Skip to main content
Log in

Optimal crop planting schedules and financial hedging strategies under ENSO-based climate forecasts

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper investigates the impact of ENSO-based climate forecasts on optimal planting schedules and financial yield-hedging strategies in a framework focused on downside risk. In our context, insurance and futures contracts are available to hedge against yield and price risks, respectively. Furthermore, we adopt the Conditional-Value-at-Risk (CVaR) measure to assess downside risk, and Gaussian copula to simulate scenarios of correlated non-normal random yields and prices. The resulting optimization problem is a mixed 0–1 integer programming formulation that is solved efficiently through a two-step procedure, first through an equivalent linear form by disjunctive constraints, followed by decomposition into sub-problems identified by hedging strategies. With data for a representative cotton producer in the Southeastern United States, we conduct a study that considers a wide variety of optimal planting schedules and hedging strategies under alternative risk profiles for each of the three ENSO phases (Niña, Niño, and Neutral.) We find that the Neutral phase generates the highest expected profit with the lowest downside risk. In contrast, the Niña phase is associated with the lowest expected profit and the highest downside risk. Additionally, yield-hedging insurance strategies are found to vary significantly, depending critically on the ENSO phase and on the price bias of futures contracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203–228.

    Article  Google Scholar 

  • Black, F. (1976). The pricing of commodity contracts. Journal of Financial Economics, 3, 167–179.

    Article  Google Scholar 

  • Cabrera, V. E., Fraisse, C., Letson, D., Podestá, G., & Novak, J. (2006). Impact of climate information on reducing farm risk by optimizing crop insurance strategy. Transactions of the American Society of Agricultural and Biological Engineers, 49, 1223–1233.

    Google Scholar 

  • Cabrera, V. E., Letson, D., & Podestá, G. (2007). The value of the climate information when farm programs matter. Agricultural Systems, 93, 25–42.

    Article  Google Scholar 

  • Cane, M. A., Eshel, G., & Buckland, R. (1994). Forecasting Zimbabwean maize yield using eastern equatorial Pacific sea surface temperature. Nature, 370, 204–205.

    Article  Google Scholar 

  • Chambers, R. G., & Quiggin, J. (2002). Optimal producer behavior in the presence of area-yield crop insurance. American Journal of Agricultural Economics, 84, 320–334.

    Article  Google Scholar 

  • Coble, K. H., Miller, J. C., & Zuniga, M. (2004). The joint effect of government crop insurance and loan programmes on the demand for futures hedging. European Review of Agricultural Economics, 31, 309–330.

    Article  Google Scholar 

  • de Roon, F. A., Nijman, F. T., & Veld, C. (2000). Hedging pressure effects in futures markets. Journal of Finance, 55, 1437–1456.

    Article  Google Scholar 

  • Dusak, K. (1973). Futures trading and investor returns: an investigation of commodity market risk premiums. Journal of Political Economy, 81, 1387–1406.

    Article  Google Scholar 

  • Embrechts, P., McNeal, A., & Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls. In M. Dempster (Ed.), Risk management: value-at-risk and beyond (pp. 176–223). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Gorton, G., & Rouwenhorst, K. G. (2006). Facts and fantasies about commodity futures. Financial Analysts Journal, 62, 47–68.

    Article  Google Scholar 

  • Hansen, J. W. (2002). Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges. Agricultural Systems, 74, 309–330.

    Article  Google Scholar 

  • Hansen, J. W., Hodges, A. W., & Jones, J. W. (1998). ENSO influences on agriculture in the Southeastern US. Journal of Climate, 11, 404–411.

    Article  Google Scholar 

  • Hicks, J. R. (1939). Value and capital. Cambridge: Oxford University Press.

    Google Scholar 

  • Hirshleifer, D. (1988). Residual risk, trading costs, and commodity futures risk premia. Review of Financial Studies, 1, 173–193.

    Article  Google Scholar 

  • Hirshleifer, D. (1989). Determinants of hedging and risk premia in commodity futures markets. Journal of Financial and Quantitative Analysis, 24, 313–331.

    Article  Google Scholar 

  • Jagannathan, R. (1985). An investigation of commodity futures prices using the consumption-based inter-temporal capital asset pricing model. Journal of Finance, 40, 175–191.

    Article  Google Scholar 

  • Jones, J. W., Hansen, J. W., Royce, F. S., & Messina, C. D. (2000). Potential benefits of climate forecast to agriculture. Agriculture, Ecosystems & Environment, 82, 169–184.

    Article  Google Scholar 

  • Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 235–265.

    Article  Google Scholar 

  • Jorion, P. (2000). Value at risk: the new benchmark for managing financial risk (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Keynes, J. M. (1930). A treatise on money (Vol. 2). London: Macmillan.

    Google Scholar 

  • Kruksal, W. H. (1958). Ordinal measures of association. Journal of the American Statistical Association, 53, 814–861.

    Article  Google Scholar 

  • Mahul, O. (2003). Hedging price risk in the presence of crop yield and revenue insurance. European Review of Agricultural Economics, 30, 217–239.

    Article  Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91.

    Article  Google Scholar 

  • Messina, C. R., Jones, J. W., & Fraisse, C. W. (2005). Development of cotton CROPGRO crop model. Southeast Climate Consortium Staff Paper Series 05-05, Gainesville, FL.

  • Nemhauser, G. L., & Wolsey, L. A. (1999). Integer and combinatorial optimization. New York: Wiley.

    Google Scholar 

  • Poitras, G. (1993). Hedging and crop insurance. The Journal of Futures Markets, 13, 373–389.

    Article  Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2, 21–41.

    Google Scholar 

  • Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris, 8, 229–231.

    Google Scholar 

  • Stoll, H. (1979). Commodity futures and spot price determination and hedging in capital market equilibrium. Journal of Financial and Quantitative Analysis, 14, 873–895.

    Article  Google Scholar 

  • Szegö, G. (2002). Measures of risk. Journal of Banking and Finance, 26, 1253–1272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid AitSahlia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AitSahlia, F., Wang, CJ., Cabrera, V.E. et al. Optimal crop planting schedules and financial hedging strategies under ENSO-based climate forecasts. Ann Oper Res 190, 201–220 (2011). https://doi.org/10.1007/s10479-009-0551-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0551-2

Keywords

Navigation