Skip to main content
Log in

An updated survey on the linear ordering problem for weighted or unweighted tournaments

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we survey some results, conjectures and open problems dealing with the combinatorial and algorithmic aspects of the linear ordering problem. This problem consists in finding a linear order which is at minimum distance from a (weighted or not) tournament. We show how it can be used to model an aggregation problem consisting of going from individual preferences defined on a set of candidates to a collective ranking of these candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adám, A. (1964). Problem. In Theory of graphs and its applications. Proc. Coll. Smolenice, Czech. Acad. Sci. Publ.

  • Adler, I., Alon, N., & Ross, S. M. (2001). On the number of Hamiltonian paths in tournaments. Random Structures and Algorithms, 18, 291–296.

    Google Scholar 

  • Ailon, N., & Alon, N. (2007). Hardness of fully dense problems. Information and Computation, 205, 117–1129.

    Google Scholar 

  • Ailon, N., Charikar, M., & Newman, A. (2005). Aggregating inconsistent information: ranking and clustering. In Proceedings of the 37th annual ACM symposium on theory of computing (STOC) (pp. 684–693).

  • Ali, I., Cook, W. D., & Kress, M. (1986). On the minimum violations ranking of a tournament. Management Science, 32, 660–674.

    Google Scholar 

  • Alon, N. (1990). The maximum number of Hamiltonian paths in tournaments. Combinatorica, 10, 319–324.

    Google Scholar 

  • Alon, N. (2006). Ranking tournaments. SIAM Journal on Discrete Mathematics, 20(1), 137–142.

    Google Scholar 

  • Alon, N., & Spencer, J. (2000). The probabilistic method (2nd edn.). New York: Wiley.

    Google Scholar 

  • Alspach, B. (1967). Cycles of each length in regular tournaments. Canadian Mathematical Bulletin, 10, 283–286.

    Google Scholar 

  • Alspach, B. (1968). A combinatorial proof of a conjecture of Goldberg and Moon. Canadian Mathematical Bulletin, 11, 655–661.

    Google Scholar 

  • Arditti, D. (1984). Un nouvel algorithme de recherche d’un ordre induit par des comparaisons par paires. In E. Diday et al. (Eds.), Data analysis and informatics III (pp. 323–343). Amsterdam: North-Holland.

    Google Scholar 

  • Arora, S., Frieze, A., & Kaplan, H. (1996). A new rounding procedure for the assignment problem with applications to dense graph arrangement problems. In Proceedings of the 37th annual IEEE symposium on foundations of computer science (FOCS) (pp. 24–33).

  • Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., & Protasi, M. (2003). Complexity and approximation (2nd edn.). Berlin: Springer.

    Google Scholar 

  • Baker, F. B., & Hubert, L. J. (1977). Applications of combinatorial programming to data analysis: seriation using asymmetric proximity measures. British Journal of Mathematical & Statistical Psychology, 30, 154–164.

    Google Scholar 

  • Bang-Jensen, J., & Gutin, G. (2001). Digraphs: theory, algorithms, and applications. London, Berlin, Heidelberg: Springer.

    Google Scholar 

  • Banks, J. (1985). Sophisticated voting outcomes and agenda control. Social Choice and Welfare, 2, 295–306.

    Google Scholar 

  • Banks, J., Bordes, G., & Le Breton, M. (1991). Covering relations, closest orderings and Hamiltonian bypaths in tournaments. Social Choice and Welfare, 8, 355–363.

    Google Scholar 

  • Bar-Noy, A., & Naor, J. (1990). Sorting, minimal feedback sets, and Hamilton paths in tournaments. SIAM Journal on Discrete Mathematics, 3(1), 7–20.

    Google Scholar 

  • Barahona, F., Fonlupt, J., & Mahjoub, A. R. (1994). Compositions of graphs and polyhedra IV: acyclic spanning subgraph. SIDMA, 7(3), 390–402.

    Google Scholar 

  • Barbut, M. (1966). Note sur les ordres totaux à distance minimum d’une relation binaire donnée. Mathématiques et Sciences humaines, 17, 47–48.

    Google Scholar 

  • Barthélemy, J.-P., & Monjardet, B. (1981). The median procedure in cluster analysis and social choice theory. Mathematical Social Sciences, 1, 235–267.

    Google Scholar 

  • Barthélemy, J.-P., & Monjardet, B. (1988). The median procedure in data analysis: new results and open problems. In H. H. Bock (Ed.), Classification and related methods of data analysis. Amsterdam: North-Holland.

    Google Scholar 

  • Barthélemy, J.-P., Guénoche, A., & Hudry, O. (1989). Median linear orders: heuristics and a branch and bound algorithm. European Journal of Operational Research, 41, 313–325.

    Google Scholar 

  • Barthélemy, J.-P., Hudry, O., Isaak, G., Roberts, F. S., & Tesman, B. (1995). The reversing number of a digraph. Discrete Applied Mathematics, 60, 39–76.

    Google Scholar 

  • Barthélemy, J.-P., Cohen, G., & Lobstein, A. (1996). Algorithmic complexity and communication problems. London: UCL Press.

    Google Scholar 

  • Bartholdi, J.J. III, Tovey, C.A., & Trick, M.A. (1989). Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare, 6, 157–165.

    Google Scholar 

  • Becker, O. (1967). Das Helmstädtersche Reihenfolgeproblem—die Effizienz verschiedener Näherungsverfahren. In: Computers uses in the social science. Vienna.

  • Belloni, A., & Lucena, A. (2004). Lagrangian heuristics for the linear ordering problem. In M. G. C. Resende & J. P. de Sousa (Eds.), Metaheuristics: computer decision making (pp. 37–63). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Berge, C. (1985). Graphs. Amsterdam: North-Holland.

    Google Scholar 

  • Berger, B., & Shor, P. W. (1997). Tight bounds for the maximum acyclic subgraph problem. Journal of Algorithms, 25, 1–18.

    Google Scholar 

  • Berger, B., & Shor, P. W. (1990). Approximation algorithms for the maximum acyclic subgraph problem. In Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms (SODA) (pp. 236–243).

  • Bermond, J.-C. (1972). Ordres à distance minimum d’un tournoi et graphes partiels sans circuits maximaux. Mathématiques et Sciences humaines, 37, 5–25.

    Google Scholar 

  • Bermond, J.-C. (1975). The circuit-hypergraph of a tournament. In Infinite and finite sets, proceedings of the colloquia mathematica societatis János Bolyai (Vol. 10, pp. 165–180). Amsterdam: North-Holland,

    Google Scholar 

  • Bermond, J.-C., & Kodratoff, Y. (1976). Une heuristique pour le calcul de l’indice de transitivité d’un tournoi. RAIRO, 10(3), 83–92.

