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Abstract For many problems in Scheduling and Timetabling the choice
of an mathematical programming formulation is determined by the formu-
lation of the graph colouring component. This paper briefly surveys seven
known integer programming formulations of vertex colouring and introduces
a new formulation using “supernodes”. In the definition of George and McIn-
tyre [SIAM J. Numer. Anal. 15 (1978), no. 1, 90–112], “supernode” is a
complete subgraph, where each two vertices have the same neighbourhood
outside of the subgraph. Seen another way, the algorithm for obtaining the
best possible partition of an arbitrary graph into supernodes, which we give
and show to be polynomial-time, makes it possible to use any formulation
of vertex multicolouring to encode vertex colouring. The power of this ap-
proach is shown on the benchmark problem of Udine Course Timetabling.
Results from empirical tests on DIMACS colouring instances, in addition
to instances from other timetabling applications, are also provided and dis-
cussed.
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1 Introduction

Graph colouring (“proper vertex colouring”) is a well-known NP-Complete
problem (Karp, 1972; Garey & Johnson, 1976). It can be formulated as
follows: Given a simple undirected, but not necessarily connected graph
G = (V,E) and an integer k, decide if it is possible to assign k colours to
vertices v ∈ V such that no two adjacent vertices {u, v} ∈ E are assigned the
same colour. Graph colouring has a number of applications, ranging from
university timetabling (Carter & Laporte, 1997; Schaerf, 1999; Petrovic &
Burke, 2004) and frequency assignment in cellular networks (Aardal, Hoesel,
Koster, & Mannino, 2007), to registry allocation in compilers (Springer &
Thomas, 1994) and automating differentiation (Gebremedhin, Manne, &
Pothen, 2005).

Graph colouring is a challenging problem: As well as being NP-hard
to solve exactly, the minimum number of colours needed to colour a graph
is also NP-Hard to approximate within a factor of |V |1−ǫ for any ǫ > 0,
unless NP = P (Kraj́ıček, 1997; Feige & Kilian, 1998; Zuckerman, 2007).
Also, there are still dense random instances on 125 vertices from the Second
DIMACS Implementation Challenge announced in 1992 (Johnson & Trick,
1996), for which the decision problem cannot be solved within reasonable
time limits (Méndez-Dı́az & Zabala, 2008), However, it is often possible to
solve considerably larger instances in practice, by exploiting application-
specific structure of the graphs. Springer and Thomas (1994) have, for in-
stance, shown that graph colouring in special cases of register allocation in
compilers is polynomially solvable.

In cases that are not polynomially solvable, exact solvers introduced
in the past twenty years have predominantly been based on a branch and
bound/cut procedure with linear programming relaxations. There are a wide
variety of such integer linear programming approaches to modelling graph
colouring. A number of authors, including Zabala and Méndez-Dı́az (2002;
2006; 2008), have used a natural assignment-type formulation. Williams and
Yan (2001) have studied a formulation with precedence constraints. Lee
(2002) and Lee and Margot (2007) have studied a binary encoded formula-
tion. Mehrotra and Trick (1996) and more recently (Schindl, 2004; Hansen,
Labbé, & Schindl, 2005) have been using formulations based on independent
sets. Barbosa et al. (2004) have been experimenting with encodings based
on acyclic orientations. Finally, the most recent formulation by Campêlo,
Campos, and Corrêa (2008) is based on asymmetric representatives. These
seven encodings of graph colouring, often together with the corresponding
integer programming formulations, are surveyed in Section 2. In Section 3,
we first review the concept of a “supernode”, a complete subset of vertices of
a graph, where each two vertices have the same neighbourhoods outside of
the subset; this concept has been described many times previously (George
& McIntyre, 1978; Duff & Reid, 1983; Eisenstat, Elman, Schultz, & Sher-
man, 1984). See Figure 1 for a simple illustration. Next, we show that the
partition of a graph into supernodes, obtainable in polynomial time, pro-
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Fig. 1: Example of a graph and a partition of its vertex-set into supernodes. Notice
supernodes B′ and C′ need to be assigned two distinct colours each, distinct
from the colour(s) assigned to A′ and D′. Within each supernode, colours can be
interchanged freely. For a more complex example, see Figure 5.

A

B2

B1

C2

C1

D A′ B′ C′ D′

Table 1: Integer programming formulations of graph colouring:

Based on Variables Constraints Selected references

Vertices k |V | |V |+ k |E| Méndez-Dı́az and Zabala
(Standard) (2002, 2006, 2008)
Binary Encoding ⌈log

2
k⌉ |V | Exp. many Lee (2002)

Max. Independent Sets Exp. many |V |+ 1 Mehrotra and Trick (1996)
Any Independent Sets Exp. many |V |+ 1 Hansen et al. (2005)

Precedencies O(|V |2) |E| Williams and Yan (2001)
Acyclic Orientations |E| Exp. many Barbosa et al. (2004)
Asymmetric Represent. O(|E|) O(|V | |E|) Campêlo et al. (2008)
Supernodes k |Q| |Q|+ k |E′| This paper

vides a transformation of graph colouring to graph multicolouring. Hence,
we can use the standard binary integer formulation of multicolouring, with
binary decision variable xij is set to one, if any member of supernode i is
assigned colour j, for graph colouring. This translates to new formulations
for numerous problems in Scheduling and Timetabling. An illustrative ex-
ample of formulations of Udine Course Timetabling (Gaspero & Schaerf,
2003, 2006) is given in Section 4. The paper is concluded with a discussion
of the empirical tests we carried out in Section 5.

2 Known Formulations of Graph Colouring

In graph colouring, we assume we are given a simple undirected, but not
necessarily connected graph G = (V,E) and an integer k. Integer program-
ming formulations of the decision version of the graph colouring problem
have feasible integer solutions if and only if it is possible to assign colours
K = {1, . . . , k} to vertices v ∈ V of G such that no two adjacent vertices
{u, v} ∈ E are assigned the same colour. Although the minimum value
of k is generally hard to approximate, it is of course always possible to
pick k = |V |, and for real-life graphs, heuristics based on local search with
suitable pre-processing often perform well (Galinier & Hertz, 2006). Estima-
tors of the minimal k are also available for some classes of random graphs
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(Achlioptas & Naor, 2005). Notice that the decision version of the problem
with fixed k, rather than the optimisation version looking for minimal k,
is used in many applications. For instance in school timetabling (Schaerf,
1999), k is usually fixed to the number of periods per week.

Although there are at least seven possible encodings of feasible solu-
tions and hence seven different integer programming formulations of graph
colouring, as far as we are aware, there is no survey article or empirical com-
parison available in the literature. Méndez-Dı́az and Zabala (2008) compare
four classes of cuts using the standard formulation and Prestwich (2003)
compares five encodings of graph colouring into propositional satisfiability
testing. This section elaborates on the brief overview provided in Table 1.

Unless stated otherwise, we consider the decision version of the prob-
lem. In some cases, constraints necessary to reaching optimality are also
mentioned. Notice, however, there have often been described many classes
of additional constraints, which can be added dynamically in a branch and
cut procedure.

