Skip to main content
Log in

A least-squares minimum-cost network flow algorithm

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Node-arc incidence matrices in network flow problems exhibit several special least-squares properties. We show how these properties can be leveraged in a least-squares primal-dual algorithm for solving minimum-cost network flow problems quickly. Computational results show that the performance of an upper-bounded version of the least-squares minimum-cost network flow algorithm with a special dual update operation is comparable to CPLEX Network and Dual Optimizers for solving a wide range of minimum-cost network flow problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronson, J., Barr, R., Helgason, R., Kennington, J., Loh, A., & Zaki, H. (1985). The projective transformation algorithm of Karmarkar: a computational experiment with assignment problem (Technical Report 85-OR-3). Department of operations research, Southern Methodist University, Dallas, TX.

  • Barnes, E., Chen, V., Gopalakrishnan, B., & Johnson, E. L. (2002). A least squares primal-dual algorithm for solving linear programming problems. Operations Research Letters, 30, 289–294.

    Article  Google Scholar 

  • Beasly, J. E. OR-Library. Management School, Imperial College, London, http://mscmga.ms.ic.ac.uk/info.html.

  • Bertsekas, D. P., & Tseng, P. (1988a). The relax codes for linear minimum cost network flow problems. Annals of Operation Research, 1(4), 125–190.

    Article  Google Scholar 

  • Bertsekas, D. P., & Tseng, P. (1988b). Relaxation methods for minimum cost ordinary and generalized network flow problems. Operations Research, 36(4), 93–114.

    Article  Google Scholar 

  • Bertsekas, D. P., & Tseng, P. (1994). RELAX-IV: a faster version of the RELAX code for solving minimum cost flow problems (MIT Technical Report, LIDS-P-2276).

  • Bienstock, D. (2002). Potential Function Methods for Approximately Solving Linear Programming Problems: Theory and Practice. Kluwer’s International Series in Operations Research & Management Science.

    Google Scholar 

  • Bjorck, A. (1987). Least square methods. Working Paper. Department of Mathematics, Linkoping University, S-581 83 Linkoping, Sweden.

  • Chvátal, V. (1983). Linear programming. New York: Freeman.

    Google Scholar 

  • Cunningham, W. H. (1979). Theoretical properties of the network simplex method. Mathematics of Operations Research, 4, 196–208.

    Article  Google Scholar 

  • Dolan, Elizabeth D., & More, Jorge J. (2002). Benchmarking optimization software with performance profiles. Mathematical Programming, 9(22), 201–213.

    Article  Google Scholar 

  • Fong, C. O., & Srinivasan, V. (1977). Determining all nondegenerate shadow prices for the transportation problem. Transportation Science, 11(3), 199–222.

    Article  Google Scholar 

  • Frangioni, A., & Manca, A. (2006). A computational study of cost reoptimization for min cost flow problems. INFORMS Journal on Computing, 18(3), 61–70.

    Article  Google Scholar 

  • Geranis, G., Paparrizos, K., & Sifaleras, A. (2009). On the computational behavior of a dual network exterior point simplex algorithm for the minimum cost network flow problem. Computers and Operations Research, 36(4), 1176–1190.

    Article  Google Scholar 

  • Goldberg, A. V., & Kharitonov, A. M. (1993). Implementing scaling push-relabel algorithms for the minimum-cost flow problem. Network, Flows and Matching: First DIMACS Implementation Challenge (pp. 157–198).

  • Goldberg, A. V. (1997). An efficient implementation of a scaling minimum-cost flow algorithm. Journal of Algorithms, 2, 1–29.

    Article  Google Scholar 

  • Gopalakrishnan, B. (2002). Least-squares methods in linear programming. Ph.D. Thesis, Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta.

  • Grigoriadis, M. D. (1986). An efficient implementation of the network simplex method. Mathematical Programming Study, 26, 83–111.