    Google Scholar 

  • Bertacco, L., Brunetta, L., & Fischetti, M. (2008). The Linear Ordering Problem with Cumulative Costs. European Journal of Operational Research, 189, 1345–1357.

    Google Scholar 

  • Black, D. (1958). The theory of committees and elections. Cambridge: Cambridge University Press.

    Google Scholar 

  • Blin, J. M., & Whinston, A. B. (1974). A note on majority rule under transitivity constraints. Management Science, 20, 1439–1440.

    Google Scholar 

  • Blin, J. M., & Whinston, A. B. (1975). Discriminant functions and majority voting. Management Science, 21, 1029–1041.

    Google Scholar 

  • Boenchendorf, K. (1982). Mathematical systems in economics : Vol. 74. Reihenfolgenprobleme/mean-flow-time sequencing. Königstein: Verlagsgruppe Athanäum/Hain/Scriptor/Hanstein.

    Google Scholar 

  • Bolotashvili, G., Kovalev, M., & Girlich, E. (1999). New facets of the linear ordering polytope. SIAM Journal on Discrete Mathematics, 12(3), 326–336.

    Google Scholar 

  • Borda, J.-C. (chevalier de) (1784). Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des Sciences pour 1781, Paris.

  • Bowman, V. J., & Colantoni, C. S. (1973). Majority rule under transitivity constraints. Management Science, 19, 1029–1041.

    Google Scholar 

  • Brualdi, R. A., & Qiao, L. (1983). Upsets in round robin tournaments. Journal of Combinatorial Theory Series B, 35, 62–77.

    Google Scholar 

  • Brualdi, R. A., & Qiao, L. (1984). The interchange graph of tournaments with the same score vector. In Progress in graph theory (pp. 129–151). San Diego: Academic Press.

    Google Scholar 

  • Buchheim, C., Wiegele, A., & Zheng, L. (2009). Exact algorithms for the quadratic linear ordering problem. Informs Journal on Computing (to appear).

  • Burkard, R. E., Çela, E., Pardalos, P. M., & Pitsoulis, L. S. (1998). The quadratic assignment problem. In P. M. Pardalos & D.-Z. Du (Eds.), Handbook of combinatorial optimization (pp. 241–338). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Burkov, V. N., & Groppen, V. O. (1972). Branch cuts in strongly connected graphs and permutation potentials. Automation and Remote Control, 6, 111–119.

    Google Scholar 

  • Busch, A. H. (2006). A note on the number of Hamiltonian paths in strong tournaments. Electronic Journal of Combinatorics, 13, #N3.

    Google Scholar 

  • Campos, V., Laguna, M., & Martí, R. (1999). Scatter search for the linear ordering problem. In D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimization (pp. 331–339). New York: McGraw-Hill.

    Google Scholar 

  • Campos, V., Glover, F., Laguna, M., & Martí, R. (2001). An experimental evaluation of a scatter search for the linear ordering problem. Journal of Global Optimization, 21(4), 397–414.

    Google Scholar 

  • Campos, V., Laguna, M., & Martí, R. (2005). Context-independent scatter and tabu search for permutation problems. INFORMS Journal on Computing, 17(1), 331–339.

    Google Scholar 

  • Caspard, N., Monjardet, B., & Leclerc, B. (2007). Ensembles ordonnés finis : concepts, résultats et usages. Berlin: Springer.

    Google Scholar 

  • Chanas, S., & Kobylanski, P. (1996). A new heuristic algorithm solving the linear ordering problem. Computational Optimization and Applications, 6, 191–205.

    Google Scholar 

  • Chaovalitwongse, W., Pardalos, P. M., Resende, M. G. C., & Grundel, D. A. (2009). Revised GRASP with path-relinking for the linear ordering problem. Submitted for publication to the Journal of Combinatorial Optimization, and AT&T Labs Research technical report.

  • Charbit, P., Thomasse, S., & Yeo, A. (2007). The minimum feedback arc set problem is NP-hard for tournaments. Combinatorics, Probability and Computing, 16(1), 1–4.

    Google Scholar 

  • Charon, I., & Hudry, O. (1998). Lamarckian genetic algorithms applied to the aggregation of preferences. Annals of Operations Research, 80, 281–297.

    Google Scholar 

  • Charon, I., & Hudry, O. (2000). Slater orders and Hamiltonian paths of tournaments. Electronic Notes in Discrete Mathematics, 5, 60–63.

    Google Scholar 

  • Charon, I., & Hudry, O. (2001a). The noising methods: a generalization of some metaheuristics. European Journal of Operational Research, 135(1), 86–101.

    Google Scholar 

  • Charon, I., & Hudry, O. (2001b). Metod vetvei i granits dlia recheniia zadatchi o lineinom poriadke na vzvechennikh tournirakh. Discretii Analiz i Issledovanie Operatsii, Seriia 2, 8(2), 73–91 (in Russian).

    Google Scholar 

  • Charon, I., & Hudry, O. (2002). The noising methods: a survey. In P. Hansen & C. C. Ribeiro (Eds.), Essays and surveys in metaheuristics (pp. 245–261). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Charon, I., & Hudry, O. (2003). Links between the Slater index and the Ryser index of tournaments. Graphs and Combinatorics, 19(3), 309–322.

    Google Scholar 

  • Charon, I., & Hudry, O. (2006). A branch and bound algorithm to solve the linear ordering problem for weighted tournaments. Discrete Applied Mathematics, 154, 2097–2116.

    Google Scholar 

  • Charon, I., & Hudry, O. (2007). A survey on the linear ordering problem for weighted or unweighted tournaments, 4OR, 5(1), 5–60.

    Google Scholar 

  • Charon, I., & Hudry, O. (2009a). Self-tuning of the noising methods. Optimization, 58(7), 1–21.

    Google Scholar 

  • Charon, I., & Hudry, O. (2009b). Branch and bound. In V. Paschos (Ed.) Handbook of combinatorial optimization. Wiley, New York (to appear)

  • Charon, I., & Hudry, O. (2009c). Maximum distance between Slater orders and Copeland orders of tournaments (submitted for publication).

  • Charon, I., & Hudry, O. (2009d). How different can Slater’s solutions and Kemeny’s solutions of tournaments be? (submitted for publication).

  • Charon, I., Germa, A., & Hudry, O. (1992a). Encadrement de l’indice de Slater d’un tournoi à l’aide de ses scores. Mathématiques, Informatique et Sciences humaines, 118, 53–68.

    Google Scholar 

  • Charon, I., Germa, A., & Hudry, O. (1992b). Utilisation des scores dans des méthodes exactes déterminant les ordres médians de tournois. Mathématiques, Informatique et Sciences humaines, 119, 53–74.

    Google Scholar 

  • Charon, I., Germa, A., & Hudry, O. (1996a). Random generation of tournaments and asymmetric digraphs with given out-degrees. European Journal of Operational Research, 95, 411–419.

