Skip to main content
Log in

Mathematical optimization in intensity modulated radiation therapy

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The design of an intensity modulated radiotherapy treatment includes the selection of beam angles (geometry problem), the computation of an intensity map for each selected beam angle (intensity problem), and finding a sequence of configurations of a multileaf collimator to deliver the treatment (realization problem). Until the end of the last century research on radiotherapy treatment design has been published almost exclusively in the medical physics literature. However, since then, the attention of researchers in mathematical optimization has been drawn to the area and important progress has been made. In this paper we survey the use of optimization models, methods, and theories in intensity modulated radiotherapy treatment design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agmon, S. (1954). The relaxation method for linear inequalities. Canadian Journal of Mathematics, 6, 382–392.

    Google Scholar 

  • Ahuja, R., & Hamacher, H. (2004). A network flow algorithm to minimize beam-on-time for unconstrained multileaf collimator problems in cancer radiation therapy. Networks, 45(1), 36–41.

    Google Scholar 

  • Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network flows: theory, algorithms and applications. New York: Prentice-Hall.

    Google Scholar 

  • Alber, M., & Nüsslin, F. (2001). A representation of an NTCP function for local complication mechanisms. Physics in Medicine and Biology, 46, 439–447.

    Google Scholar 

  • Alber, M., & Reemtsen, R. (2007). Intensity modulated radiation therapy planning by use of a barrier-penalty multiplier method. Optimization Methods and Software, 22, 391–411.

    Google Scholar 

  • Altman, M., Chmura, S., Deasy, J., & Roeske, J. (2006). Optimization of the temporal pattern of radiation: An IMRT based study. International Journal of Radiation Oncology, Biology, Physics, 66, 898–905.

    Google Scholar 

  • Baatar, D. (2005). Matrix decomposition with time and cardinality objectives: theory, algorithms, and application to multileaf collimator sequencing. Ph.D. thesis, Department of Mathematics, Technical University of Kaiserslautern.

  • Baatar, D., & Hamacher, H. (2003). New LP model for multileaf collimators in radiation therapy planning. In Proceedings of the operations research peripatetic postgraduate programme conference ORP 3, Lambrecht, Germany, pp. 11–29.

  • Baatar, D., Hamacher, H., Ehrgott, M., & Woeginger, G. (2005). Decomposition of integer matrices and multileaf collimator sequencing. Discrete Applied Mathematics, 152, 6–34.

    Google Scholar 

  • Baatar, D., Boland, N., Brand, S., & Stuckey, P. (2007). Minimum cardinality matrix decomposition into consecutive-ones matrices: CP and IP approaches. In P. Van Hentenrynck & L. Wolsey (Eds.), Lecture notes in computer science : Vol. 4510. Integration of AI and OR techniques in constraint programming for combinatorial optimization problems—proceedings of CPAIOR 2007, Brussels, Belgium (pp. 1–15). Berlin: Springer.

    Google Scholar 

  • Baatar, D., Boland, N., Hamacher, H., & Johnson, R. (2009). A new sequential extraction heuristic for optimizing the delivery of cancer radiation treatment using multileaf collimators. INFORMS Journal on Computing, 21(2), 224–241.

    Google Scholar 

  • Bahr, G., Kereiakes, J., Horwitz, H., Finney, R., Galvin, J., & Goode, K. (1968). The method of linear programming applied to radiation treatment planning. Radiology, 91, 686–693.

    Google Scholar 

  • Bansal, N., Coppersmith, D., & Schieber, B. (2006). Minimizing setup and beam-on times in radiation therapy. In J. Díaz, K. Jansen, J. Rolim, & U. Zwick (Eds.), Lecture notes in computer science: Vol. 4110. APPROX-RANDOM. Approximation, randomization, and combinatorial optimization. Algorithms and techniques, 9th international workshop on approximation algorithms for combinatorial optimization problems, APPROX 2006 and 10th international workshop on randomization and computation, RANDOM 2006, Barcelona, Spain, 28–30 August 2006, Proceedings (pp. 27–38). Berlin: Springer.

  • Bednarz, G., Michalski, D., Houser, C., Huq, M., Xiao, Y., Anne, P., & Galvin, J. (2002). The use of mixed-integer programming for inverse treatment planning with pre-defined field segments. Physics in Medicine and Biology, 47, 2235–2245.

    Google Scholar 

  • Bednarz, G., Michalski, D., Anne, P., & Valicenti, R. (2004). Inverse treatment planning using volume-based objective functions. Physics in Medicine and Biology, 49, 2503–2514.

    Google Scholar 

  • Benson, H. P. (1998). An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. Journal of Global Optimization, 13, 1–24.

    Google Scholar 

  • Billups, S., & Kennedy, J. (2003). Minimum-support solutions for radiotherapy planning. Annals of Operations Research, 119, 229–245.

    Google Scholar 

  • Boland, N., Hamacher, H., & Lenzen, F. (2004). Minimizing beam-on time in cancer radiation treatment using multileaf collimators. Networks, 43(4), 226–240.

    Google Scholar 

  • Bortfeld, T. (1999). Optimized planning using physical objectives and constraints. Seminars in Radiation Oncology, 9, 20–34.

    Google Scholar 

  • Bortfeld, T., Burkelbach, J., Boesecke, R., & Schlegel, W. (1990). Method of image reconstructions from projections applied to conformation therapy. Physics in Medicine and Biology, 35(10), 1423–1434.

    Google Scholar 

  • Bortfeld, T., Boyer, A. L., Schlegel, W., Kahler, D. L., & Waldron, T. J. (1994a). Realisation and verification of three-dimensional conformal radiotherapy with modulated fields. International Journal of Radiation Oncology, Biology, Physics, 30, 899–908.

    Google Scholar 

  • Bortfeld, T., Boyer, A., Kahler, D., & Waldron, T. (1994b). X-ray field compensation with multileaf collimators. International Journal of Radiation Oncology, Biology, Physics, 28(3), 723–730.