2.1 The Standard Formulation

The natural assignment-type formulation of graph colouring uses k |V | bi-
nary variables:

xv,c =

{

1 if vertex v is coloured with colour c

0 otherwise
(1)

subject to k |E| constraints:

k
∑

c=1

xv,c = 1 ∀ vertices v ∈ V (2)

xu,c + xv,c ≤ 1 ∀ colours c ∈ K ∀ edges {u, v} ∈ E (3)

This formulation alone produces provably poor linear programming re-
laxations (Caprara, 1998). Mehrotra and Trick (1996) give the example of
xv,c = 1/k for all vertices v ∈ V and for all colours c, which is feasible
when k ≥ 2. However, a number of classes of strong valid inequalities have
been described for this for this formulation, most notably by Zabala and
Méndez-Dı́az (2002; 2006; 2008), and (Campêlo, Corrêa, & Frota, 2003),
either supplanting or replacing per-edge constraints (3) . Branch-and-cut
codes using suitable implementations of separation routines have produced
a number of optimal values and present-best bounds for the benchmark
established by Johnson and Trick (1996) (Zabala & Méndez-Dı́az, 2006).
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2.2 Extension: Synchronisation with General Integer Variables

Williams and Yan (2001) have noted that the standard formulation could
be extended with |V | additional general integer variables X , where Xv = c
if colour c is used to colour vertex v, subject to |V | additional constraints:

k
∑

c=1

cxv,c = Xv ∀ vertices v ∈ V (4)

This extension can be applied together with custom branching rules with
some success in some timetabling problems where, for instance, lectures
should be timetabled before laboratory sessions.

2.3 The Independent Set Formulation

One of the first alternative formulations was proposed by Mehrotra and
Trick (1996). It is based on set I of maximal independent sets. (Subset
S ⊆ V of graph G = (V,E) is defined to be independent, if no two u, v ∈ S
form an edge {u, v} ∈ E.) There are an exponential number of binary
variables:

xi =

{

1 if independent set i is assigned a single colour

0 otherwise
(5)

subject to |V |+ 1 constraints:

∑

i∈I

xi ≤ k (6)

∑

i∈I, s.t. v∈i

xi ≥ 1 ∀ vertices v ∈ V (7)

For processing any but the smallest of instances, such a formulation ob-
viously requires very good routines for finding maximal independent sets
and for adding them to the linear programming subproblems on-the-fly by
the means of column generation. It should also be noted that solutions ob-
tained using this formulation require a certain amount of post-processing,
if constraints (7) remain inequalities. Alternatively, the problem could be
reformulated so that I comprises all independent sets, not only maximal
independent sets. In the per-vertex constraints (7) , inequality can then be
replaced with equality (Mehrotra & Trick, 1996). The original implementa-
tion of Mehrotra and Trick produced exceptionally good results (Mehrotra
& Trick, 1996), but later reimplementation of Schindl (2004) and Hansen et
al. (2005) failed to match the exceptional performance. It seems also rather
difficult to adapt this formulation to extensions of vertex colouring such as
the Udine Course Timetabling, which will be introduced in Section 4.
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2.4 The Scheduling Formulation (with Precedence Constraints)

Many researchers from a constraint programming background deal with
graph colouring in terms of multiple simultaneously applied all different

constraints. In an assignment A : V → D of values from a finite domain
D to variables V , applying the all different constraint on a subset
W ⊂ V stipulates that there have to be |W | distinct values assigned to
elements of W . Setting all different (V) then makes assignment A in-
jective. The case of a single all different constraint is easy to solve,
as it represents bipartite matching. The case of two simultaneously ap-
plied all different constraints was studied by Appa, Magos, and Mourtos
(2005). The general case of multiple simultaneously applied all different

constraints is, in some sense, equivalent to graph colouring. If we take, for
example, the set of variables X defined in Section 2.2, constraints (3) im-
plement |E| all different constraints to pairs of elements of X . Williams
and Yan (2001) have compared this standard integer programming formu-
lation of the all different constraint (of Section 2.1) with a formulation
using precedence constraints. Their work leads to a formulation of vertex
colouring using |V | integer variables, where Xv = c if colour c is used to
colour vertex v, and 1

2
|V | (|V |− 1) additional binary variables xu,v, defined

for u < v:

xu,v =

{

1 if for vertices u, v holds Xu < Xv

0 otherwise
(8)

subject to |E| precedence constraints:

xu,v + xv,u = 1 ∀ edges {u, v} ∈ E (9)

(10)

However, in the experience of both Williams and Yan (2001) and the
authors, this formulation does not offer particularly strong relaxations.

Tobias Achterberg (personal communication) suggested using another
encoding inspired by scheduling:

xu,m =

{

1 if vertex v is coloured by c ≤ m

0 otherwise
(11)

This encoding is, as far as we know, also untested.

2.5 The Binary Encoded Formulation

In his studies of the all different polyhedron, Lee (2002) and Lee and
Margot (2007) have introduced a formulation of binary encoding using
⌈log2 k⌉ |V | binary variables:
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Fig. 2: Two encodings of a particular colouring of the graph from Figure 5:
Independent set Used?

{ Math1} 0
{ Math2} 1
{ Math3} 1
{ Math4} 1
{ Algo

1
} 1

{ Algo
2
} 1

{ Algo
3
} 1

{ Phy} 0
{ Math1, Phy} 1
{ Math2, Phy} 0
{ Math3, Phy} 0
{ Math4, Phy} 0

(a) An Encoding Using Inde-
pendent Sets

Vertex Colour
Bit 1 Bit 2 Bit 3

Math1 1 0 0
Math2 0 1 0
Math3 1 1 0
Math4 0 0 1
Algo

1
1 0 1

Algo
2

0 1 1
Algo

3
1 1 1

Phy 1 0 0

(b) The Binary Encoding

xv,b =

{

1 if vertex v is assigned colour having bit b set to 1

0 otherwise
(12)

Lee and Margot (2007) also described three broad classes of applicable
inequalities (“general block inequalities”, “matching inequalities”, “switched
walk inequalities”), each exponentially large in |V |. We conjecture, but can-
not prove, these include all inequalities introduced by Zabala and Méndez-
Dı́az (2006), when projected to the appropriate space. However, the devel-
opment of separation routines for such general inequalities is by no means
straightforward (Lee & Margot, 2007). In the context of edge colouring of
graphs, it only remains to decide if a graph requires more colours than
the maximum degree of vertices in the graph. The computationally expen-
sive separation of general block inequalities could thus perhaps be offset by
having to eliminate substantially fewer variables in the branch-and-cut pro-
cedure (Lee & Margot, 2007). In theory, such an argument could perhaps
also apply to colouring of dense random graphs (Bollobás, 2001), where the
chromatic number was shown to be almost surely one of two known values
(Achlioptas & Naor, 2005). However, experimental results do not seem to
be conclusive; not even in the case of edge colouring (Lee & Margot, 2007).

2.6 Encoding Using Acyclic Orientations

In the context of experimental formulations of graph colouring, we also men-
tion acyclic orientations, an encoding based the Gallai-Roy-Vitaver theorem
(Gallai, 1968; Roy, 1967; Vitaver, 1962): directed graphs, which contain no
directed simple path of length ≥ k, k ≥ 1, are k-colorable. An acyclic ori-
entation G′ = (V,E′) of an undirected G = (V,E) is then obviously a
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directed graph such that for each {u, v} ∈ E, there is either (u, v) ∈ E′

or (v, u) ∈ E′, and there is no directed cycle in G′. For further references,
see also Werra and Hansen (2003) and Nešetřil and Tardif (2008). Together
with an algorithm enumerating all possible acyclic orientations (Barbosa &
Szwarcfiter, 1999), this could provide a basis for a column generation algo-
rithm for graph colouring. There are some experiments with metaheuristics
using this encoding (Barbosa et al., 2004). The only implementation using
the linear programming relaxations with this encoding the authors are aware
of, however, is an unpublished work of Rosa Maria Videira de Figueiredo.

2.7 Formulation Using Asymmetric Representatives

Finally, the most recently published alternative formulation of graph colour-
ing is by Campêlo et al. (2008), although it does stem from their previous

studies of graph colouring (Campêlo et al., 2003). There are |V |+ |V |2−|E|
binary variables xu,v, where xu,v is defined for u, v ∈ V , u 6= v, and
{u, v} /∈ E:

xu,v =

{

1 if vertices u, v share one colour and u represents v

0 otherwise
(13)

Each independent set, which is assigned a unique colour, is assigned
a unique vertex (“representative”) representing the independent set. This
can be done using a number of constraints cubic in |V |. Campêlo et al.
(2008) then establish an order on the vertex set V , which induces an acyclic
orientation introduced in Section 2.6. This enables addition of a number of
symmetry-breaking constraints. No empirical results are available, though,
as Campêlo et al. (2008) reportedly have problems designing separation
routines for the cutting planes they propose.