    Google Scholar 

  • Charon, I., Guénoche, A., Hudry, O., & Woirgard, F. (1996b). A bonsaï branch and bound method applied to voting theory. In Ordinal and symbolic data analysis (pp. 309–318). Berlin: Springer

    Google Scholar 

  • Charon, I., Hudry, O., & Woirgard, F. (1996c). Ordres médians et ordres de Slater des tournois. Mathématiques, Informatique et Sciences humaines, 133, 23–56.

    Google Scholar 

  • Charon, I., Guénoche, A., Hudry, O., & Woirgard, F. (1997a). New results on the computation of median orders. Discrete Mathematics, 165–166, 139–154.

    Google Scholar 

  • Charon, I., Hudry, O., & Woirgard, F. (1997b). A 16-vertex tournament for which Banks set and Slater set are disjoint. Discrete Applied Mathematics, 80(2–3), 211–215.

    Google Scholar 

  • Chartrand, G., Geller, D., & Hedetniemi, S. (1971). Graphs with forbidden subgraphs. Journal of Combinatorial Theory, Series B, 10(1), 12–41.

    Google Scholar 

  • Chenery, H. B., & Watanabe, T. (1958). International comparisons of the structure of production. Econometrica, 26(4), 487–521.

    Google Scholar 

  • Chiarini, B., Chaovalitwongse, W., & Pardalos, P. M. (2004). A new algorithm for the triangulation of input-output tables. In P. M. Pardalos, A. Migdalas, & G. Baourakis (Eds.), Supply chain and finance (pp. 254–273). Singapore: World Scientific.

    Google Scholar 

  • Christof, T., & Reinelt, G. (1996). Combinatorial optimization and small polytopes. Top, 4(1), 1–64.

    Google Scholar 

  • Christof, T., & Reinelt, G. (1997a). Low-dimensional linear ordering polytopes. Working paper, University of Heidelberg.

  • Christof, T., & Reinelt, G. (1997b). Small instances relaxations for solving linear ordering problems by branch-and-cut (Technical report). University of Heidelberg.

  • Christof, T., & Reinelt, G. (2001). Algorithmic aspects of using small instance relaxations in parallel branch-and-cut. Algorithmica, 30(4), 507–629.

    Google Scholar 

  • Christophe, J., Doignon, J.-P., & Fiorini, S. (2004). The biorder. Order, 21/1, 61–82.

    Google Scholar 

  • Cohen, W., Schapire, R., & Singer, Y. (1999). Learning to order things. Journal of Artificial Intelligence Research, 10, 213–270.

    Google Scholar 

  • Condorcet, M. J. A. N. Caritat (marquis de) (1785). Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix, Paris.

  • Congram, R. K. (2000). Polynomially searchable exponential neighbourhoods for sequencing problems in combinatorial optimisation. Ph.D. thesis, University of Southampton.

  • Conitzer, V. (2006). Computing Slater rankings using similarities among candidates. In Proceedings of the 21st national conference on artificial intelligence (AAAI-06), Boston, MA, USA (pp. 613–619). Early version: IBM research report RC23748, 2005.

  • Cook, W. D., & Saipe, A. L. (1976). Committee approach to priority planning: the median ranking method. Cahiers du Centre d’Études et de Recherche Opérationnelle 18(3), 337–352.

    Google Scholar 

  • Cook, W. D., Golan, I., & Kress, M. (1988). Heuristics for ranking players in a round robin tournament. Computers and Operations Research, 15(2), 135–144.

    Google Scholar 

  • Cook, W. D., Doyle, J., Green, R., & Kress, M. (1996). Ranking players in multiple tournaments. Computers and Operations Research, 23(9), 869–880.

    Google Scholar 

  • Copeland, A. H. (1951). A “reasonable” social welfare function. Seminar on applications of mathematics to social sciences, University of Michigan.

  • Coppersmith, D., & Winograd, S. (1990). Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9, 251–280.

    Google Scholar 

  • Coppersmith, D., Fleischer, L., & Rudra, A. (2006). Ordering by weighted number of wins gives a good ranking for weighted tournaments. In Proceedings of the seventeenth annual ACM-SIAM symposium on discrete algorithm (SODA’06) (pp. 776–782).

  • Czygrinow, A., Poljak, S., & Rödl, V. (1999). Constructive quasi-Ramsey numbers and tournament ranking. SIAM Journal on Discrete Mathematics, 12(1), 48–63.

    Google Scholar 

  • Davenport, A., & Kalagnanam, J. (2004). A computational study of the Kemeny rule for preference aggregation. In Proceedings of the national conference on artificial intelligence (AAAI) (pp. 697–702).

  • de Cani, J. S. (1969). Maximum likelihood paired comparison ranking by linear programming. Biometrika, 3, 537–545.

    Google Scholar 

  • de Cani, J. S. (1972). A branch and bound algorithm for maximum likelihood paired comparison ranking. Biometrika, 59, 131–135.

    Google Scholar 

  • de la Vega, W. F. (1983). On the maximal cardinality of a consistent set of arcs in a random tournament. Journal of Combinatorial Theory Series B, 35, 328–332.

    Google Scholar 

  • Debord, B. (1987a). Caractérisation des matrices de préférences nettes et méthodes d’agrégation associées. Mathématiques et Sciences humaines, 97, 5–17.

    Google Scholar 

  • Debord, B. (1987b). Axiomatisation de procédures d’agrégation de préférences. Ph.D. thesis, Université scientifique technologique et médicale de Grenoble.

  • Dixon, J. D. (1967). The maximum order of the group of a tournament. Canadian Mathematical Bulletin, 10, 503–505.

    Google Scholar 

  • Dodgson, C. L. (1876). A method of taking votes on more than two issues. Oxford: Clarendon.

    Google Scholar 

  • Doignon, J.-P., Fiorini, S., & Joret, G. (2006). Facets of the linear ordering polytope: a unification for the fence family through weighted graphs. Journal of Mathematical Psychology, 50/3, 251–262.

    Google Scholar 

  • Dom, M., Guo, J., Hüffner, F., Niedermeier, R., & Truß, A. (2006). Lecture notes in computer science : Vol. 3998. Fixed-parameter tractability results for feedback set problems in tournaments (pp. 320–331). Heidelberg: Springer.

    Google Scholar 

  • Downey, R. G., & Fellows, M. R. (1999). Parameterized complexity. Berlin: Springer.

    Google Scholar 

  • Dréo, J., Petrowski, A., Taillard, E., & Siarry, P. (2006). Metaheuristics for hard optimization. Methods and case studies. Berlin: Springer.

    Google Scholar 

  • Duarte, A., Laguna, M., & Marti, R. (2009). Tabu search for the linear ordering problem with cumulative costs. Computational Optmization and Applications (to appear).