    Google Scholar 

  • Bortfeld, T., Stein, J., & Preiser, K. (1997). Clinically relevant intensity modulated optimization using physical criteria. In D. Leavitt (Ed.), XIIth international conference on the use of computers in radiation therapy (pp. 1–4). Salt Lake City: Madison Medical Physics.

    Google Scholar 

  • Boyer, A. L., & Yu, C. X. (1999). Intensity-modulated radiation therapy with dynamic multileaf collimators. Seminars in Radiation Oncology, 9(1), 48–59.

    Google Scholar 

  • Brahme, A. (1988). Optimization of stationary and moving beam radiation therapy techniques. Radiotherapy and Oncology, 12, 129–140.

    Google Scholar 

  • Brahme, A. (2001). Individualizing cancer treatment: biological optimization models in treatment and planning. International Journal of Radiation Oncology, Biology, Physics, 49, 327–337.

    Google Scholar 

  • Brahme, A., & Agren, A. K. (1987). Optimal dose distribution for eradication of heterogeneous tumours. Acta Oncologica, 26, 377–385.

    Google Scholar 

  • Burkard, R. (2002). Open problem session, oberwolfach conference on combinatorial optimization, November 24–29, 2002.

  • Carlsson, F., & Forsgren, A. (2006). Iterative regularization in intensity-modulated radiation therapy optimization. Medical Physics, 33, 225–234.

    Google Scholar 

  • Carlsson, F., Forsgren, A., Rehbinder, H., & Eriksson, K. (2006). Using eigenstructure of the Hessian to reduce the dimension of the intensity modulated radiation therapy optimization problem. Annals of Operations Research, 148, 81–94.

    Google Scholar 

  • Censor, Y., Altschuler, M., & Powlis, W. (1988a). A computational solution of the inverse problem in radiation therapy treatment planning. Applied Mathematics and Computation, 25, 57–87.

    Google Scholar 

  • Censor, Y., Altschuler, M., & Powlis, W. (1988b). On the use of Cimmino’s simultaneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning. Inverse Problems, 4, 607–623.

    Google Scholar 

  • Censor, Y., Ben-Israel, A., Xiao, Y., & Galvin, J. (2008). On linear infeasibility arising in intensity-modulated radiation therapy inverse planning. Linear Algebra and its Applications, 428, 1406–1420.

    Google Scholar 

  • Chen, D., Hu, X., Luan, S., Wang, C., Naqvi, S., & Yu, C. (2004a). Generalized geometric approaches for leaf sequencing problems in radiation therapy. In Lecture notes in computer science : Vol. 3341. Proceedings of the 15th annual international symposium on algorithms and computation (ISAAC), Hong Kong, December 2004 (pp. 271–281). Berlin: Springer.

    Google Scholar 

  • Chen, D., Hu, X., Luan, S., Wang, C., & Wu, X. (2004b). Geometric algorithms for static leaf sequencing problems in radiation therapy. International Journal of Computational Geometry and Applications, 14(5), 311–339.

    Google Scholar 

  • Chen, D., Hu, X., Luan, S., Wu, X., & Yu, C. (2005). Optimal terrain construction problems and applications in intensity-modulated radiation therapy. Algorithmica, 42, 265–288.

    Google Scholar 

  • Chen, D., Hu, X., Luan, S., Wang, C., Naqvi, S., & Yu, C. (2006). Generalized geometric approaches for leaf sequencing problems in radiation therapy. International Journal of Computational Geometry and Applications, 16(2–3), 175–204.

    Google Scholar 

  • Chen, W., Herman, G., & Censor, Y. (2008). Algorithms for satisfying dose volume constraints in intensity-modulated radiation therapy. In Y. Censor, M. Jiang, & A. Louis (Eds.), Mathematical methods in biomedical imaging and intensity-modulated radiation therapy (IMRT) (pp. 97–106). Pisa: Edizioni della Normale.

    Google Scholar 

  • Chen, Y., Michalski, D., Houser, C., & Galvin, J. (2002). A deterministic iterative least-squares algorithm for beam weight optimization in conformal radiotherapy. Physics in Medicine and Biology, 47, 1647–1658.

    Google Scholar 

  • Cho, P., Lee, S., Marks, R., Oh, S., Sutlief, S., & Phillips, M. (1998). Optimization of intensity modulated beams with volume constraints using two methods: cost function minimization and projections onto convex sets. Medical Physics, 25, 435–443.

    Google Scholar 

  • Choi, B., & Deasy, J. (2002). The generalized equivalent uniform dose function as a basis for intensity-modulated treatment planning. Physics in Medicine and Biology, 47, 3579–3589.

    Google Scholar 

  • Chue, M., Zinchenko, Y., Henderson, S., & Sharpe, M. (2005). Robust optimization for intensity modulated radiation therapy treatment planning under uncertainty. Physics in Medicine and Biology, 50, 5463–5477.

    Google Scholar 

  • Collins, M., Kempe, D., Saia, J., & Young, M. (2007). Nonnegative integral subset representations of integer sets. Information Processing Letters, 101(3), 129–133.

    Google Scholar 

  • Convery, D., & Rosenbloom, M. (1992). The generation of intensity-modulated fields for conformal radiotherapy by dynamic collimation. Physics in Medicine and Biology, 37(6), 1359–1374.

    Google Scholar 

  • Convery, D., & Webb, S. (1998). Generation of discrete beam-intensity modulation by dynamic multileaf collimation under minimum leaf separation constraints. Physics in Medicine and Biology, 43, 2521–2538.

    Google Scholar 

  • Cotrutz, C., & Xing, L. (2002). Using voxel-dependent importance factors for interactive DVH-based dose optimisation. Physics in Medicine and Biology, 47, 1659–1669.

    Google Scholar 

  • Cotrutz, C., & Xing, L. (2003). Segment-based dose optimisation using a genetic algorithm. Physics in Medicine and Biology, 48, 2987–2998.

    Google Scholar 

  • Cotrutz, C., Lahanas, M., Kappas, C., & Baltas, D. (2001). A multiobjective gradient-based dose optimization algorithm for external beam conformal radiotherapy. Physics in Medicine and Biology, 46, 2161–2175.