3 The Main Result

In this section, we propose another formulation, based on a particular type of
clique partition. Let us reiterate, however, the definition of a clique partition
first:

Definition 1 The clique partition of graph G = (V,E) is a partition Q of
vertices V , such that for all sets q ∈ Q, all v ∈ q are pairwise adjacent in
G.

Notice we use v ∈ q ∈ Q only to denote that vertex v in the original
vertex-set V is an element of a clique represented by q in the clique partition
Q. Hence, there is no need to interpret this as the use of hyper-graphs.

As is well known, the problem of finding the minimum cardinality of
a clique partition, χ̄(G), is NP-Hard in general graphs and as hard to



Supernodal Formulation of Graph Colouring 9

Fig. 3: Two more encodings of a particular colouring of the graph from Figure 5.
Identical row headings are not repeated twice.

V1 Vertex V2

M
a
th

1

M
a
th

2

M
a
th

3

M
a
th

4

A
lg
o
1

A
lg
o
2

A
lg
o
3

P
h
y

Math1 1 1 1 1 1 1 0
Math2 0 1 1 1 1 1 0
Math3 0 0 1 1 1 1 0
Math4 0 0 0 1 1 1 0
Algo

1
0 0 0 0 1 1 0

Algo
2

0 0 0 0 0 1 0
Algo

3
0 0 0 0 0 0 0

Phy 0 1 1 1 1 1 1

(a) The Scheduling Encoding

Vertex V2

M
a
th

1

M
a
th

2

M
a
th

3

M
a
th

4

A
lg
o
1

A
lg
o
2

A
lg
o
3

P
h
y

0 1
1 0

1 0
1 0

1
1

1
0 0 0 0 0

(b) The Encoding Using Asymmetric
Representatives

approximate as graph colouring itself (see Minimum-Clique-Partition

in Crescenzi, Kann, Halldórsson, Karpinski, & Woeginger, 2005). Indeed,
χ̄(G) = χ(Ḡ), where χ(Ḡ) is the minimum number of colours needed to
colour the complement graph. Another direction of arriving at probabilistic
bounds on χ̄(G) could, perhaps, follow from probabilistic results of Molloy
and Reed (2002, Chapter 11) for maximal cliques. Notice, however, we do
not require minimality in the definition, and hence V is the trivial clique
partition of graph G.

Next, we introduce the indistinguishability relation between vertices of
a graph:

Definition 2 Two vertices u, v ∈ V of a graph G = (V,E) are indistin-
guishable, if and only if they are adjacent and have identical closed neigh-
bourhoods; that is: {w | {u,w} ∈ E} ∪ {u} is the same as {w | {v, w} ∈
E} ∪ {v}.

This relation has been studied previously in the context of pivoting
in matrix factorisation, in connection with mass elimination (George &
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McIntyre, 1978), supervariables (Duff & Reid, 1983), and prototype ver-
tices (Eisenstat et al., 1984). It is easy to observe the indistinguishability
relation is reflexive, symmetric, and transitive. Hence:

Lemma 1 The indistinguishability relation is an equivalence.

Next, we define the particular type of clique partition we are interested
in:

Definition 3 The reversible clique partition Q of a graph G = (V,E) is
the clique partition of minimum cardinality such that each supernode q ∈ Q
represents a class of equivalence in a indistinguishability relation on G.

This means that for each supernode q ∈ Q of the reversible clique par-
tition (Q,E′), each two vertices u, v ∈ q are indistinguishable. As usual, we
will be interested also in the graph induced by the clique partition:

Definition 4 The graph induced by reversible clique partition Q of graph
G = (V,E) is the graph G′ = (Q,E′), where E′ = {{qu, qv}|{u, v} ∈
E, qu, qv ∈ Q, qu 6= qv, u ∈ qu, v ∈ qv, }.

The use of the word induced in this context is reasonable, because it cor-
responds to a subgraph induced by taking a subset of the original vertex set
with a single (arbitrary) representative of each supernode. The “reversibil-
ity” of the clique partition is, indeed, rather a strict requirement, which
enables us to formulate the following:

Definition 5 Algorithm A
Input: Graph G = (V,E)
Output: Reversible clique partition Q of G

1. Construct an auxiliary graph H = (V, F ), where there is an edge {u, v} ∈
F , if and only if there is an edge {u, v} ∈ E and vertices u and v are
indistinguishable in G

2. Run depth-first search on H to obtain collection Q of connected compo-
nents of H

3. Return Q

We can easily deduce that:

Lemma 2 Algorithm A produces a reversible clique partition.

From Step 1, it is clear each element of the collection we return corre-
sponds to a class of equivalence in the indistinguishability relation on G.
By transitivity of the indistinguishability relation, it is clear the algorithm
produces a clique partition. Now imagine there is a smaller clique partition
R corresponds the indistinguishability relation on G. It is easy to see the
contradiction. Hence, the algorithm obtains a reversible clique partition.
Furthermore:
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Lemma 3 Algorithm A runs in time O(|V | |E|).

Given Algorithm A, we can straightforwardly reformulate the problem
of vertex colouring as the problem of multicolouring of the corresponding
reversible clique partition, where by multicolouring, we mean:

Definition 6 The problem of multicolouring of a graph G = (V,E) with a
finite set of colours K = {1, . . . , k}, which is given together with demand
function f : V → N, is to obtain is a mapping c : V → 2K , such that for all
v ∈ V : |c(v)| = f(v) and for all {u, v} ∈ E, c(u)∩ c(v) = ∅. It makes sense
to require

⋃

v∈V c(v) = K.

Notice that multicolouring with sets of uniform cardinality has been
studied under the name of set colouring, for example by Stahl (1976),
Bollobas and Thomason (1979), and more recently used also by Duran et
al. (2002; 2006). Other variants of the problems are surveyed by Halldórsson
and Kortsarz (2004) and Aardal et al. (2007). Mehrotra and Trick (2007)
seem to have the present-best solver for multicolouring.

From Lemma 2, it is easy to observe that Algorithm A provides a trans-
formation of vertex colouring to vertex multicolouring. Hence, the stan-
dard formulation of vertex multicolouring can also be used as a formulation
of vertex colouring. Given the graph G′ = (Q,E′) induced by reversible
clique partition Q of graph G = (V,E) together with the demand function
f : V → N, specifying the number f(q) of colours to attach to each vertex
q ∈ Q out of the set K = {1, . . . , k}, we can use an integer programming
formulation with k |Q| binary variables:

xq,c =

{

1 if colour c is included in the set assigned to q ∈ Q

0 otherwise
(14)

subject to |Q|+ k |E′| constraints:

k
∑

c=1

xq,c = f(q) ∀q ∈ Q (15)

xu′,c + xv′,c ≤ 1 ∀c ∈ K ∀{u′, v′} ∈ E′ (16)

See Figure 4 for an example. It is easy to see that there exists a proper
vertex colouring of G = (V,E) with k colours, if and only if there exists a
multicolouring of a reversible clique partition (Q,E′) of G with k colours,
which exists if and only if the integer programming formulation has a feasible
solution for the given instance. When a graph has only a trivial reversible
clique partition, this formulation is reduced to the standard formulation. It
thus remains NP-Complete to decide, if there exists a multicolouring of G′

with f(q) using k colours. Nevertheless, the proposed formulation breaks
some symmetries inherent in the standard vertex colouring formulation,
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Fig. 4: The standard and the proposed encoding of a particular colouring of the
graph from Figure 5:

Vertex Colour
1 2 3 4 5 6 7

Math1 1 0 0 0 0 0 0
Math2 0 1 0 0 0 0 0
Math3 0 0 1 0 0 0 0
Math4 0 0 0 1 0 0 0
Algo

1
0 0 0 0 1 0 0

Algo
2

0 0 0 0 0 1 0
Algo

3
0 0 0 0 0 0 1

Phy 1 0 0 0 0 0 0

(a) The Standard Encoding

Partition Colour
1 2 3 4 5 6 7

Math′ 1 1 1 1 0 0 0
Algo′ 0 0 0 0 1 1 1
Phy′ 1 0 0 0 0 0 0

(b) The Proposed Encoding

which assigns unique colours (or “labels”) to individual vertices. If there
was a trivial integer programming solver, using neither bounding, nor cuts,
this formulation should reduce its search space and run time by the factor
of:

∏

q∈Q

|q|!

when compared to the standard formulation of Section 2.1. Although it is
much more difficult to predict run times in modern integer programming
solvers, it is obvious that there are k(|V | − |Q|) fewer variables, in the
proposed formulation than in the standard one. It seems that the number of
constraints is also reduced, often by more than k(|V |−|Q|), without making
the constraint matrix considerably denser. Hence, reduction in run time of
the order of |Q| / |V | could perhaps be expected. For empirical results, see
Section 5.

4 An Application in Course Timetabling

In general, a comparison of formulations of graph colouring is non-trivial.
Both encodings based on independent sets and representatives introduce
less symmetry1 than the standard formulation introduced in Section 2.1 or

1 When we address the question of reducing or breaking symmetry below, the statements
hold, when symmetry is thought of as the number of solutions of the instance of
integer programming with the best possible cost, corresponding to, in some sense,
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binary encoding. Although they neatly partition the set of vertices, without
assigning unique labels to individual partitions, their merits are hard to
quantify, as any empirical results are dependent on a particular implemen-
tation of separation and pricing routines, which have not been extensively
studied thus far. Another important aspect is extensibility of the various
formulations of graph colouring. Many real-world applications necessitate
formulation of complex measures of the quality of feasible solutions (“key
performance indicators”), which seem to be hard to formulate using an ex-
ponential number of variables representing independent sets (Mehrotra &
Trick, 1996; Hansen et al., 2005) or using the binary encoding of Lee (2002).
One such application arises in a number of universities (Burke, Werra, &
Kingston, 2004): course timetabling.

In educational timetabling, considerable resources can be wasted by low
utilisation of teaching space (Beyrouthy et al., 2008). Specific timetabling
problems vary widely from institution to institution. Most problems, how-
ever, share a common model:

– set E of events is given, together with a subset of its powerset A, where
for all distinct “enrolments” (or “conflict groups” or “curricula’ ’) a ∈ A,
events e ∈ a cannot take place at the same time

– assignment of events to |P | time periods is desired, such that all distinct
enrolments are honoured and there are at most |R| events taking place
at one period, where |P | is the number of periods per week and |R| is
the number of available rooms.

This model is, indeed, a straightforward application of |R|-bounded |P |-
colouring. In the graph to be coloured (the “conflict graph”), vertices rep-
resent events, two vertices are adjacent if the corresponding events are in-
cluded in a single enrolment, and assignment of periods to events is repre-
sented by assignment of |P | colours to |E| vertices, such that adjacent ver-
tices are assigned different colours and each colour is used at most |R| times.
For an illustrative example, see Figure 5. For further graph-theoretical foun-
dations, see Handbook of Graph Theory (Gross & Yellen, 2004), especially
Section 5.6 (Burke et al., 2004). The most rigorous studies of integer pro-
gramming formulations of this model, including competitive branch-and-cut
implementations, are by Avella and Vasil’ev (2005) and Méndez-Dı́az and
Zabala (2008). For other recent research directions, see Burke and Petro-
vic (2002). However, it seems obvious that this model is rather removed
from the needs of real-life applications, although given the complexity of
vertex colouring, where the present-best solvers have difficulties with dense
instances on 125 vertices (Zabala & Méndez-Dı́az, 2006), it also presents an
interesting challenge.

a single configuration. The assignment of colours is irrelevant, for example, as
long as we are given the appropriate vertex-partition. Presumably, the statements
could also hold for other definitions of symmetry as well.
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Fig. 5: An example from timetabling. Imagine one student takes Algorithms and
Mathematics (with three and four lectures per week), and another one takes Al-
gorithms and Physics (with a single lecture per week); no two lectures attended
by one student can take place at the same time.

The corresponding reversible clique partition G′ = (Q,E′):
Q = {Phy′,Algo′,Math′}, E′ = {{Math′,Algo′}, {Algo′,Phy′}}

Phy′Algo′Math′

The original conflict graph G = (V,E):
V = {Phy,Algo

1
,Algo

2
,Algo

3
,Math1,Math2,Math3,Math4}

E = {{u, v} | u, v ∈ V, u 6= v} \ {{Phy,Math1}, {Phy,Math2},
{Phy,Math3}, {Phy,Math4}}

Phy

Algo
1

Algo
2

Algo
3

Math1 Math2

Math3Math4

In this paper, we use a model of course timetabling proposed by Schaerf
and Di Gaspero (2003, 2006) at the University of Udine. In Udine Course
Timetabling, the basic model is extended so that:

– events are grouped into disjoint sets, called courses, with events of one
course taking place at different times and being freely interchangeable

– only important distinct enrolments, or non-disjoint sets of courses pre-
scribed to various groups of students, are identified

– capacities of individual classrooms and enrolments in individual courses
are also given, and assignment of events to rooms as well as periods is
desired, minimising value of an objective function

What makes the extension more difficult (by orders of magnitude) than
the basic model, however, is the objective function, consisting of a linear
combination of three key performance indicators:

– the number of students left without a seat at an event, summed across
all events

– the difference between the prescribed minimum number of distinct days
of instruction for a course and the actual number of distinct days, when
events of the course are held, summed across all courses, where the
difference is positive
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– the number of events occurring outside of a continuous block of two or
more events in a timetable for an important distinct enrolment, summed
across all important distinct enrolments

Notice that the third key performance indicator essentially consists of the
sum of the number of breaks in individual timetables of individual students
or groups of students, plus the number of single courses on a single day in
the timetables. Its modelling proves to be very difficult (Burke, Mareček,
Parkes, & Rudová, 2008) and the present best solvers yield “poor results”
(Avella & Vasil’ev, 2005). See also Schimmelpfeng and Helber (2007) for
another example of a timetabling problem with a number of soft-constraints,
together with an interesting integer programming formulation.

In a further extension of the basic model, not studied in this paper, one
relaxes also the colouring component. Vertices of an edge-weighted conflict
graph then have to be partitioned into |P | disjoint subsets such that the
sum of weights attached to edges with both end-points in a single subset
is minimised (Kiaer & Yellen, 1992). The weight of an edge {e1, e2} ∈ E
can be determined, for instance, by the number of students enrolled in
both events e1 and e2. Obviously, if the conflict graph is |P |-colourable, a
proper colouring is found. Such a model is employed, for instance, at Purdue
University (Rudová & Murray, 2003; Murray, Müller, & Rudová, 2007).

4.1 Notation for Course Timetabling

In order to present timetabling applications of the proposed formulation
of graph colouring, we have to introduce some notation. In the context of
course timetabling, it is customary to refer to vertices as events and colours
as periods. In addition to a period, each event is assigned also a room, and
there can be, at most, a given number of events taking place at each period.
Using this convention and the notation presented in Table 2, the standard
integer programming formulation of course timetabling is written as:

Tp,r,e =

{

1 if event e is taught in room r at period p

0 otherwise
(17)
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Table 2: The notation used in our integer programming formulation of Udine
Course Timetabling.