  • Dugat, V. (1990). Décomposition de tournois réguliers: théorie et application aux algorithmes de tests d’isomorphisme. Ph.D. thesis, Université Paul Sabatier, Toulouse.

  • Dutta, B. (1988). Covering sets and a new Condorcet choice correspondence. Journal of Economic Theory, 44, 63–80.

    Google Scholar 

  • Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for the Web. In Proceedings of the 10th international conference on World Wide Web (WWW10) (pp. 613–622).

  • Eades, P., & Lin, X. (1995). A new heuristic for the feedback arc set problem. Australian Journal of Combinatorics, 12, 15–26.

    Google Scholar 

  • Eades, P., Lin, X., & Smyth, W. F. (1993). A fast and effective heuristic for the feedback arc set problem. Information Processing Letters, 47(6), 319–323.

    Google Scholar 

  • Erdös, P. & Moon, J. W. (1965). On sets of consistent arcs in a tournament. Canadian Mathematical Bulletin, 8, 269–271.

    Google Scholar 

  • Erdös, P., & Moser, L. (1964). On the representation of directed graphs as unions of orderings. Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei. 9, 125–132.

    Google Scholar 

  • Even, G., Naor, J. S., Sudan, M., & Schieber, B. (1998). Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica, 20(2), 151–174.

    Google Scholar 

  • Even, G., Naor, J. S., Rao, S., & Schieber, B. (2000). Divide-and-conquer approximation algorithms via spreading metrics. Journal of the ACM, 47, 585–616.

    Google Scholar 

  • Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., & Vee, E. (2005). Rank aggregation: an algorithmic perspective. Unpublished manuscript.

  • Festa, P., Pardalos, P., & Resende, M. (1999). Feedback set problems. In D. Z. Du & P. M. Pardalos (Eds.), Handbook of combinatorial optimization (Vol. 4, pp. 209–258). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Fiorini, S. (2001a). Polyhedral combinatorics of order polytopes. Ph.D. thesis, Université libre de Bruxelles.

  • Fiorini, S. (2001b). Determining the automorphism group of the linear ordering polytope. Discrete Applied Mathematics, 112/1–3, 121–128.

    Google Scholar 

  • Fiorini, S. (2006a). How to recycle your facets. Discrete Optimization, 3/2, 136–153.

    Google Scholar 

  • Fiorini, S. (2006b). {0,1/2}-cuts and the linear ordering problem: surfaces that define facets. SIAM Journal on Discrete Mathematics, 20/4, 893–912.

    Google Scholar 

  • Fiorini, S., & Fishburn, P. (2003). Facets of linear signed order polytopes. Discrete Applied Mathematics, 131/3, 597–610.

    Google Scholar 

  • Fishburn, P. (1977). Condorcet social choice functions. SIAM Journal of Applied Mathematics, 33, 469–489.

    Google Scholar 

  • Fishburn, P. (1992). Induced binary probabilities and the linear ordering polytope: a status report. Mathematical Social Sciences, 23, 67–80.

    Google Scholar 

  • Flood, M. M. (1990). Exact and heuristic algorithms for the weighted feedback arc set problem: a special case of the skew-symmetric quadratic assignment problem. Networks, 20, 1–23.

    Google Scholar 

  • Flueck, J. A., & Korsh, J. F. (1974). A branch search algorithm for maximum likelihood paired comparison ranking. Biometrika, 61(3), 621–626.

    Google Scholar 

  • Fulkerson, D. R. (1965). Upsets in round robin tournaments. Canadian Journal of Mathematics, 17, 957–969.

    Google Scholar 

  • Gamboa, D., Rego, C., & Glover, F. (2006). A relax-and-cut RAMP approach for the linear ordering problem. In the abstracts booklet of ECCO XIX/CO2006 Joint Meeting, Porto, Portugal, p. 40.

  • Garcia, C. G., Perez-Brito, D., Campos, V., & Marti, R. (2006). Variable neighborhood search for the linear ordering problem. Computers and Operations Research, 33(12), 3549–3565.

    Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability, a guide to the theory of NP-completeness. New York: Freeman.

    Google Scholar 

  • Girlich, E., Kovalev, M., & Nalivaiko, V. (1998). A note on the extension of facet-defining digraphs (Technical report 23/98). Faculty of Mathematics, University of Magdeburg.

  • Glover, F., & Kochenberger, G. A. (2003). Handbook of metaheuristics. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Glover, F., Klastorin, T., & Klingman, D. (1974). Optimal weighted ancestry relationships. Management Science, 20, 1190–1193.

    Google Scholar 

  • Goddard, S. T. (1983). Tournament rankings. Management Science, 29(12), 1385–1392.

    Google Scholar 

  • Goemans, M. X., & Hall, L. A. (1996). The strongest facets of the acyclic subgraph polytope are unknown. In W. H. Cunningham, S. T. McCormick, & M. Queyranne (Eds.), Lecture notes in computer science : Vol. 1084. Integer programming and optimization (pp. 415–429). Berlin: Springer.

    Google Scholar 

  • Goldberg, M. (1966). Results on the automorphism group of a graph. M.Sc. Thesis, university of Alberta.

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading: Addison-Wesley.

    Google Scholar 

  • González, C. G., & Pérez-Brito, D. (2001). A variable neighborhood search for solving the linear ordering problem. In Proceedings of MIC’2001-4th metaheuristics international conference (pp. 181–185).

  • Greistorfer, P. (2004). Experimental pool design: input, output and combination strategies for scatter search. In M. G. C. Resende & J. P. de Sousa (Eds.), Metaheuristics: computer decision making (pp. 279–300). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Grindberg, E., & Dambit, Y. (1965). Some properties of graphs containing circuits. Latvijskij Matematičeskij Ežegodnik (pp. 65–70) (in Russian).

  • Grötschel, M., Jünger, M., & Reinelt, G. (1984a). A cutting plane algorithm for the linear ordering problem. Operations Research, 32, 1195–1220.

    Google Scholar 

  • Grötschel, M., Jünger, M., & Reinelt, G. (1984b). Optimal triangulation of large real-world input-output-matrices. Statistische Hefte, 25, 261–295.

    Google Scholar 

  • Grötschel, M., Jünger, M., & Reinelt, G. (1985a). On the acyclic subgraph polytope. Mathematical Programming, 33, 1–27.

    Google Scholar 

  • Grötschel, M., Jünger, M., & Reinelt, G. (1985b). Facets of the linear ordering polytope. Mathematical Programming, 33, 43–60.

    Google Scholar 

  • Grötschel, M., Jünger, M., & Reinelt, G. (1985c). Acyclic subdigraphs and linear orderings: polytopes, facets, and a cutting plane algorithm. In I. Rival (Ed.), Graphs and orders (pp. 217–264). Dordrecht: Reidel.