    Google Scholar 

  • Craft, D. (2007). Local beam angle optimization with linear programming and gradient search. Physics in Medicine and Biology, 52, 127–135.

    Google Scholar 

  • Craft, D., Halabi, T., & Bortfeld, T. (2005). Exploration of tradeoffs in intensity-modulated radiotherapy. Physics in Medicine and Biology, 50, 5857–5868.

    Google Scholar 

  • Craft, D., Halabi, T., Shih, H., & Bortfeld, T. (2006). Approximating convex Pareto surfaces in multiobjective radiotherapy planning. Medical Physics, 33, 3399–3407.

    Google Scholar 

  • Crooks, S., McAven, L., Robinson, D., & Xing, L. (2002). Minimizing delivery time and monitor units in static IMRT by leaf-sequencing. Physics in Medicine and Biology, 47, 3105–3116.

    Google Scholar 

  • Crooks, S. M., & Xing, L. (2002). Application of constrained least-squares techniques to IMRT treatment planning. International Journal of Radiation Oncology, Biology, Physics, 54(4), 1217–1224.

    Google Scholar 

  • Dai, J., & Zhu, Y. (2003). Conversion of dose-volume constraints to dose limits. Physics in Medicine and Biology, 48, 3927–3941.

    Google Scholar 

  • Das, I., & Dennis, J. (1997). A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Structural and Multidisciplinary Optimization, 14, 63–69.

    Google Scholar 

  • Das, I., & Dennis, J. E. (1998). Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization, 8(3), 631–657.

    Google Scholar 

  • Das, S., Cullip, T., Tracton, G., Chang, S., Marks, L., Anscher, M., & Rosenman, J. (2003). Beam orientation selection for intensity modulated radiation therapy based on target equivalent uniform dose maximization. International Journal of Radiation Oncology, Biology, Physics, 55(1), 215–224.

    Google Scholar 

  • Deasy, J. O. (1997). Multiple local minima in radiotherapy optimization problems with dose-volume constraints. Medical Physics, 24(7), 1157–1161.

    Google Scholar 

  • Dirkx, M., Heijmen, B., & van Santvoort, J. (1998). Leaf trajectory calculation for dynamic multileaf collimation to realize optimized fluence profiles. Physics in Medicine and Biology, 43, 1171–1184.

    Google Scholar 

  • Djajaputra, D., Wu, Q., Wu, Y., & Mohan, R. (2003). Algorithm and performance of a clinical IMRT beam-angle optimization system. Physics in Medicine and Biology, 48, 3191–3212.

    Google Scholar 

  • D’Souza, W., Meyer, R., & Shi, L. (2004). Selection of beam orientations in intensity-modulated radiation therapy using single-beam indices and integer programming. Physics in Medicine and Biology, 49, 3465–3481.

    Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization, 2nd edn. Berlin: Springer.

    Google Scholar 

  • Ehrgott, M., & Burjony, M. (2001). Radiation therapy planning by multicriteria optimisation. In Proceedings of the 36th annual conference of the operational society of New Zealand (pp. 244–253).

  • Ehrgott, M., & Johnston, R. (2003). Optimisation of beam directions in intensity modulated radiation therapy planning. OR Spectrum, 25(2), 251–264.

    Google Scholar 

  • Ehrgott, M., Hamacher, H., & Nußbaum, M. (2007). Decomposition of matrices and static multileaf collimators: a survey. In C. Alves, P. Pardalos, & L. Vincente (Eds.), Optimization in medicine (pp. 27–48). Berlin: Springer.

    Google Scholar 

  • Ehrgott, M., Holder, A., & Reese, J. (2008a). Beam selection in radiotherapy design. Linear Algebra and Its Applications, 428, 1272–1312.

    Google Scholar 

  • Ehrgott, M., Güler, Ç., Hamacher, H. W., & Shao, L. (2008b). Mathematical optimization in intensity modulated radiation therapy. 4OR, 6(3), 199–262.

    Google Scholar 

  • Emami, B., Lyman, J., & Brown, A. (1991). Tolerance of normal tissue to therapeutic irradiation. International Journal of Radiation Oncology, Biology, Physics, 21, 109–122.

    Google Scholar 

  • Engel, K. (2005). A new algorithm for optimal MLC field segmentation. Discrete Applied Mathematics, 152, 35–51.

    Google Scholar 

  • Engel, K., & Tabbert, E. (2005). Fast simultaneous angle, wedge, and beam intensity optimization in inverse radiotherapy planning. Optimization and Engineering, 6, 393–419.

    Google Scholar 

  • Engelbeen, C. (2007). Réalisation de profils d’intensité par des collimateurs multilames statiques en radiothérapie. Master’s thesis, Département de Mathématique, Université Libre de Bruxelles.

  • Engelbeen, C., & Fiorini, S. (2009). Constrained decompositions of integer matrices and their applications to intensity modulated radiation therapy. Networks. doi:10.1002/net.20324.

    Google Scholar 

  • Ernst, A., Mak, V., & Mason, L. (2009). An exact method for the minimum cardinality problem in the planning of IMRT. INFORMS Journal on Computing. doi:10.1287/ijoc.1080.0308.

    Google Scholar 

  • Ezzell, G. A. (1996). Genetic and geometric optimization of three-dimensional radiation therapy. Medical Physics, 23, 293–305.

    Google Scholar 

  • Ferris, M., & Voelker, M. (2004). Fractionation in radiation treatment planning. Mathematical Programming, Series B, 101, 387–413.

    Google Scholar 

  • Fippel, M., Alber, M., Birkner, M., Laub, W., Nüsslin, F., & Kawrakow, I. (2001). Inverse treatment planning for radiation therapy based on fast Monte-Carlo dose calculation. In A. Kling, F. Barao, M. Nakagawa, L. Travora, & P. Vaz (Eds.), Advanced Monte Carlo for radiation physics, particle transport simulation and applications: proceedings of the Monte Carlo 2000 conference, Lisbon, 23–26 October, 2000 (pp. 217–222). Berlin: Springer.