    Google Scholar 

  • Kennington, J. L., & Helgason, R. V. (1980). Algorithms for network programming. New York: Wiley.

    Google Scholar 

  • Klingman, D., Napier, A., & Stutz, J. (1974). NETGEN—a program for generating large scale capacitated assignment, transportation, and minimum cost flow networks. Management Science, 20, 814–820.

    Article  Google Scholar 

  • Kong, S. (2007). Linear programming algorithms using least-squares method. Ph.D. Thesis, ISYE, Georgia Institute of Technology, Atlanta.

  • Lawson, C. L., & Hanson, R. J. (1974). Solving least-squares problems. New York: Prentice-Hall.

    Google Scholar 

  • Leichner, S. L., Dantzig, G. B., & Davis, J. W. (1993). A strictly improving linear programming phase I algorithm. Annals of Operation Research, 47, 409–430.

    Article  Google Scholar 

  • Orlin, J. (1988). A faster strongly polynomial minimum cost flow algorithm. In Proceedings of the twentieth annual ACM symposium on theory of computing (pp. 377–387).

    Chapter  Google Scholar 

  • Orlin, J. (1993). A faster strongly polynomial minimum cost flow algorithm. Operations Research, 41(2), 338–350.

    Article  Google Scholar 

  • Orlin, J. (1997). A polynomial time primal network simplex algorithm for minimum cost flows. Mathematical Programming, 78, 109–129.

    Google Scholar 

  • Portugal, L., Resende, M., Veiga, G., Patrício, J., & Júdice, J. (2000). A truncated primal-infeasible dual-feasible network interior point method. Networks, 35, 91–108.

    Article  Google Scholar 

  • Portugal, L., Resende, M., Veiga, G., Patrício, J., & Júdice, J. (2008). Fortran subroutines for network flow optimization using an interior point algorithm. Pesquisa Operacional, 28, 243–261.

    Article  Google Scholar 

  • Powell, W. B. (1989). A review of sensitivity results for linear networks and a new approximation to reduce the effects of degeneracy. Transportation Science, 23(4), 231–243.

    Article  Google Scholar 

  • Ramakrishnan, K., Karmarkar, N., & Kamath, A. (1993). An approximate dual projective algorithm for solving assignment problems. In Network flow and matching: first DIMAC implementation challenge. DIMAC series in discrete mathematics and theoretical computer science (vol. 12, pp. 431–451).

    Google Scholar 

  • Resende, M., & Veiga, G. (1993). Computing the projection in an interior point algorithm: an experimental comparison. Investigacion Operativa, 3, 81–92.

    Google Scholar 

  • Schwartz, J., Steger, A., & WeiÃül, A. (2005). Fast algorithms for weighted bipartite matching. Lecture Notes in Computer Science, 3503, 476–487.

    Article  Google Scholar 

  • Tardos, E. (1985). A strongly polynomial minimum cost circulation algorithm. Combinatorica, 5(3), 247–255.

    Article  Google Scholar 

  • Tardos, E. (1986). A strongly polynomial algorithm to solve combinatorial linear programs. Operations Research, 34(2), 250–256.

    Article  Google Scholar 

  • Wang, I. L. (2003). Shortest paths and multicommodity network flows. Ph.D. Thesis, ISYE, Georgia Institute of Technology, Atlanta.

  • Wayne, K. (1999). A polynomial combinatorial algorithm for generalized minimum cost flow. In Proceedings of the 31th annual ACM symposium on theory of computing (pp. 11–18).

    Google Scholar 

  • MP-TESTDATA: A collection of test data for various mathematical programming problems. http://elib.zib.de/pub/Packages/mp-testdata/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunghyun Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalakrishnan, B., Kong, S., Barnes, E. et al. A least-squares minimum-cost network flow algorithm. Ann Oper Res 186, 119–140 (2011). https://doi.org/10.1007/s10479-011-0858-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0858-7

Keywords

Navigation