twi
e until the last relaxation does no longer yieldan improvement and the algorithm terminates.The �gures show that some squares moved to the left upper 
orner. This phe-nomenon is not related to any 
hange in the obje
tive. It is 
aused by the underlyingnon-linear solver and 
annot be 
ontrolled dire
tly. This is undesirable sin
e it givesthe solution some bias. Sin
e there is no in�uen
e in the obje
tive one way to elim-inate this property is to 
hange the non-linear solver. Alternatively, a bound onthe maximal degree of overlapping 
an prevent this phenomenon.5.2. Similarities between the BMW algorithm and SA. Using SA for globaloptimization of a 
ontinuous fun
tion is not a new idea (Ali et al., 1997). Re
ently,Wang and Zhang (2007) expli
itly 
ombined SA with a gradient-based optimizationmethod. Interesting in our approa
h is that aspe
ts from SA appear naturallythrough the formulation of the problem in two di�erent perspe
tives.The regularized NLP solver is analogous to SA if we 
onsider the regularizationparameter τ as the temperature and the infeasibility as the energy 
on�guration.A low energy 
on�guration is a
hieved when no re
tangles overlap and is enfor
edfor τ = 0. By 
orollary 4.3 we 
an interpret the redu
tion of τ as 
ooling thesystem, sin
e we redu
e the allowed degree of overlapping. The di�eren
e to SAis that a worse state is not a

epted a

ording to a probability fun
tion. Ratherany improvement of the a
tual obje
tive, the area of the bounding box, is a

eptedwhi
h does not violate the limit of overlapping determined by τ . In pra
ti
e itturns out that in ea
h iteration the 
urrent solutions a
hieve the maximal degreeof non-overlapping allowed by the 
urrent value of τ .Also the middle loop has a similar interpretation. Again we 
an 
onsider τ asthe temperature. Now, the inner loop 
an be seen as a move whi
h 
hanges the
urrent solution. The degree of the 
hange is determined by τ , with whi
h theregularized NLP solver is initialized. However, so far this analogy is not 
arried out
ompletely. The middle loop does not stop when τ is small enough but when nofurther improvements were a
hieved. Also, deteriorations are not a

epted in any
ase. However, the algorithm 
an easily be adapted to represent this strategy.Putting both loops together one 
an 
onsider the outer loop as a kind of reheat-ing, whi
h is an idea well known for SA (Kolonko, 1999; Anagnostopoulos et al.,2006). 6. Con
lusion and future resear
hWe presented a novel approa
h to solve the MARPP based on a 
ontinuous modeland a regularization of the maximum fun
tion. We 
ompared our approa
h with SAand it turned out that it is 
ompetitive, even though the improvement of the per-forman
e of the solver remains an issue. The spe
ial features of this algorithm arethat it always provides a feasible solution and the tunneling e�e
t. This te
hniqueuses the relaxation of the non-overlapping 
onstraints to ex
ape from lo
al optimaand shows similarities to metaheuristi
 
on
epts. Finally, the major strength ofour model is that it 
an be easily extended with other 
ontinuous obje
tives and
onstraints. Su
h extensions may expe
ially bene�t from the tunneling e�e
t. Forinstan
e, when minimizing the length of wires the gradient of the obje
tive yieldsmore information. These are useful in parti
ular when the relaxation 
auses a largedegree of freedom.
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 is to ex
hange the underlying NLP solver. Alternativesto PSLP may be sequential quadrati
 programming, other Newton-like methods orinterior point algorithms.Furthermore, one 
ould make use of the possibilities o�ered by the non-linear,
ontinuous formulation of the problem. For example, in mi
roele
troni
s, the re
t-angles 
orrespond to modules whi
h are inter
onne
ted by wires in a prede�nedway and one important goal is to keep the length of the wire as short as possible.This leads intuitively to a 
ontinuous obje
tive fun
tion.Extending this approa
h to three (or higher) dimensions may be interesting. Themain issue for this is that instead of smoothing something like max{a(x), b(x)} onehas to 
onsider max{a(x), b(x), c(x)}. To do so, another regularization fun
tion isneeded whi
h probably behaves numeri
ally slightly worse. However, the underly-ing algorithm stays the same, whereas SA or CP approa
hes have to deal with asigni�
antly higher 
ombinatorial 
omplexity.Hybridization of our approa
h with other approa
hes like SA or CP might yieldimprovements. They 
ould 
omplement ea
h other in a framework whi
h uni�es therobust sampling of the solution spa
e from metaheuristi
s, the strong propagationme
hanisms from CP and the �exible relaxation from global non-linear optimiza-tion. For example, 
onsidering simulated annealing one 
ould swit
h between SAmoves and iterations of the NLP solver as des
ribed in Wang and Zhang (2007).Also, it should be possible to use CP with its strong methods to investigate arrange-ments of a subset of the re
tangles on whi
h additional 
onstraints are imposed.When dealing with CP applied in a 
omplete sear
h one 
an use the NLP solver toget upper bounds for the problem and propagate this information during sear
h.A
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