    Google Scholar 

  • Guénoche, A. (1977). Un algorithme pour pallier l’effet Condorcet. RAIRO, 11(1), 77–83.

    Google Scholar 

  • Guénoche, A. (1986). A. B. C. D. : logiciel d’analyses booléennes et combinatoires des données, notice d’utilisation. G. R. T. C., Marseille.

  • Guénoche, A. (1988). Order at minimum distance of a valued tournament. Communication to Modélisation, analyse et agrégation des préférences et des choix (TRAP 3), Marseille-Luminy.

  • Guénoche, A. (1996). Vainqueurs de Kemeny et tournois difficiles. Mathématiques, Informatique et Sciences humaines, 133, 57–66.

    Google Scholar 

  • Guénoche, A., Vandeputte-Riboud, B., & Denis, J.-B. (1994). Selecting varieties using a series of trials and a combinatorial ordering method. Agronomie, 14, 363–375.

    Google Scholar 

  • Guénoche, A. (1995). How to choose according to partial evaluations. In B. Bouchon-Meunier et al. (Ed.), Lecture notes in computer sciences : Vol. 945. Advances in intelligent computing, IPMU’94 (pp. 611–618). Berlin-Heidelberg: Springer.

    Google Scholar 

  • Guilbaud, G. T. (1952). Les théories de l’intérêt général et le problème logique de l’agrégation. Économie Appliquée 5(4). Reprint in Éléments de la théorie des jeux, Dunod, Paris, 1968.

  • Guy, R. K. (1967). A coarseness conjecture of Erdös. Journal of Combinatorial Theory, 3, 38–42.

    Google Scholar 

  • Hansen, M. (1989). Approximation algorithms for geometric embeddings in the plane with applications to parallel processing problems. In Proceedings of the 30th annual symposium on foundations of computer science (pp. 604–609). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  • Hardouin Duparc, J. (1975). Quelques résultats sur l’ «  indice de transitivité » de certains tournois. Mathématiques et Sciences humaines, 51, 35–41.

    Google Scholar 

  • Hassin, R., & Rubinstein, S. (1994). Approximations for the maximum acyclic subgraph problem. Information Processing Letters, 51(3), 133–140.

    Google Scholar 

  • Hemaspaandra, L. (2000). Complexity classes. In K. H. Rosen (Ed.), Handbook of discrete and combinatorial mathematics (pp. 1085–1090). Boca Raton: CRC Press.

    Google Scholar 

  • Hemaspaandra, E., Spakowski, H., & Vogel, J. (2005). The complexity of Kemeny elections. Theoretical Computer Science, 349, 382–391.

    Google Scholar 

  • Huang, G., & Lim, A. (2003). Designing a hybrid genetic algorithm for the linear ordering problem. In LNCS : Vol. 2723. Proceedings of “genetic and evolutionary computation conference (GECCO) 2003”, part I (pp. 1053–1064). Berlin: Springer.

    Google Scholar 

  • Huber, L. (1976). Seriation using asymmetric proximity measures. British Journal of Mathematical & Statistical Psychology, 29, 32–52.

    Google Scholar 

  • Hubert, L., & Schulz, J. (1975). Maximum likehood paired-comparison ranking and quadratic assignment. Biometrika, 62(3), 655–659.

    Google Scholar 

  • Hudry, O. (1989). Recherche d’ordres médians : complexité, algorithmique et problèmes combinatoires. Ph.D. thesis, ENST, Paris.

  • Hudry, O. (1997a). Algorithms for the aggregation of ordinal preferences: a review. In Proceedings of the first conference on operations and quantitative management (ICOQM), Jaipur, India (pp. 169–176).

  • Hudry, O. (1997b). Nombre maximum d’ordres de Slater des tournois T vérifiant σ(T)=1. Mathématiques, Informatique et Sciences humaines, 140, 51–58.

    Google Scholar 

  • Hudry, O. (1998). Tournois et optimisation combinatoire. Habilitation à diriger des recherches, université Paris 6, Paris, 1998.

  • Hudry, O. (2004). A note on “Banks winners in tournaments are difficult to recognize” by G. J. Woeginger. Social Choice and Welfare, 23, 113–114.

    Google Scholar 

  • Hudry, O. (2008). NP-hardness results on the aggregation of linear orders into median orders. Annals of Operations Research, 163(1), 63–88.

    Google Scholar 

  • Hudry, O. (2009a). A survey on the complexity of tournament solutions. Mathematical Social Sciences, 57, 292–303.

    Google Scholar 

  • Hudry, O. (2009b). Complexity of voting procedures. In R. Meyers (Ed.), Encyclopedia of complexity and systems science. New York: Springer.

    Google Scholar 

  • Hudry, O. (2009c). Complexity of Kemeny’s problems (submitted for publication).

  • Hudry, O. (2010). On the complexity of Slater’s problems. European Journal of Operational Research 203, 216–221.

    Google Scholar 

  • Hudry, O., Leclerc, B., Monjardet, B., & Barthélemy, J.-P. (2009). Metric and latticial medians. In D. Dubois, M. Pirlot, D. Bouyssou and H. Prade (Eds.), Concepts and methods for decision aid (pp. 763–803). Hermès (to appear).

  • Isaak, G. (1995). Tournaments as feedback arc sets. The Electronic Journal of Combinatorics, 2, R20.

    Google Scholar 

  • Isaak, G., & Tesman, B. (1991). The weighted reversing number of a digraph. Congressus Numerantium, 83, 115–124.

    Google Scholar 

  • Jacquet-Lagrèze É. (1969). L’agrégation des opinions individuelles. Informatique et Sciences humaines, 4, 1–21.

    Google Scholar 

  • Jung, H. A. (1970). On subgraphs without cycles in a tournament. In P. Erdös, A. Renyi, & V. T. Sös (Eds.), Combinatorial theory and its applications II (pp. 675–677). Amsterdam: North-Holland.

    Google Scholar 

  • Jünger, M. (1985). Polyhedral combinatorics and the acyclic subdigraph problem. Berlin: Heldermann.

    Google Scholar 

  • Kaas, R. (1981). A branch and bound algorithm for the acyclic subgraph problem. European Journal of Operational Research, 8, 355–362.

    Google Scholar 

  • Kadane, J. B. (1966). Some equivalence classes in paired comparisons. Annals of Mathematical Statistics, 37, 488–494.

    Google Scholar 

  • Kano, M., & Sakamoto, A. (1985). Ranking the vertices of a paired comparison digraph. SIAM Journal on Algebraic and Discrete Methods, 6(1), 79–92.

    Google Scholar 

  • Karp, R. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Tatcher (Eds.), Complexity of computer computations (pp. 85–103). New York: Plenum.