    Google Scholar 

  • Gersho, A., & Gray, R. (1991). Vector quantization and signal compression. Boston: Kluwer.

    Google Scholar 

  • Gong, Y. (2006). Integer programming methods for beam selection in radiotherapy treatment planning. Master’s thesis, Department of Engineering Science, The University of Auckland.

  • Gunawardena, A., D’Souza, W., Goadrick, L., Meyer, R., Sorensen, K., Naqvi, S., & Shi, L. (2006). A difference-matrix metaheuristic for intensity map segmentation in step-and-shoot imrt delivery. Physics in Medicine and Biology, 51, 2517–2536.

    Google Scholar 

  • Haas, O., Burnham, K., & Mills, J. (1998). Optimization of beam orientation in radiotherapy using planar geometry. Physics in Medicine and Biology, 43, 2179–2193.

    Google Scholar 

  • Halabi, T., Craft, D., & Bortfeld, T. (2006). Dose-volume objectives in multi-criteria optimization. Physics in Medicine and Biology, 51, 3809–3818.

    Google Scholar 

  • Hamacher, H., & Küfer, K.-H. (2002). Inverse radiation therapy planning—A multiple objective optimization approach. Discrete Applied Mathematics, 118(1-2), 145–161.

    Google Scholar 

  • Hodes, L. (1974). Semiautomatic optimization of external beam radiation treatment planning. Radiology, 110, 191–196.

    Google Scholar 

  • Holder, A. (2003). Designing radiotherapy plans with elastic constraints and interior point methods. Health Care Management Science, 6, 5–16.

    Google Scholar 

  • Holder, A. (2004). Radiotherapy treatment design and linear programming. In M. Brandeau, F. Sainfort, & W. Pierskalla (Eds.), Operations research and health care (pp. 741–774). Norwell: Kluwer.

    Google Scholar 

  • Holder, A. (2006). Partitioning multiple objective optimal solutions with applications in radiotherapy design. Optimization and Engineering, 7, 501–526.

    Google Scholar 

  • Holder, A., & Salter, B. (2004). A tutorial on radiation oncology and optimization. In H. Greenberg (Ed.), Tutorials on emerging methodologies and applications in operations research. Boston: Kluwer. Chapter 4.

    Google Scholar 

  • Holmes, T., & Mackie, T. R. (1994). A filtered backprojection dose calculation method for inverse treatment planning. Medical Physics, 21, 303–313.

    Google Scholar 

  • Hou, Q., Wang, J., Chen, Y., & Galvin, J. (2003). Beam orientation optimization for imrt by a hybrid method of the genetic algorithm and the simulated dynamics. Medical Physics, 30, 2360–2367.

    Google Scholar 

  • Hristov, D., & Fallone, B. (1997). An active set algorithm for treatment planning optimization. Medical Physics, 24, 91–106.

    Google Scholar 

  • Hristov, D., & Fallone, B. (1998). A continuous penalty function method for inverse treatment planning. Medical Physics, 25(2), 208–223.

    Google Scholar 

  • Jackson, A., & Kutcher, G. J. (1993). Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation. Medical Physics, 20(3), 613–625.

    Google Scholar 

  • Jeleń, U., Söhn, M., & Alber, M. (2005). A finite pencil beam for IMRT dose optimization. Medical Physics, 50, 1747–1766.

    Google Scholar 

  • Jeraj, R., Wu, C., & Mackie, T. (2003). Optimizer convergence and local minima errors and their clinical importance. Physics in Medicine and Biology, 48, 2809–2827.

    Google Scholar 

  • Kalinowski, T. (2005). A duality based algorithm for multileaf collimator field segmentation with interleaf collision constraint. Discrete Applied Mathematics, 152, 52–88.

    Google Scholar 

  • Kalinowski, T. (2008). Reducing the tongue-and-groove underdosage in mlc shape matrix decomposition. Algorithmic Operations Research, 3, 165–174.

    Google Scholar 

  • Kalinowski, T. (2009). The complexity of minimizing the number of shape matrices subject to minimal beam-on time in multileaf collimator field decomposition with bounded fluence. Discrete Applied Mathematics, 157, 2089–2104.

    Google Scholar 

  • Källman, P., Lind, B., Eklöf, A., & Brahme, A. (1988). Shaping of arbitrary dose distributions by dynamic multileaf collimation. Physics in Medicine and Biology, 33(11), 1291–1300.

    Google Scholar 

  • Källman, P., Ågren, A., & Brahme, A. (1992). Tumor and normal tissue responses to fractionated non uniform dose delivery. International Journal of Radiation Biology, 62(2), 249–262.

    Google Scholar 

  • Kamath, S., Sahni, S., Li, J., Palta, J., & Ranka, S. (2003). Leaf sequencing algorithms for segmented multileaf collimation. Physics in Medicine and Biology, 48(3), 307–324.

    Google Scholar 

  • Kamath, S., Sahni, S., Palta, J., & Ranka, S. (2004a). Algorithms for optimal sequencing of dynamic multileaf collimators. Physics in Medicine and Biology, 49, 33–54.

    Google Scholar 

  • Kamath, S., Sahni, S., Ranka, S., Li, J., & Palta, J. (2004b). A comparison of step-and-shoot leaf sequencing algorithms that eliminate tongue-and-groove effects. Physics in Medicine and Biology, 49, 3137–3143.

    Google Scholar 

  • Kamath, S., Sahni, S., Palta, J., Ranka, S., & Li, J. (2004c). Optimal leaf sequencing with elimination of tongue-and-groove underdosage. Physics in Medicine and Biology, 49, N7–N19.

    Google Scholar 

  • Kennedy, J. M. (2000). Minimum support solutions for radiotherapy treatment planning. Master’s thesis, Department of Mathematics, University of Colorado at Denver, Denver, CO.

  • Khan, F. M. (2003). The physics of radiation therapy. Lippincott: Philapelphia.

    Google Scholar 

  • Kolmonen, P., Tervo, J., & Lahtinen, P. (1998). Use of the Cimmino algorithm and continuous approximation for the dose deposition kernel in the inverse problem of radiation treatment planning. Physics in Medicine and Biology, 43, 2539–2554.