R set of rooms
Capacity

r
the subset of periods pertaining to day d

P set of periods
D set of days
Periodsd the subset of periods pertaining to day d

C set of courses
MinDays

c
the recommended minimum number of days
of instruction for course c

Studentsc number of students enrolled in course c

E set of events
Ec the subset of events pertaining to course c

T set of teachers
Teachest the subset of courses taught by teacher t
U set of identifiers of distinct enrolments
HasCu the subset of courses pertaining to curriculum u

∑

r

∑

p

Tp,r,e = 1 ∀ events e ∈ E (18)

∑

e

Tp,r,e ≤ 1 ∀ periods p ∈ P ∀ rooms r ∈ R (19)

∑

r

∑

e∈c

Tp,r,e ≤ 1 ∀ periods p ∈ P ∀ courses c ∈ C

(20)
∑

r

∑

c∈Teachest

∑

e∈c

Tp,r,e ≤ 1 ∀ periods p ∈ P ∀ teachers t ∈ T

(21)
∑

r

∑

c∈HasCu

∑

e∈c

Tp,r,e ≤ 1 ∀ periods p ∈ P ∀ curricula u ∈ U

(22)

This corresponds to the standard formulation of graph colouring in-
troduced in Section 2.1. Constraints (18) ensure each event is assigned a
time-place slot and constraints (19) ensure there is at most one event tak-
ing place in a given room at a period. Finally, the packing-type constraints
(20)–(22) stipulate there should be no conflicts. Notice that constraints (22)
make constraints (20) redundant, unless there are courses not included in
any enrolment. In a similar spirit, the formulation introduced in Section 3
can be written, with courses as supernodes, as follows:
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Tp,r,c =

{

1 if some event of course c is taught in room r at period p

0 otherwise

(23)

∑

r

∑

p

Tp,r,c = |Ec| ∀ courses c ∈ C (24)

∑

c

Tp,r,c ≤ 1 ∀ periods p ∈ P ∀ rooms r ∈ R (25)

∑

r

Tp,r,c ≤ 1 ∀ periods p ∈ P ∀ courses c ∈ C (26)

∑

r

∑

c∈Teachest

Tp,r,c ≤ 1 ∀ periods p ∈ P ∀ teachers t ∈ T (27)

∑

r

∑

c∈HasCu

Tp,r,e ≤ 1 ∀ periods p ∈ P ∀ curricula u ∈ U (28)

What makes real-life course timetabling vastly more difficult than this
formulation of graph colouring, are complex measures of the quality of fea-
sible timetables, which are best illustrated by considering an example.

4.2 Formulation of Udine Course Timetabling

Udine Course Timetabling, introduced in Section 4, is an established bench-
mark in the field of course timetabling with complex performance indicators.
Out of the three key performance indicators in Udine Course Timetabling,
the minimisation of the number of students left without a seat can be for-
mulated using a single term in the objective function:

∑

r∈R

∑

p∈P

∑

c∈C
Studentsc>
Capacity

r

Tp,r,c (Studentsc − Capacityr) . (29)

The second key performance indicator, the number of missing days of
instruction summed across all courses, can be formulated using two auxiliary
arrays of decision variables. The first binary array, U, is indexed with courses
and days. Uc,d is set to one, if and only if there are some events of course c
held on day d. The other array of integers, V, is indexed with courses. Value
Vc is bounded below by zero and above by the number of days in a week
and represents the number of days course c is short of its recommended days
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of instruction. This enables addition of the constraints:
∑

r∈R

Tp,r,c ≤ Uc,d ∀c ∈ C ∀d ∈ D ∀p ∈ Periodsd (30)

∑

r∈R

∑

p∈Periodsd

Tp,r,c ≥ Uc,d ∀c ∈ C ∀d ∈ D (31)

Vc +
∑

d∈D

Uc,d ≥ MinDaysc ∀c ∈ C . (32)

The term
∑

c∈CVc can then easily be added to the objective function.
However, it is only the formulation of the third key performance in-

dicator, the penalty incurred by patterns of distinct daily timetables of
individual or groups of students, that proves to have a decisive impact on
the performance of formulations of Udine Course Timetabling (Burke et al.,
2008). The penalisation of patterns in timetables was traditionally formu-
lated “by feature” (Avella & Vasil’ev, 2005). In an auxiliary binary array S
indexed with curricula, days and features, Su,d,f is set to one, if and only if
feature f is present in the timetable for curriculum u and day d. In the case
of the penalisation of events timetabled for a curriculum outside of a single
consecutive block of two or more events per day of four periods, there are
four constraints:

∀u∈U,d∈D,∀〈p1,p2,p3,p4〉∈Periodsd

∑

c∈HasCu

∑

r∈R

(Tp1,r,c−Tp2,r,c) ≤ Su,d,1 (33)

∀u∈U,d∈D,∀〈p1,p2,p3,p4〉∈Periodsd

∑

c∈HasCu

∑

r∈R

(Tp2,r,c−Tp1,r,c −Tp3,r,c) ≤ Su,d,2 (34)

∀u∈U,d∈D,∀〈p1,p2,p3,p4〉∈Periodsd

∑

c∈HasCu

∑

r∈R

(Tp3,r,c−Tp2,r,c −Tp4,r,c) ≤ Su,d,3 (35)

∀u∈U,d∈D,∀〈p1,p2,p3,p4〉∈Periodsd

∑

c∈HasCu

∑

r∈R

(Tp4,r,c−Tp3,r,c) ≤ Su,d,4 (36)

However, considerable improvement in the performance of pattern penal-
isation can be gained by introducing the concept of the enumeration of
patterns. It is obviously possible to pre-compute a set B of n + 2 tuples
w, x1, . . . , xn,m, where n is the number of periods per day, xi is one if there
is instruction in period i of the daily pattern and minus one otherwise, w
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is the penalty attached to the pattern, and m is the sum of positive values
xi in the patterns decremented by one. Burke et al. (2008) have studied a
number of possible applications of this concept, with one of the best per-
forming being the addition of constraints, such as in the case of four periods
per day:

∀〈w,x1,x2,x3,x4,m〉∈B ∀u∈U ∀d∈D ∀〈p1,p2,p3,p4〉∈Periodsd

w (x1

∑

c∈HasCu

∑

r∈R

Tp1,r,c +x2

∑

c∈HasCu

∑

r∈R

Tp2,r,c

+x3

∑

c∈HasCu

∑

r∈R

Tp3,r,c +x4

∑

c∈HasCu

∑

r∈R

Tp4,r,c−m) ≤
∑

s∈Checks

Su,d,s .

(37)

The third term in the objective function is
∑

u∈U

∑

d∈D

∑

s∈Checks Su,d,s.
For further details on formulations of these soft constraints and their impact
on the overall performance, see Burke et al. (2008).

5 Computational Experience

In order to evaluate performance of the new formulation, we have conducted
a number of experiments. We report:

1. the dimensions of reversible clique partitions obtained from graphs in
the standard DIMACS benchmark

2. performance gains on graph colouring instances originating from timetabling,
both from real-life and randomly generated instances of the Udine Course
Timetabling problem

3. performance gains on the the complete instances of Udine Course Timetabling
problem, as compared to the effects of symmetry breaking built into
CPLEX.