    Google Scholar 

  • Kaykobad, M., Ahmed, Q. N. U., Shafiqul Khalid, A. T. M., & Bakhtiar, R.-A. (1995). A new algorithm for ranking players of a round-robin tournament. Computers and Operations Research, 22(2), 221–226.

    Google Scholar 

  • Kemeny, J. G. (1959). Mathematics without numbers. Daedalus, 88, 577–591.

    Google Scholar 

  • Kendall, M. G. (1938). Rank correlation methods. New York: Hafner.

    Google Scholar 

  • Kendall, M. G., & Babington Smith, B. (1940). On the method of paired comparisons. Biometrika, 33, 239–251.

    Google Scholar 

  • Klamler, C. (2003). Kemeny’s rule and Slater’s rule: a binary comparison. Economics Bulletin, 4(35), 1–7.

    Google Scholar 

  • Klamler, C. (2004). The Dodgson ranking and its relation to Kemeny’s method and Slater’s rule. Social Choice and Welfare, 23, 91–102.

    Google Scholar 

  • Koppen, M. (1995). Random utility representation of binary choice probabilities: critical graphs yielding critical necessary conditions. Journal of Mathematical Psychology, 19, 21–39.

    Google Scholar 

  • Korte, B. (1979). Approximation algorithms for discrete optimization problems. Annals of Discrete Mathematics, 4, 85–120.

    Google Scholar 

  • Korte, B., & Oberhofer, W. (1968). Zwei Algorithmen zur Lösung eines komplexen Reihenfolgeproblems. Unternehmensforschung, 12, 217–231.

    Google Scholar 

  • Korte, B., & Oberhofer, W. (1969). Zur Triangulation von Input-Output-Matrizen. Jahrbucher für Nationaloekonomie und Statistik, 182, 398–433.

    Google Scholar 

  • Kotzig, A. (1975). On the maximal order of cyclicity of antisymmetric directed graphs. Discrete Mathematics, 12, 17–25.

    Google Scholar 

  • Lad, A., Ghani, R., Yang, Y., & Kisiel, B. (2009). Towards optimal ordering of prediction tasks. SIAM international conference on data mining (SDM09) (pp. 883–893).

  • Laffond, G., & Laslier, J.-F. (1991). Slater’s winners of a tournament may not be in the Banks set. Social Choice and Welfare, 8, 355–363.

    Google Scholar 

  • Laffond, G., Laslier, J.-F., & Le Breton, M. (1993). The Bipartisan set of a tournament game. Games and Economic Behavior, 5, 182–201.

    Google Scholar 

  • Laffond, G., Laslier, J.-F., & Le Breton, M. (1991a). Choosing from a tournament: a progress report and some new results (Technical report). CNAM, Paris.

  • Laffond, G., Laslier, J.-F., & Le Breton, M. (1991b). A game-theoretical method for ranking the participants in a tournament (Technical report). CNAM, Paris.

  • Laguna, M., Marti, R., & Campos, V. (1999). Intensification and diversification with elite tabu search solutions for the linear ordering problem. Computers and Operations Research, 26(12), 1217–1230.

    Google Scholar 

  • Landau, H. G. (1953). On dominance relations and the structure of animal societies III. The condition for a score structure. Bulletin of Mathematical Biophysics, 13, 1–19.

    Google Scholar 

  • Laslier, J.-F. (1997). Tournament solutions and majority voting. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Lawler, E. L. (1964). A comment on minimum feedback arc sets. IEEE Transactions on Circuit Theory, 11, 296–297.

    Google Scholar 

  • Leighton, T., & Rao, S. (1988). An approximation max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In Proceedings of the 29th annual symposium on foundations of computer science (pp. 422–431).

  • Lemaréchal, C. (2003). The omnipresence of Lagrange. 4OR, 1(1), 7–25.

    Google Scholar 

  • Lempel, A., & Cederbaum, I. (1966). Minimum feedback arc and vertex sets of a directed graph. IEEE Transactions on Circuit Theory, 13, 399–403.

    Google Scholar 

  • Lenstra, J. K. (1977). Mathematical centre tracts : Vol. 69. Sequencing by enumerative methods. Amsterdam: Mathematisch Centrum.

    Google Scholar 

  • Lenstra, H. W. Jr. (1973). The acyclic subgraph problem (Technical report BW26). Mathematisch Centrum, Amsterdam.

  • Leung, J., & Lee, J. (1994). More facets from fences for linear ordering and acyclic subgraph polytopes. Discrete Applied Mathematics, 50, 185–200.

    Google Scholar 

  • Loiseau, I., Mendez-Dias, I., & Nasini, G. (1993). Determinacion del rango disyuntivo de facetas del problema de ordinacion lineal. Anales XXII JAIIO (pp. 124–130).

  • Marcotorchino, J.-F., & Michaud, P. (1979). Optimisation en analyse ordinale de données. Paris: Masson.

    Google Scholar 

  • Matoušek, J., & Nešetřil, J. (1998). Invitation to discrete mathematics. London: Clarendon Press, Oxford University Press.

    Google Scholar 

  • McGarvey, D. (1953). A theorem on the construction of voting paradoxes. Econometrica, 21, 608–610.

    Google Scholar 

  • McKey, B. (2006). http://cs.anu.edu.au/~bdm/data/digraphs.html.

  • McLean, I. (1995). The first golden age of social choice, 1784–1803. In W. A. Barnett, H. Moulin, M. Salles, & N. J. Schofield (Eds.), Social choice, welfare, and ethics: proceedings of the eighth international symposium in economic theory, econometrics (pp. 13–33). Cambridge: Cambridge University Press.

    Google Scholar 

  • McLean, I., & Hewitt, F. (1994). Condorcet: foundations of social choice and political theory. Cheltenham Glos: Edward Elgar.

    Google Scholar 

  • McLean, I., & Urken, A. (1995). Classics of social choice. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • McLean, I., & Urken, A. (1997). La réception des œuvres de Condorcet sur le choix social (1794–1803) : Lhuilier, Morales et Daunou. In A.-M. Chouillet, P. Crépel (Eds.), Condorcet, homme des lumières et de la révolution (pp. 147–160). ENS éditions, Fontenay-aux-roses.

  • McLean, I., Lorrey, H., & Colomer, J. M. (2008). Social choice in medieval Europe. Electronic Journal for History of Probability and Statistics, 4(1).

  • Méndez-Díaz, I., Nasini, G., & Zabala, P. (2009). The disjunctive rank and cutting plane algorithms using of facets of the linear ordering polytope (submitted for publication).

  • Mendonça, D., & Raghavachari, M. (2000). Comparing the efficacy of ranking methods for multiple round-robin tournaments. European Journal of Operational Research, 123, 593–605.

    Google Scholar 

  • Merchant, D. K., & Rao, M. R. (1976). Majority decisions and transitivity: some special cases. Management Science, 23(2), 125–130.