    Google Scholar 

  • Küfer, K.-H., & Hamacher, H. (2000). A multicriteria optimization approach for inverse radiotherapy planning. In W. Schlegel & T. Bortfeld (Eds.), XIIIth international conference on the use of computers in radiation therapy (pp. 26–28). Heidelberg: Springer.

    Google Scholar 

  • Küfer, K.-H., Scherrer, A., Monz, M., Alonso, F., Trinkaus, H., Bortfeld, T., & Thieke, C. (2003). Intensity-modulated radiotherapy—A large scale multi-criteria programming problem. OR Spectrum, 25, 223–249.

    Google Scholar 

  • Kutcher, G. J., Burman, C., Brewster, L., Goitein, M., & Mohan, R. (1991). Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. International Journal of Radiation Oncology, Biology, Physics, 21, 137–146.

    Google Scholar 

  • Lahanas, M., Schreibmann, E., Milickovic, N., & Baltas, D. (2003a). Intensity modulated beam radiation therapy dose optimization with multi-objective evolutionary algorithms. In C. Fonseca, P. Fleming, E. Zitzler, K. Deb, & L. Thiele (Eds.), Lecture notes in computer science : Vol. 2632. Evolutionary multi-criterion optimization. Second international conference, EMO 2003, Faro, Portugal, April 8–11, 2003, Proceedings (pp. 648–661). Berlin: Springer.

    Google Scholar 

  • Lahanas, M., Schreibmann, E., & Baltas, D. (2003b). Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms. Physics in Medicine and Biology, 48, 2843–2871.

    Google Scholar 

  • Langer, M. (1987). Optimization of beam weights under dose-volume restrictions. International Journal of Radiation Oncology, Biology, Physics, 13, 1255–1260.

    Google Scholar 

  • Langer, M., & Morrill, S. (1996). A comparison of mixed integer programming and fast simulated annealing for optimized beam weights in radiation therapy. Medical Physics, 23, 957–964.

    Google Scholar 

  • Langer, M., Brown, R., Urie, M., Leong, J., Stracher, M., & Shapiro, J. (1990). Large scale optimization of beam weights under dose-volume restrictions. International Journal of Radiation Oncology, Biology, Physics, 18, 887–893.

    Google Scholar 

  • Langer, M., Brown, R., Morill, S., Lane, R., & Lee, O. (1996). A generic genetic algorithm for generating beam weights. Medical Physics, 23, 965–971.

    Google Scholar 

  • Langer, M., Thai, V., & Papiez, L. (2001). Improved leaf sequencing reduces segments of monitor units needed to deliver IMRT using MLC. Medical Physics, 28, 2450–2458.

    Google Scholar 

  • Lee, E., Fox, T., & Crocker, I. (2003). Integer programming applied to intensity-modulated radiation therapy treatment planning. Annals of Operations Research, 119, 165–181.

    Google Scholar 

  • Lee, S., Cho, P., Marks, R., & Oh, S. (1997). Conformal radiotherapy computation by the method of alternating projections onto convex sets. Physics in Medicine and Biology, 42, 1065–1086.

    Google Scholar 

  • Legras, J., Legras, B., & Lambert, J. (1982). Software for linear and non-linear optimization in external radiotherapy. Computer Programs in Biomedicine, 15, 233–242.

    Google Scholar 

  • Lim, G., Ferris, M., Wright, S., Shepard, D., & Earl, M. (2007). An optimization framework for conformal radiation treatment planning. INFORMS Journal on Computing, 19, 366–380.

    Google Scholar 

  • Lim, G., Choi, J., & Mohan, R. (2008). Iterative solution methods for beam angle and fluence map optimization in intensity modulated radiation therapy planning. OR Spectrum, 30, 289–309.

    Google Scholar 

  • Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45, 503–528.

    Google Scholar 

  • Llacer, G. (1997). Inverse radiation treatment planning using the dynamically penalized likelihood method. Medical Physics, 24(11), 1751–1764.

    Google Scholar 

  • Llacer, J., Deasy, J., Bortfeld, T., Solberg, T., & Promberger, C. (2003). Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints. Physics in Medicine and Biology, 48, 183–210.

    Google Scholar 

  • Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transaction on Information Theory, 28, 127–135.

    Google Scholar 

  • Löf, J. (2000). Development of a general framework for optimization of radiation therapy. Ph.D. thesis, Department of Medical Radiation Physics, Karolinska Institute, Stockholm, Sweden.

  • Luan, S., Saia, J., & Young, M. (2007). Approximation algorithms for minimizing segments in radiation therapy. Information Processing Letters, 101, 239–244.

    Google Scholar 

  • Lyman, J. T., & Wolbrast, A. B. (1989). Optimization of radiation therapy IV: A dose-volume histogram reduction algorithm. International Journal of Radiation Oncology, Biology, Physics, 17, 433–436.

    Google Scholar 

  • Ma, L., Boyer, A. L., Xing, L., & Ma, C.-M. (1998). An optimized leaf-setting algorithm for beam intensity modulation using dynamic multileaf collimators. Physics in Medicine and Biology, 43, 1629–1643.

    Google Scholar 

  • Ma, L., Boyer, A. L., Ma, C.-M., & Xing, L. (1999). Synchronizing dynamic multileaf collimators for producing two-dimensional intensity-modulated fields with minimum beam delivery time. International Journal of Radiation Oncology, Biology, Physics, 44(5), 1147–1154.

    Google Scholar 

  • Mackie, T., Holmes, T., Swerdloff, S., Reckwerdt, P., Deasy, J., Yang, J., Paliwal, B., & Kinsella, T. (1993). Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Medical Physics, 20, 1709–1719.

    Google Scholar 

  • Mageras, G. S., & Mohan, R. (1993). Application of fast simulated annealing to optimization of conformal radiation treatments. Medical Physics, 20(3).

  • Mak, V. (2007). Iterative variable aggregation and disaggregation in IP: an application. Operations Research Letters, 35, 36–44.