All reported results were measured on a desktop PC running Linux, equipped
with two Intel Pentium 4 processors clocked at 3.20 GHz. ILOG CPLEX
version 10.0 integer programming solver was restricted to use only a single
thread on a single processor. Default parameter settings were used, outside
of settings for symmetry breaking described below and settings imposing the
time limit of one hour on run time per instance. DIMACS instances descibed
by Johnson and Trick (1996) were downloaded from the on-line repository2.
Four real-life timetabling instances were taken from the benchmark used
by (Gaspero & Schaerf, 2003, 2006) and eighteen more instances were ob-
tained using a random instance generator3 developed by the authors. Their
dimensions are listed in Table 4. In all instances, each course has one to six
events per week, with the average being three, each teacher teaches one or

2 Available at http://mat.gsia.cmu.edu/COLOR/ (Nov 7, 2007)
3 Available at http://cs.nott.ac.uk/~jxm/timetabling/generator/ (Nov 7, 2007)
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two courses totalling at one to six hours per week, and enrolments consist
of less than ten events per week, on average. All instances were passed to
CPLEX in LP format as generated from sources in Zimpl, the free algebraic
modelling language (Koch, 2004), and are available on-line in Zimpl format.
Instances in LP format, whose total size exceeds 1.3 GB, can be also made
available upon request. Verification of the results is thus possible with freely
available solvers, such as SCIP (Achterberg, 2007).

First, we have obtained reversible clique partions from DIMACS graphs.
To illustrate the effects of pre-processing of the original graph on the size of
the reversible clique partition, in Table 3, we list the sizes first without using
any preprocessing (under Q), as well as after some pre-processing specific
to graph colouring, but not specific to the transformation (under Q′). This
preprocessing included:

– Removal of vertices of degree less than a lower bound on the chromatic
number

– Removal of vertices connected to all other vertices in the graph
– Removal of each vertex u whose neighboughood is a subset of the neigh-

bourhood of another non-adjacent vertex v.

For details of the pre-processing and the source code used, please see the
authors’ website4.

Second, we evaluated performance of the standard formulation of graph
colouring introduced in Section 2.1 and performance of the formulation pro-
posed in Section 3 on the graph colouring component of instances of Udine
Course Timetabling. (The complete constraint set was used, but no objec-
tive function.) Notice (in Section 4.1) that both formulations use the same
amount of information on cliques found in the conflict graph, only expressed
in terms of different decision variables. From the results reported in Table 5,
it seems that with the exception of a single random instance (rand16) and
one heavily constrained real-life instance (udine4), the proposed formulation
performs considerably better.

Next, we compared performance of the formulations of Udine Course
Timetabling, differing only in the formulation of the underlying graph colour-
ing component. Notice that the CPLEX run time necessary to reach opti-
mality was two orders of magnitude higher than in the previous experiment
looking for feasible colouring. Whether the performance gains observed in
the graph colouring component alone would still be manifested, was thus
not clear. As is summarised in Table 6, however, the new formulation again
seems to perform considerably better, reducing CPLEX run times approxi-
mately by factor of four, where it is possible to reach optimum within one
hour using both formulations.

We have also studied effects of symmetry breaking implemented in CPLEX
on performance of both formulations. In all previous experiments, both for-
mulations were run using no built-in symmetry breaking in CPLEX. Table 7
compares these results (denoted -SB) with results obtained with symmetry

4 Available at http://cs.nott.ac.uk/~jxm/colouring/supernodal/ (Nov 7, 2008)
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breaking built-in in CPLEX 10.0 set to aggressive (denoted +SB). Again,
the new formulation using no built-in symmetry breaking performs better
than the standard formulation using aggressive built-in symmetry breaking.

These results are rather encouraging, although the performance gains
are limited only to graphs, where it is possible to obtain a reversible clique
partition of V , whose cardinality is considerably less than |V |. This is not
the case in triangle-free graphs and many dense random graphs, often used
in benchmarking general graph colouring procedures. In many real-world
applications, the graphs seem to be, however, highly structured, and the
structure is worth exploiting.

6 Conclusions and Further Work

We have presented a transformation of graph colouring to graph multi-
colouring, making it possible to use the standard formulation of graph mul-
ticolouring as a formulation of graph colouring. This can also be viewed as
the supernodal integer programming formulation of graph colouring, where
supernode of George and McIntyre (1978) is the complete subset of vertices
of a graph where each two vertices have the same neighbours outside of
the subset. It remains to be seen, if the transformation could be used in
conjuction with other formulations of multicolouring.

This transformation can be seen as an example of symmetry breaking.
Although there has been recently a considerable interest (Margot, 2002,
2003, 2007; Ostrowski, Linderoth, Rossi, & Smriglio, 2007; Kaibel, Pein-
hardt, & Pfetsch, 2007; Kaibel & Pfetsch, 2008) in the development of meth-
ods for automated symmetry breaking, these methods have so far not been
competitive in solving graph colouring problems (Kaibel & Margot, 2007).
Compared to the standard formulation with symmetry breaking embed-
ded in ILOG CPLEX 10.0, the industrial standard in integer programming
solvers, our reformulation without the embedded symmetry breaking en-
abled offers performance, which is improved by a factor of three. It would
appear that application-specific formulations breaking symmetries will be
necessary, at least until performance of automated symmetry breaking im-
proves.

Additionally, we have briefly surveyed seven other integer programming
formulations of vertex colouring, proposed in the literature. This seems to be
the first time such a survey has been attempted. Generally speaking, in non-
trivial applications of graph colouring, the performance of various integer
programming formulations of the underlying graph colouring components
seems to be highly dependent on their suitability for application-specific key
performance indicators. Nevertheless, a proper computational comparison of
integer programming formulations of graph colouring would be most inter-
esting – and remains to be conducted. Another interesting research direction
might explore hybridisation, using one encoding in an integer programming
formulation, but multiple encodings for cut generation.
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Finally, the proposed formulation seems very convenient in timetabling
applications. Compared to many formulations necessitating column gener-
ation, it is easy to extend this formulation to accommodate complex key
performance indicators (“soft constraints”). We have demonstrated its per-
formance on the example of Udine Course Timetabling, a benchmark prob-
lem in timetabling with soft constraints proposed by Gaspero and Schaerf
(2003). Using ILOG CPLEX 10.0, we have been able to arrive at the previ-
ously unknown optimum for instance Udine1 within 143 seconds on a single
processor. Such results give a new hope that real-life instances of course
timetabling could be solved within provably small bounds of optimality.
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Crescenzi, P., Kann, V., Halldórsson, M., Karpinski, M., & Woeginger, G.
(2005). A compendium of NP optimization problems. (Available on-
line.)

Duff, I. S., & Reid, J. K. (1983). The multifrontal solution of indefinite
sparse symmetric linear. ACM Trans. Math. Softw., 9 (3), 302–325.

Durán, G., Lin, M. C., Mera, S., & Szwarcfiter, J. L. (2006). Algorithms for
clique-independent sets on subclasses of circular-arc graphs. Discrete
Appl. Math., 154 (13), 1783–1790.

Durán, G., Lin, M. C., & Szwarcfiter, J. (2002). On clique-transversals and
clique-independent sets. Ann. Oper. Res., 116 , 71–77. Available from
http://publicaciones.dc.uba.ar/Publications/2002/DLS02

Eisenstat, S. C., Elman, H. C., Schultz, M. H., & Sherman, A. H. (1984).
The (new) Yale Sparse Matrix Package. In Elliptic problem solvers, II
(Monterey, Calif., 1983) (pp. 45–52). Orlando, FL: Academic Press.

Feige, U., & Kilian, J. (1998). Zero knowledge and the chromatic number.
J. Comput. Syst. Sci., 57 (2), 187–199. (Preliminary version appeared
in IEEE CoCo’96.)

Fischetti, M., & Williamson, D. P. (Eds.). (2007). Integer programming
and combinatorial optimization, 12th international conference, IPCO,
Ithaca, NY, June 25-27, 2007, Proceedings (Vol. LNCS 4513). New
York: Springer.

Galinier, P., & Hertz, A. (2006). A survey of local search methods for graph
coloring. Comput. Oper. Res., 33 (9), 2547–2562.

Gallai, T. (1968). On directed paths and circuits. In P. Erdös & G. Katobna
(Eds.), Theory of graphs (pp. 115–118). New York, NY: Academic
Press.