    Google Scholar 

  • Miller, N. (1980). A new solution set for tournaments and majority voting: Further graph-theoretical approaches to the theory of voting. American Journal of Political Science, 24(1), 68–96.

    Google Scholar 

  • Mitchell, J. E. (2000). Computational experience with an interior point cutting plane algorithm. SIAM Journal on Optimization, 10(4), 1212–1227.

    Google Scholar 

  • Mitchell, J. E. (2007). Generating linear ordering problems. http://www.rpi.edu/~mitchj/generators/linord/.

  • Mitchell, J. E., & Borchers, B. (1996). Solving real world linear ordering problems using a primal-dual interior point cutting plane method. Annals of Operations Research, 62, 253–276.

    Google Scholar 

  • Mitchell, J. E., & Borchers, B. (2000). Solving linear ordering problems with a combined interior point/simplex cutting plane algorithm. In H. L. Frenk, K. Roos, T. Terlaky, & S. Zhang (Eds.), High performance optimization (pp. 349–366). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Monjardet, B. (1973). Tournois et ordres médians pour une opinion. Mathématiques et Sciences humaines, 43, 55–73.

    Google Scholar 

  • Monjardet, B. (1979). Relations à éloignement minimum de relations binaires, note bibliographique. Mathématiques et Sciences humaines, 67, 115–122.

    Google Scholar 

  • Monjardet, B. (1990). Sur diverses formes de la “règle de Condorcet” d’agrégation des préférences. Mathématiques, Informatique et Sciences humaines, 111, 61–71.

    Google Scholar 

  • Monsuur, H., & Storcken, T. (1997). Measuring intransitivity. Mathematical Social Sciences, 34, 125–152.

    Google Scholar 

  • Moon, J. W. (1968). Topics on tournaments. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Nalivaiko, V. (1997). The linear ordering polytope. Preprint 39/97, Faculty of Mathematics of the Otto-von-Guericke-University of Magdeburg.

  • Nalivaiko, V. (1999). Das lineare Ordnungsproblem. Ph.D. Thesis, Falkultät für Mathematik, Universität Magdeburg, Magdeburg, Germany, 1999.

  • Newman, A. (2000). Approximating the maximum acyclic subgraph. Master’s thesis, MIT, USA.

  • Newman, A. (2004). Cuts and orderings: on semidefinite relaxations for the linear ordering problem. In K. Jansen, S. Khanna, J. D. P. Rolim, & D. Ron (Eds.), Lectures notes in computer science (Vol. 3122, pp. 195–206). Berlin: Springer.

    Google Scholar 

  • Newman, A., & Vempala, S. (2001). Fences are futile: on relaxations for the linear ordering problem. In Proceedings of the 8th conference on integer programming and combinatorial optimization (IPCO) (pp. 333–347).

  • Nishihara, O., Kumamoto, H., & Inoue, K. (1989). The new formulations of minimum feedback arc set problem. In C. Brexinski (Ed.), Numerical and applied mathematics. J.C. Baltzer AG, Scientific Publishing Co.

  • Nutov, Z., & Penn, M. (1995). On the integral dicycle packings and covers and the linear ordering polytope. Discrete Applied Mathematics, 60, 293–309.

    Google Scholar 

  • Nutov, Z., & Penn, M. (1996). On non (0,1/2,1) extreme points of the generalized transitive tournament polytope. Linear Algebra and Its Applications, 233, 149–159.

    Google Scholar 

  • Orlin, J. B. (1981). Unpublished manuscript.

  • Östergård, P. R. J., & Vaskelainen, V. P. (2009). A tournament of order 14 with disjoint Banks and Slater sets. Discrete Applied Mathematics (to appear).

  • Papadimitriou, C., & Yannakakis, M. (1991). Optimization, approximation, and complexity classes. Journal of Computer System Science, 43, 425–440.

    Google Scholar 

  • Phillips, J. P. N. (1967). A procedure for determining Slater’s i and all nearest adjoining orders. British Journal of Mathematical and Statistical Psychology, 20, 217–225.

    Google Scholar 

  • Phillips, J. P. N. (1969). A further procedure for determining Slater’s i and all nearest adjoining orders. British Journal of Mathematical and Statistical Psychology, 22, 97–101.

    Google Scholar 

  • Phillips, J. P. N. (1976). On an algorithm of Smith and Payne for determining Slater’s i and all nearest adjoining orders. British Journal of Mathematical and Statistical Psychology, 29, 126–127.

    Google Scholar 

  • Poljak, S., & Turzík, D. (1986). A polynomial time heuristic for certain subgraph optimization problems with guaranteed lower bound. Discrete Mathematics, 58, 99–104.

    Google Scholar 

  • Poljak, S., Rödl, V., & Spencer, J. (1988). Tournament ranking with expected profit in polynomial time. SIAM Journal Discrete Mathematics, 1(3), 372–376.

    Google Scholar 

  • Raman, V., & Saurabh, S. (2006). Parameterized algorithms for feedback set problems and their duals in tournaments. Theoretical Computer Science, 351, 446–458.

    Google Scholar 

  • Rao, S., & Richa, A. W. (2004). New approximation techniques for some linear ordering problems. SIAM Journal on Computing, 34(2), 388–404.

    Google Scholar 

  • Ratliff, T. C. (2001). A comparison of the Dodgson method and Kemeny’s rule. Social Choice and Welfare, 18, 79–90.

    Google Scholar 

  • Rédei, L. (1934). Ein kombinatorischer Satz. Acta. Litt. Szeged, 7, 39–43.

    Google Scholar 

  • Reid, K. B. (1969). On set of arcs containing no cycles in tournaments. Canadian Mathematical Bulletin, 12, 261–264.

    Google Scholar 

  • Reid, K. B. (1983). Monochromatic reachability, complementary cycles and single arc reversals in tournaments. In Lecture notes in mathematics : Vol. 1073. Graph theory, proceedings of the first Southeast Asian graph theory colloquium held in Singapore (May 1983) (pp. 11–21). Berlin: Springer.

    Google Scholar 

  • Reid, K. B. (2004). Tournaments. In J. L. Gross & J. Yellen (Eds.), Handbook of graph theory (pp. 156–184). Boca Raton: CRC Press.

    Google Scholar 

  • Reid, K. B., & Beineke, L. W. (1978). Tournaments. In L. W. Beineke & R. J. Wilson (Eds.), Selected topics in graph theory (pp. 169–204). San Diego: Academic Press.

    Google Scholar 

  • Reinelt, G. (1985). Research and exposition in mathematics : Vol. 8. The linear ordering problem: algorithms and applications. Berlin: Heldermann.

    Google Scholar 

  • Reinelt, G. (1993). A note on small linear-ordering polytopes. Discrete & Computational Geometry, 10, 67–78.