    Google Scholar 

  • McDonald, S. C., & Rubin, P. (1977). Optimization of external beam radiation therapy. International Journal of Radiation Oncology, Biology, Physics, 2, 307–317.

    Google Scholar 

  • Meedt, G., Alber, M., & Nüsslin, F. (2003). Non-coplanar beam direction optimization for intensity-modulated radiotherapy. Physics in Medicine and Biology, 48, 2999–3019.

    Google Scholar 

  • Merritt, M., & Zhang, Y. (2002). A successive linear programming approach to IMRT optimization problem. Technical report, Department of Computational and Applied Mathematics, Rice University. http://www.caam.rice.edu/~zhang/reports/tr0216.pdf.

  • Messac, A., Ismail-Yahaya, A., & Mattson, C. A. (2003). The normalized constraint method for generating the Pareto frontier. Structural Multidisciplinary Optimization, 25, 86–98.

    Google Scholar 

  • Michalski, D., Xiao, Y., Censor, Y., & Galvin, J. (2004). The dose-volume constraint satisfaction problem for inverse treatment planning with field segments. Physics in Medicine and Biology, 49, 601–616.

    Google Scholar 

  • Morrill, S., Rosen, I., Lane, R., & Belli, J. (1990a). The influence of dose constraint point placement on optimized radiation therapy treatment planning. International Journal of Radiation Oncology, Biology, Physics, 19, 129–141.

    Google Scholar 

  • Morrill, S., Lane, R., Wong, J., & Rosen, I. (1991a). Dose-volume considerations with linear programming optimization. Medical Physics, 18(6), 1201–1210.

    Google Scholar 

  • Morrill, S., Lane, R., Jacobson, G., & Rosen, I. (1991b). Treatment planning optimization using constrained simulated annealing. Physics in Medicine & Biology, 36(10), 1341–1361.

    Google Scholar 

  • Morrill, S., Lam, K., Lane, R., Langer, M., & Rosen, I. (1995). Very fast simulated annealing in radiation therapy treatment plan optimization. International Journal of Radiation Oncology in Biology and Physics, 31, 179–188.

    Google Scholar 

  • Morrill, S. M., Lane, R. G., & Rosen, I. I. (1990b). Constrained simulated annealing for optimized radiation therapy treatment planning. Computer Methods and Programs in Biomedicine, 33, 135–144.

    Google Scholar 

  • Motzkin, T. S., & Schoenberg, I. J. (1954). The relaxation method for linear inequalities. Canadian Journal of Mathematics, 6, 393–404.

    Google Scholar 

  • Niemierko, A. (1992). Random search algorithm (RONSC) for optimization of radiation therapy with both physical and biological end points and constraints. International Journal of Radiation Oncology, Biology, Physics, 33, 89–98.

    Google Scholar 

  • Niemierko, A. (1997). Reporting and analysing dose distributions: A concept of equivalent uniform dose. Medical Physics, 24, 103–110.

    Google Scholar 

  • Niemierko, A. (1999). A generalized concept of equivalent uniform dose. Medical Physics, 26, 1100.

    Google Scholar 

  • Niemierko, A., & Goitein, M. (1991). Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element architecture. Radiotherapy and Oncology, 20, 166–176.

    Google Scholar 

  • Nizin, P., Kania, A., & Ayyangar, K. (2001). Basic concepts of CORVUS dose model. Medical Dosimetry, 26(1), 65–69.

    Google Scholar 

  • Nußbaum, M. (2006). Min cardinality C1-decomposition of integer matrices. Master’s thesis, Department of Mathematics, Technical University of Kaiserslautern.

  • Ólafsson, A., & Wright, S. (2006). Efficient schemes for robust IMRT treatment planning. Technical Report 06-01, Department of Computer Sciences, University of Wisconsin-Madison.

  • Peñagarícano, J. A., Papanikolaou, N., Wu, C., & Yan, Y. (2005). An assessment of biologically-based optimization (BORT) in the IMRT era. Medical Dosimetry, 30(1), 12–19.

    Google Scholar 

  • Powlis, W., Altschuler, M., Censor, Y., & Buhle, J. (1989). Semi-automatic radiotherapy treatment planning with a mathemathical model to satisfy treatment goals. International Journal of Radiation Oncology, Biology, Physics, 16, 271–276.

    Google Scholar 

  • Preciado-Walters, F., Rardin, R., Langer, M., & Thai, V. (2004). A coupled column generation, mixed integer approach to optimal planning of intensity modulated radiation therapy for cancer. Mathematical Programming, Series B, 101, 319–338.

    Google Scholar 

  • Pugachev, A., & Xing, L. (2001). Pseudo beam’s-eye-view as applied to beam orientation selection in intensity-modulated radiation therapy. International Journal of Radiation Oncology, Biology, Physics, 51(5), 1361–1370.

    Google Scholar 

  • Que, W. (1999). Comparison of algorithms for multileaf collimator field segmentation. Medical Physics, 26, 2390–2396.

    Google Scholar 

  • Que, W., Kung, J., & Dai, J. (2004). “Tongue-and-groove” effect in intensity modulated radiotherapy with static multileaf collimator fields. Physics in Medicine and Biology, 49, 399–405.

    Google Scholar 

  • Redpath, A. T., Vickery, B. L., & Wright, D. H. (1976). A new technique for radiotherapy planning using quadratic programming. Physics in Medicine and Biology, 21, 781–91.

    Google Scholar 

  • Romeijn, H., Ahuja, R., Dempsey, J., Kumar, A., & Li, J. (2003). A novel linear programming approach to fluence map optimization for intensity modulated radiation therapy treatment planning. Physics in Medicine and Biology, 48, 3521–3542.

    Google Scholar 

  • Romeijn, H., Dempsey, J., & Li, J. (2004). A unifying framework for multi-criteria fluence map optimization models. Physics in Medicine and Biology, 49, 1991–2013.

    Google Scholar 

  • Romeijn, H., Ahuja, R., Dempsey, J., & Kumar, A. (2006). A new linear programming approach to radiation therapy treatment planning problems. Operations Research, 54(2).