Garey, M. R., & Johnson, D. S. (1976). The complexity of near-optimal
graph coloring. J. ACM , 23 (1), 43–49.

Gaspero, L. D., & Schaerf, A. (2003). Multi neighborhood local search
with application to the course timetabling problem. In E. K. Burke
& P. D. Causmaecker (Eds.), Practice and theory of automated
timetabling (Vol. LNCS 2740, pp. 262–275). Berlin: Springer.

Gaspero, L. D., & Schaerf, A. (2006). Neighborhood portfolio approach
for local search applied to timetabling problems. J. Math. Model.
Algorithms , 5 (1), 65–89.

Gebremedhin, A. H., Manne, F., & Pothen, A. (2005). What color is
your Jacobian? Graph coloring for computing derivatives. SIAM Rev.,



Supernodal Formulation of Graph Colouring 25

47 (4), 629–705.
George, A., & McIntyre, D. R. (1978). On the application of the minimum

degree algorithm to finite element systems. SIAM J. Numer. Anal.,
15 (1), 90–112.

Gross, J. L., & Yellen, J. (Eds.). (2004). Handbook of graph theory. London,
UK: CRC.
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Table 3: Dimensions of graphs induced by reversible clique partitions ob-
tained from DIMACS instances (G), with (Q′) and without (Q) pre-
processing. Empty spaces indicate graphs trivial to colour.

Instance Original Graph G Rev. Cliq. Part. Q Rev. Cliq. Part. Q′

Vert. Edges Vert. Edges Vert. Edges
1-FullIns 3 30 100 29 89
1-FullIns 4 93 593 92 561 25 85
1-FullIns 5 282 3247 281 3152 61 358
1-Insertions 4 67 232 67 232 60 208
1-Insertions 5 202 1227 202 1227 202 1227
1-Insertions 6 607 6337 607 6337 600 6301
2-FullIns 3 52 201 51 186
2-FullIns 4 212 1621 211 1566 16 65
2-FullIns 5 852 12201 851 11986 93 582
2-Insertions 3 37 72 37 72
2-Insertions 4 149 541 149 541 149 541
2-Insertions 5 597 3936 597 3936 597 3936
3-FullIns 3 80 346 79 327 17 65
3-FullIns 4 405 3524 404 3440 22 114
3-FullIns 5 2030 33751 2029 33342 94 768
3-Insertions 3 56 110 56 110
3-Insertions 4 281 1046 281 1046 281 1046
3-Insertions 5 1406 9695 1406 9695 1395 9642
4-FullIns 3 114 541 113 518
4-FullIns 4 690 6650 689 6531
4-FullIns 5 4146 77305 4145 76610 195 1769
4-Insertions 3 79 156 79 156
4-Insertions 4 475 1795 475 1795 475 1795
5-FullIns 3 154 792 153 765 39 229
5-FullIns 4 1085 11395 1084 11235 121 1037
abb313GPIA 1557 53356 1557 53356 853 16093
anna 138 493 125 437
ash331GPIA 662 4181 662 4181 661 4180
ash608GPIA 1216 7844 1216 7844 1215 7843
ash958GPIA 1916 12506 1916 12506 1915 12505
david 87 406 74 322
DSJC1000.1 1000 49629 1000 49629 1000 49629
DSJC1000.5 1000 249826 1000 249826 1000 249826
DSJC1000.9 1000 449449 1000 449449 1000 449449
DSJC125.1 125 736 125 736 125 736
DSJC125.5 125 3891 125 3891 125 3891
DSJC125.9 125 6961 125 6961 125 6961
DSJC250.1 250 3218 250 3218 250 3218
DSJC250.5 250 15668 250 15668 250 15668
DSJC250.9 250 27897 250 27897 250 27897
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Table 3: Dimensions of graphs induced by reversible clique partitions ob-
tained from DIMACS instances. (Continued.)

Instance Original Graph G Rev. Cliq. Part. Q Rev. Cliq. Part. Q′

Vert. Edges Vert. Edges Vert. Edges
DSJC500.1 500 12458 500 12458 500 12458
DSJC500.5 500 62624 500 62624 500 62624
DSJC500.9 500 112437 500 112437 500 112437
DSJR500.1 500 3555 480 3341
DSJR500.1c 500 121275 500 121275 281 38166
DSJR500.5 500 58862 497 58218 483 56618
ear 190 4793 185 4758 172 4636
fpsol2.i.1 496 11654 427 5108 107 2454
fpsol2.i.2 451 8691 395 5657 154 2705
fpsol2.i.3 425 8688 369 5658 153 2665
games120 120 638 119 629
hec 81 1363 81 1363 75 1277
homer 561 1628 503 1376
huck 74 301 54 179
inithx.i.1 864 18707 732 11140
inithx.i.2 645 13979 539 9317 50 544
inithx.i.3 621 13969 521 9427 49 474
jean 80 254 67 177
latin square 10 900 307350 900 307350 900 307350
le450 15a 450 8168 450 8168 407 7802
le450 15b 450 8169 450 8169 410 7824
le450 15c 450 16680 450 16680 450 16680
le450 15d 450 16750 450 16750 450 16750
le450 25a 450 8260 450 8260 264 5840
le450 25b 450 8263 450 8263 294 6240
le450 25c 450 17343 450 17343 435 17096
le450 25d 450 17425 450 17425 433 17106
le450 5a 450 5714 450 5714 450 5714
le450 5b 450 5734 450 5734 450 5734
le450 5c 450 9803 450 9803 450 9803
le450 5d 450 9757 450 9757 450 9757
miles1000 128 3216 123 3049
miles1500 128 5198 104 3486
miles250 128 387 117 341
miles500 128 1170 115 1065
miles750 128 2113 122 2011
mug100 1 100 166 84 118
mug100 25 100 166 83 115
mug88 1 88 146 75 107
mug88 25 88 146 72 98
mulsol.i.1 197 3925 166 2274
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Table 3: Dimensions of graphs induced by reversible clique partitions ob-
tained from DIMACS instances. (Continued.)

Instance Original Graph G Rev. Cliq. Part. Q Rev. Cliq. Part. Q′

Vert. Edges Vert. Edges Vert. Edges
mulsol.i.2 188 3885 158 2458 35 337
mulsol.i.3 184 3916 155 2504 35 336
mulsol.i.4 185 3946 155 2504 36 360
mulsol.i.5 186 3973 157 2549 36 356
myciel2
myciel3 11 20 11 20 11 20
myciel4 23 71 23 71 23 71
myciel5 47 236 47 236 47 236
myciel6 95 755 95 755 95 755
myciel7 191 2360 191 2360 191 2360
qg.order100 10000 990000 10000 990000 10000 990000
qg.order30 900 26100 900 26100 900 26100
qg.order40 1600 62400 1600 62400 1600 62400
qg.order60 3600 212400 3600 212400 3600 212400
queen10 10 100 1470 100 1470 100 1470
queen11 11 121 1980 121 1980 121 1980
queen12 12 144 2596 144 2596 144 2596
queen13 13 169 3328 169 3328 169 3328
queen14 14 196 4186 196 4186 196 4186
queen15 15 225 5180 225 5180 225 5180
queen16 16 256 6320 256 6320 256 6320
queen5 5 25 160 25 160 25 160
queen6 6 36 290 36 290 36 290
queen7 7 49 476 49 476 49 476
queen8 12 96 1368 96 1368 96 1368
queen8 8 64 728 64 728 64 728
queen9 9 81 1056 81 1056 81 1056
school1 385 19095 376 18937 353 18799
school1 nsh 352 14612 344 14486 322 14343
wap01a 2368 110871 1594 73666 1594 73666
wap02a 2464 111742 1594 72498 1594 72498
wap03a 4730 286722 3716 224640 3716 224640
wap04a 5231 294902 3814 221704 3814 221704
wap05a 905 43081 749 35116 746 35102
wap06a 947 43571 741 34012 735 33760
wap07a 1809 103368 1611 91746 1609 91698
wap08a 1870 104176 1628 91140 1627 91122
will199GPIA 701 6772 701 6772 660 5836
zeroin.i.1 211 4100 182 2131
zeroin.i.2 211 3541 188 2187
zeroin.i.3 206 3540 183 2186
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Table 4: The dimensions of test instances: numbers of events, occupancy
measured as the number of events divided by the number of available time-
place slots, and dimensions of the constraint matrices produced by formu-
lations of Udine Course Timetabling (variables × constraints, non-zeros in
constaint matrix).