    Google Scholar 

  • Reinelt, G. (2002). Linear ordering library (LOLIB). http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/LOLIB/LOLIB.html.

  • Remage, R., & Thompson, W. A. (1964). Rankings from paired comparison. Annals of Mathematical Statistics, 35, 739–747.

    Google Scholar 

  • Remage, R., & Thompson, W. A. (1966). Maximum likelihood paired comparison rankings. Biometrika, 53, 143–149.

    Google Scholar 

  • Righini G. (2008). A branch-and-bound algorithm for the linear ordering problem with cumulative costs. European Journal of Operational Research, 186(3), 965–971.

    Google Scholar 

  • Rubinstein, A. (1980). Ranking the participants in a tournament. SIAM Journal of Applied Mathematics, 98, 108–111.

    Google Scholar 

  • Ryser, H. J. (1964). Matrices of zeros and ones in combinatorial mathematics. In Recent advances in matrix theory (pp. 103–124). Madison: University of Wisconsin Press.

    Google Scholar 

  • Sakuraba, C. S., & Yagiura, M. (2009). Efficient local search algorithms for the linear ordering problem (submitted for publication).

  • Schiavinotto, T., & Stützle, T. (2003). Search space analysis of the linear ordering problem. In G. R. Raidl et al. (Eds.), Lecture notes in computer science : Vol. 2611. Applications of evolutionary computing (pp. 322–333). Berlin: Springer.

    Google Scholar 

  • Schiavinotto, T., & Stützle, T. (2004). The linear ordering problem: instances, search space analysis and algorithms. Journal of Mathematical Modelling and Algorithms, 3(4), 367–402.

    Google Scholar 

  • Schrijver, A. (2003). Combinatorial optimization. Polyhedra and efficiency. Berlin: Springer.

    Google Scholar 

  • Schwartz, T. (1990). Cyclic tournaments and cooperative majority voting: a solution. Social Choice and Welfare, 7, 19–29.

    Google Scholar 

  • Seymour, P. (1995). Packing directed circuits fractionally. Combinatorica, 15(2), 281–288.

    Google Scholar 

  • Slater, P. (1961). Inconsistencies in a schedule of paired comparisons. Biometrika, 48, 303–312.

    Google Scholar 

  • Smith, W. D. (2007). http://rangevoting.org/PuzzDG.html.

  • Smith, A. F. M., & Payne, C. D. (1974). An algorithm for determining Slater’s i and all nearest adjoining orders. British Journal of Mathematical and Statistical Psychology, 27, 49–52.

    Google Scholar 

  • Spencer, J. (1971). Optimal ranking of tournaments. Networks, 1, 135–138.

    Google Scholar 

  • Spencer, J. (1978). Nonconstructive methods in discrete mathematics. In G. C. Rota (Ed.), Studies in combinatorics (pp. 142–178). Washington: Mathematical Association of America.

    Google Scholar 

  • Spencer, J. (1987). CBMS-NSF regional conference series in applied mathematics : Vol. 52. Ten lectures on the probabilistic method. Philadelphia: SIAM.

    Google Scholar 

  • Stearns, R. (1959). The voting problem. American Mathematical Monthly, 66, 761–763.

    Google Scholar 

  • Szele, T. (1943). Kombinatorikai vizsgálatok az irányított teljes gráffal kapesolatban. Matematikai és Fizikai Lapok, 50, 223–256. German translation: Untersuchungen über gerichtete vollständige Graphen. Publicationes Mathematical Debrecen, 13, 145–168 (1966).

    Google Scholar 

  • Thomassen, C. (1975). Transversals of circuits in the lexicographic product of directed graphs. Mathématiques et Sciences humaines, 51, 43–45.

    Google Scholar 

  • Thomassen, C. (1987). Counterexamples to Adám’s conjecture on arc reversals in directed graphs. Journal of Combinatorial Theory Series B, 42, 128–130.

    Google Scholar 

  • Tucker, A. W. (1960). On directed graphs and integer programs. In 1960 Symposium on combinatorial problems. Princeton: Princeton University.

    Google Scholar 

  • Tüshaus, U. (1983). Mathematical systems in economics : Vol. 82. Aggregation binärer Relationen in der qualitativen Datenanalyse. Königstein: Verlagsgruppe Athenäum/Hain/Hanstein.

    Google Scholar 

  • van Zuylen, A. (2005). Deterministic approximation algorithms for ranking and clusterings (Cornell ORIE Tech. Report No. 1431).

  • van Zuylen, A., & Williamson, D. P. (2008). Deterministic algorithms for rank aggregation and other ranking and clustering problems. In C. Kaklamanis & M. Skutella (Eds.), LNCS : Vol. 4927. Approximation and online algorithms (pp. 260–273). Berlin: Springer.

    Google Scholar 

  • Vazirani, V. V. (2003). Approximation algorithms. Berlin: Springer.

    Google Scholar 

  • Wakabayashi, Y. (1986). Aggregation of binary relations: algorithmic and polyhedral investigations. Ph.D. thesis, Augsburg university.

  • Wakabayashi, Y. (1998). The complexity of computing medians of relations. Resenhas, 3(3), 323–349.

    Google Scholar 

  • Wei, T. (1952). The algebraic foundations of ranking theory. Ph.D. thesis, Cambridge University.

  • Wessels, H. (1981). Triangulation und Blocktriangulation von Input-Output Tabellen. Deutsches Institut für Wirtschaftsforschung: Beiträge zur Strukturforshung, Heft 63, Berlin.

  • Woeginger, G. J. (2003). Banks winners in tournaments are difficult to recognize. Social Choice and Welfare, 20(3), 523–528.

    Google Scholar 

  • Woirgard, F. (1997). Recherche et dénombrement des ordres médians des tournois. Ph.D. thesis, ENST, Paris.

  • Wolsey, L. (1998). Integer programming. New York: Wiley.

    Google Scholar 

  • Young, H. P. (1978). On permutations and permutation polytopes. Mathematical Programming Study, 8, 128–140.

    Google Scholar 

  • Young, H. P. (1988). Condorcet theory of voting. American Political Science Review, 82, 1231–1244.

    Google Scholar 

  • Younger, D. H. (1963). Minimum feedback arc sets for a directed graph. IEEE Transactions on Circuit Theory, 10(2), 238–245.

    Google Scholar 

  • Zermelo, E. (1929). Die Berechnung der Turnier-Ergebnisse als ein maximal Problem der Warscheinlichkeistsrechnung. Mathematische Zeitung, 29, 436–460.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Hudry.

Additional information

This is an updated version of the paper that appeared in 4OR, 5(1), 5–60 (2007).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charon, I., Hudry, O. An updated survey on the linear ordering problem for weighted or unweighted tournaments. Ann Oper Res 175, 107–158 (2010). https://doi.org/10.1007/s10479-009-0648-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0648-7

Navigation