  • Rosen, I., Lane, R., Morrill, S., & Belli, J. (1991). Treatment planning optimisation using linear programming. Medical Physics, 18(2), 141–152.

    Google Scholar 

  • Rowbottom, C., & Webb, S. (2002). Configuration space analysis of common cost functions in radiotherapy beam-weight optimization algorithms. Physics in Medicine and Biology, 47, 65–77.

    Google Scholar 

  • Rowbottom, C., Khoo, V., & Webb, S. (2001). Simultaneous optimization of beam orientations and beam weights in conformal radiotherapy. Medical Physics, 28(8), 1696–1702.

    Google Scholar 

  • Schlegel, W., & Mahr, A. (2002). 3D-conformal radiation therapy: a multimedia introduction to methods and techniques. Heidelberg: Springer.

    Google Scholar 

  • Shao, L., & Ehrgott, M. (2007). Finding representative nondominated points in multiobjective linear programming. In Proceedings of the IEEE symposium on computational intelligence in multi-criteria decision-making, April 1–5, 2007, Honolulu (pp. 245–252). Piscataway: IEEE Service Center.

    Google Scholar 

  • Shao, L., & Ehrgott, M. (2008a). Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning. Mathematical Methods of Operations Research, 68, 257–276.

    Google Scholar 

  • Shao, L., & Ehrgott, M. (2008b). Approximating the nondominated set of an MOLP by approximately solving its dual problem. Mathematical Methods of Operations Research, 68, 469–492.

    Google Scholar 

  • Shepard, D., Ferris, M., Olivera, G., & Mackie, T. (1999). Optimizing the delivery of radiation therapy to cancer patients. SIAM Review, 41(4), 721–744.

    Google Scholar 

  • Siochi, R. (1999). Minimizing static intensity modulation delivery time using an intensity solid paradigm. International Journal of Radiation Oncology, Biology, Physics, 43, 671–689.

    Google Scholar 

  • Sir, M., Pollock, S., Epelman, M., Lam, K., & Haken, R. (2006). Ideal spatial radiotherapy dose distributions subject to positional uncertainties. Physics in Medicine and Biology, 51, 6329–6347.

    Google Scholar 

  • Söderström, S., & Brahme, A. (1992). Selection of beam orientations in radiation therapy using entropy and Fourier transform measures. Physics in Medicine and Biology, 37(4), 911–924.

    Google Scholar 

  • Sonderman, D., & Abrahamson, P. (1985). Radiotherapy treatment design using mathematical programming models. Operations Research, 33(4), 705–725.

    Google Scholar 

  • Spirou, S. V., & Chui, C. S. (1994). Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators. Medical Physics, 27(7), 1031–1041.

    Google Scholar 

  • Spirou, S. V., & Chui, C.-S. (1998). A gradient inverse planning algorithm with dose-volume constraints. Medical Physics, 25(3), 321–333.

    Google Scholar 

  • Starkschall, G. (1984). A constrained least-squares optimization method for external beam treatment planning. Medical Physics, 11(5), 659–65.

    Google Scholar 

  • Starkschall, G., Pollack, A., & Stevens, C. W. (2001). Treatment planning using a dose-volume feasibility search algorithm. International Journal of Radiation Oncology, Biology, Physics, 49(5), 1419–1427.

    Google Scholar 

  • Stavrev, P., Hristov, D., Warkentin, B., & Fallone, B. G. (2003). Inverse treatment planning by physically constrained minimization of a biological objective function. Medical Physics, 30, 2948–2958.

    Google Scholar 

  • Stein, J., Bortfeld, T., Dörschel, B., & Schlegel, W. (1994). Dynamic X-ray compensation for conformal radiotherapy by means of multileaf collimation. Radiotherapy and Oncology, 32, 163–173.

    Google Scholar 

  • Stein, J., Mohan, R., Wang, X., Bortfeld, T., Wu, Q., Preiser, K., Ling, C., & Schlegel, W. (1997). Number and orientations of beams in intensity-modulated radiation treatments. Medical Physics, 24(2), 149–160.

    Google Scholar 

  • Svensson, R., Källman, P., & Brahme, A. (1994). An analytical solution for the dynamic control of multileaf collimators. Physics in Medicine and Biology, 39, 37–61.

    Google Scholar 

  • Taşkin, Z., Smith, J., Romeijn, H., & Dempsey, J. (2009, to appear). Optimal multileaf collimator leaf sequencing in IMRT treatment planning. Operations Research.

  • Thieke, C. (2003). Multicriteria optimisation in inverse radiotherapy planning. Ph.D. thesis, Ruprecht–Karls–Universität Heidelberg, Germany.

  • Thieke, C., Bortfeld, T., & Küfer, K.-H. (2002). Characterization of dose distributions through the max and mean dose concept. Acta Oncologica, 41, 158–161.

    Google Scholar 

  • Tucker, S. L., Thames, H. D., & Taylor, J. M. G. (1990). How well is the probability of tumor cure after fractionated irradiation described by Poisson statistics? Radiation Research, 124, 273–282.

    Google Scholar 

  • Ulmer, W., & Harder, D. (1995). A triple Gaussian pencil beam model for photon beam treatment planning. Zeitschrift für medizinische Physik, 5, 25–30.

    Google Scholar 

  • Van Santvoort, J., & Heijmen, B. (1996). Dynamic multileaf collimation without “tongue-and-groove” underdosage effects. Physics in Medicine and Biology, 41, 2091–2105.

    Google Scholar 

  • Verhaegen, F. (2003). Monte Carlo modelling of external radiotherapy photon beams. Physics in Medicine and Biology, 48, 107–164.

    Google Scholar 

  • Wake, G., Boland, N., & Jennings, L. (2009). Mixed integer programming approaches to exact minimization of total treatment time in cancer radiotherapy using multileaf collimators. Computers & Operations Research, 36, 795–810.

    Google Scholar 

  • Wang, C., Dai, J., & Hu, Y. (2003). Optimization of beam orientations and beam weights for conformal radiotherapy using mixed integer programming. Physics in Medicine and Biology, 48, 4065–4076.