Instance Ev. Occ. Standard (Non-zero) New (Non-zero)
rand01 100 70% 15415× 3194 469.35k 5398× 4176 188.34k
rand02 100 70 15415× 3197 508.63k 5398× 4179 188.38k
rand03 100 70 15415× 3197 522.44k 5398× 4179 199.47k
rand04 200 70 60835× 6447 2.03M 21002× 8444 794.63k
rand05 200 70 60830× 6416 1.94M 20696× 8381 754.97k
rand06 200 70 60830× 6417 2.16M 20696× 8382 814.10k
rand07 300 70 136270× 9799 4.29M 48174× 12907 1.76M
rand08 300 70 136260× 9729 4.19M 47262× 12773 1.69M
rand09 300 70 136255× 9698 4.46M 46806× 12710 1.74M
rand11 100 80 12935× 3296 356.88k 5097× 4406 159.66k
rand12 100 80 12925× 3233 380.59k 4835× 4279 160.43k
rand13 200 80 50835× 6402 1.71M 17652× 8399 664.51k
rand14 200 80 50840× 6427 1.56M 17908× 8456 623.57k
rand15 200 80 50830× 6371 1.49M 17396× 8336 606.71k
rand16 300 80 113755× 9627 3.92M 39231× 12639 1.49M
rand17 300 80 113770× 9726 3.64M 40374× 12834 1.48M
rand18 300 80 113760× 9650 3.66M 39612× 12694 1.46M
udine1 207 86 50350× 4297 963.38k 11756× 5393 280.62k
udine2 223 93 54440× 5626 1.30M 13452× 6889 378.48k
udine3 252 97 66940× 7883 2.20M 16036× 9252 579.15k
udine4 250 100 64200× 12060 3.70M 15505× 13678 915.37k
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Table 5: The performance of the standard and the proposed (New) formu-
lation of vertex colouring, measured in run times of CPLEX and numbers
of iterations performed with no built-in symmetry breaking (-0). The last
column lists ratios of CPLEX run times.

Instance Std-0 (Its.) New-0 (Its.) Std-0
New-0

rand01 2.85s 1635 0.90s 931 3.16
rand02 2.99s 1666 0.94s 1106 3.18
rand03 9.92s 5792 1.05s 1045 9.45
rand04 99.48s 26317 5.18s 2802 19.20
rand05 73.72s 19802 33.49s 17467 2.20
rand06 83.78s 22537 40.35s 19836 2.08
rand07 216.08s 35821 86.44s 25541 2.50
rand08 59.70s 10760 43.45s 13342 1.37
rand09 127.19s 22155 98.32s 25782 1.29
rand11 3.80s 1761 1.51s 1194 2.52
rand12 4.55s 2005 2.31s 1377 1.97
rand13 95.67s 22851 47.94s 18957 2.00
rand14 45.25s 10544 6.64s 2629 6.81
rand15 30.77s 6799 6.89s 2685 4.47
rand16 114.32s 11603 275.44s 51518 0.42
rand17 251.15s 33185 144.93s 36949 1.73
rand18 160.25s 21686 138.04s 34461 1.16
udine1 23.23s 8082 4.45s 3370 5.22
udine2 14.51s 4749 10.04s 4826 1.45
udine3 83.41s 16807 17.25s 11698 4.84
udine4 144.49s 30655 145.99s 30655 0.99
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Table 6: The performance of two formulations of Udine Course Timetabling,
differing only in the formulation of the underlying graph colouring compo-
nent: run times of CPLEX or gaps remaining after 1 hour of solving and
numbers of iterations performed with no built-in symmetry breaking (-0).
The last column lists ratios of CPLEX run times, where optimality was
reached within 1 hour using both formulations.

Instance Std-0 (Its.) New-0 (Its.) Std-0
New-0

rand01 385.59s 180854 84.42s 43737 4.57
rand02 290.09s 71537 72.42s 34296 4.01
rand03 443.95s 148961 59.99s 23310 7.40
rand04 gap 0.24% 419910 1242.50s 210104
rand05 gap 4.15% 360868 1194.71s 250148
rand06 gap 8.33% 299998 1257.72s 247075
rand07 gap 89.71% 234087 gap 90.11% 242978
rand08 gap 99.85% 237243 gap 99.90% 312158
rand09 gap 93.97% 199619 gap 95.44% 263820
rand10 285.91s 66842 70.17s 27416 4.07
rand11 211.71s 68244 61.32s 31738 3.45
rand12 337.31s 129788 84.16s 48401 4.01
rand13 gap 0.24% 431148 884.60s 175513
rand14 gap 6.47% 322073 1356.97s 320129
rand15 gap 1.74% 303518 1166.50s 280722
rand16 gap 66.44% 175766 gap 67.19% 417706
rand17 gap 94.15% 239576 gap 94.06% 293519
rand18 gap 90.57% 251822 gap 49.34% 345817
udine1 1175.40s 166539 237.12s 104221 4.96
udine2 gap 100.00% 639068 gap 100.00% 3318838
udine3 gap 99.31% 367505 gap 59.59% 2000062
udine4 gap 99.69% 220364 gap infinite 962856
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Table 7: The performance of two formulations of Udine Course Timetabling,
differing only in the formulation of the underlying graph colouring com-
ponent, and effects of disabling (+0) the built-in symmetry breaking in
CPLEX, or setting it to very aggressive (+3): run times of CPLEX or gaps
remaining after 1 hour of solving.

Instance Std+0 New+0 Std+3 New+3 Std+3
New-0

rand01 385.59s 84.42s 165.52s 76.45s 1.96
rand02 290.09s 72.42s 343.33s 65.51s 4.74
rand03 443.95s 59.99s 298.52s 72.06s 4.98
rand04 gap 0.24% 1242.50s gap 0.24% 1356.63s
rand05 gap 4.15% 1194.71s gap 4.15% 1107.12s
rand06 gap 8.33% 1257.72s gap 8.33% 1162.52s
rand07 gap 89.71% gap 90.11% gap 89.71% gap 90.11%
rand08 gap 99.85% gap 99.90% gap 99.85% gap 99.90%
rand09 gap 93.97% gap 95.44% gap 93.97% gap 95.44%
rand10 285.91s 70.17s 321.51s 81.12s 4.58
rand11 211.71s 61.32s 207.41s 56.79s 3.38
rand12 337.31s 84.16s 253.75s 84.64s 3.02
rand13 gap 0.24% 884.60s gap 1.85% 795.50s
rand14 gap 6.47% 1356.97s gap 6.47% 1197.39s
rand15 gap 1.74% 1166.50s gap 30.43% 1051.74s
rand16 gap 66.44% gap 67.19% gap 66.44% gap 67.19%
rand17 gap 94.15% gap 94.06% gap 94.15% gap 94.06%
rand18 gap 90.57% gap 49.34% gap 90.57% gap 92.25%
udine1 1175.40s 237.12s 1247.33s 142.84s 5.26
udine2 gap 100.00% gap 100.00% gap 100.00% gap 100.00%
udine3 gap 99.31% gap 59.59% gap 99.33% gap 70.04%
udine4 gap 99.69% gap infinite gap infinite gap infinite