    Google Scholar 

  • Wang, X., Mohan, R., Jackson, A., Leibel, S., Fuks, Z., & Ling, C. (1995). Optimization of intensity-modulated 3d conformal treatment plans based on biological indices. Radiotherapy and Oncology, 37, 140–152.

    Google Scholar 

  • Wang, X., Spirou, S., LoSasso, T., Stein, J., Chui, C.-S., & Mohan, R. (1996). Dosimetric verification of intensity-modulated fields. Medical Physics, 23(3), 317–327.

    Google Scholar 

  • Webb, S. (1989). Optimisation of conformal radiotherapy dose distribution by simulated annealing. Physics in Medicine and Biology, 34, 1349–1370.

    Google Scholar 

  • Webb, S. (1991). Optimization of conformal radiotherapy dose distributions by simulated annealing: 2. Inclusion of scatter in the 2D technique. Physics in Medicine and Biology, 36, 1227–1237.

    Google Scholar 

  • Webb, S. (1992). Optimization by simulated annealing of three-dimensional, conformal treatment planning for radiation fields defined by a multileaf collimator: II. Inclusion of two-dimensional modulation of the X-ray intensity. Physics in Medicine and Biology, 37, 1689–1704.

    Google Scholar 

  • Webb, S. (1994a). Optimizing the planning of intensity-modulated radiotherapy. Physics in Medicine and Biology, 39, 2229–2246.

    Google Scholar 

  • Webb, S. (1994b). Optimum parameters in a model for tumor control probability including interpatient heterogeneity. Physics in Medicine and Biology, 39, 1895–1914.

    Google Scholar 

  • Webb, S. (2001). Intensity-modulated radiation therapy (Series in medical physics). Institute of Physics Publishing.

  • Webb, S., & Nahum, A. E. (1993). A model for calculating tumor control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. Physics in Medicine and Biology, 38, 653–666.

    Google Scholar 

  • Webb, S., Bortfeld, T., Stein, J., & Convery, D. (1997). The effect of stair-step leaf transmission on the “tongue-and-groove problem” in dynamic radiotherapy with a multileaf collimator. Physics in Medicine and Biology, 42, 595–602.

    Google Scholar 

  • Wu, C., Jeraj, R., & Mackie, T. (2003a). The method of intercepts in parameter space for the analysis of local minima caused by dose-volume constraints. Physics in Medicine and Biology, 48, N149–N157.

    Google Scholar 

  • Wu, Q., et al. (2003b). Intensity-modulated radiotherapy optimization with gEUD-guided dose-volume objectives. Physics in Medicine and Biology, 48, 279–291.

    Google Scholar 

  • Wu, Q., & Mohan, R. (2000). Algorithms and functionality of an intensity modulated radiotherapy optimization system. Medical Physics, 27(4), 701–711.

    Google Scholar 

  • Wu, Q., & Mohan, R. (2002). Multiple local minima in IMRT optimization-based on dose-volume criteria. Medical Physics, 29, 1514–1527.

    Google Scholar 

  • Wu, Q., Mohan, R., Niemierko, A., & Schmidt-Ulirich, R. (2002). Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. International Journal of Radiation Oncology, Biology, Physics, 52(1), 224–235.

    Google Scholar 

  • Wu, X., & Zhu, Y. (2001). An optimization method for importance factors and beam weights based on genetic algorithms for radiotherapy treatment planning. Physics in Medicine and Biology, 46, 1085–1099.

    Google Scholar 

  • Xia, P., & Verhey, L. (1998). Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple segments. Medical Physics, 25(8), 1424–1434.

    Google Scholar 

  • Xiao, Y., Censor, Y., Michalski, D., & Galvin, J. (2003). The least-intensity feasible solution for aperture-based inverse planning in radiation therapy. Annals of Operations Research, 119, 183–203.

    Google Scholar 

  • Xing, L., & Chen, G. T. Y. (1996). Iterative algorithms for inverse treatment planning. Physics in Medicine and Biology, 41, 2107–2123.

    Google Scholar 

  • Xing, L., Hamilton, R., Spelbring, D., Pelizzari, C., Chen, G., & Boyer, A. (1998). Fast iterative algorithms for three-dimensional inverse treatment planning. Medical Physics, 25, 1845–1849.

    Google Scholar 

  • Xing, L., Li, J. G., Donaldson, S., Le, Q. T., & Boyer, A. L. (1999). Optimization of importance factors in inverse planning. Physics in Medicine and Biology, 44, 2525–2536.

    Google Scholar 

  • Yu, C. X. (1995). Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Physics in Medicine and Biology, 40, 1435–1449.

    Google Scholar 

  • Yu, C. X., Symons, M., Du, M., Martinez, A., & Wong, J. (1995). A method for implementing dynamic photon beam intensity modulation using independent jaws and a multileaf collimator. Physics in Medicine and Biology, 40, 769–787.

    Google Scholar 

  • Yu, Y. (1997). Multi-objective decision theory for computational optimisation in radiation therapy. Medical Physics, 24(9), 1445–1454.

    Google Scholar 

  • Zaider, M., & Minerbo, G. N. (2000). Tumor control probability: A formulation applicable to any temporal protocol of dose delivery. Physics in Medicine and Biology, 45, 279–293.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Ehrgott.

Additional information

This is an updated version of the paper that appeared in 4OR, 6(3), 199–262 (2008).

Support for H.W. Hamacher: The research has been partially supported by the Deutsche Forschungsgemeinschaft (DFG), Grant HA 1737/7 “Algorithmik großer und komplexer Netzwerke”, the Julius-von-Haast Award of New Zealand’s MORST, and by the Rhineland-Palatinate cluster of excellence “Dependable adaptive systems and mathematical modeling”.

Support for L. Shao: The research has been supported by The University of Auckland, Grant 3606875/9275.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrgott, M., Güler, Ç., Hamacher, H.W. et al. Mathematical optimization in intensity modulated radiation therapy. Ann Oper Res 175, 309–365 (2010). https://doi.org/10.1007/s10479-009-0659-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0659-4

Navigation