Skip to main content
Log in

Questionnaire design improvement and missing item scores estimation for rapid and efficient decision making

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In unconventional emergency decision making process using the analytic hierarchy process (AHP), it is important to quickly collect and process experts’ opinions to make a rapid decision. Questionnaire survey is a commonly used way to collect opinions and views in the AHP. However, many factors such as tedious design format, redundant content, and long length, may lead to inconsistent comparison matrix for the decision problem. Invalid or bad results of a questionnaire survey may cause the decision makers to make wrong decision. Furthermore, in the AHP, the score items for a comparison matrix in a questionnaire increase drastically if there are more comparisons, which result in longer survey. In this paper, a scale format is used to design the score items for a comparison matrix in questionnaire survey. Besides, an induced bias matrix model (IBMM) is proposed to estimate the missing item scores of the reciprocal pairwise comparison matrix. The survey questionnaire can be improved according to the importance of score items and emergency degree of the surveyed questions. A numerical example is used to illustrate the proposed method in unconventional emergency decision making. In addition, three cases of this example are analyzed and compared to address the effectiveness and feasibility of the proposed estimation model in the survey questionnaire design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altay, N., & Green, W. G. III (2006). OR/MS research in disaster operations management. European Journal of Operational Research, 175(1), 475–493.

    Article  Google Scholar 

  • Barzilai, J. (1997). Deriving weights from pairwise comparison matrices. Journal of the Operational Research Society, 48, 1226–1232.

    Google Scholar 

  • Bryson, N. (1995). A goal programming method for generating priority vectors. Journal of the Operational Research Society, 46, 641–648.

    Google Scholar 

  • Chiclana, F., Herrera-Viedma, E., & Alonso, S. (2009). A note on two methods for estimating missing pairwise preference values. IEEE Transactions on Systems, Man, and Cybernetics,Part B: Cybernetics, 39, 1628–1633.

    Article  Google Scholar 

  • Chu, A., Kalaba, R., & Springam, K. (1979). A comparison of two methods for determining the weights of belonging to fuzzy sets. Journal of Optimization Theory and Applications, 27, 531–541.

    Article  Google Scholar 

  • Crawford, G., & Williams, C. (1985). A note on the analysis of subjective judgment matrices. Journal of Mathematical Psychology, 29, 387–405.

    Article  Google Scholar 

  • Ergu, D., Kou, G., Peng, Y., & Shi, Y. (2011a). A simple method to improve the consistency ratio of the pair-wise comparison matrix in ANP. European Journal of Operational Research, 213(1), 246–259. doi:10.1016/j.ejor.2011.03.014.

    Article  Google Scholar 

  • Ergu, D., Kou, G., Shi, Y., & Shi, Y. (2011b). Analytic network process in risk assessment and decision analysis. Computers & Operations Research. doi:10.1016/j.cor.2011.03.005.

    Google Scholar 

  • Ergu, D., Kou, G., Peng, Y., Shi, Y., & Shi, Y. (2011c). The analytic hierarchy process: task scheduling and resource allocation in cloud computing environment. Journal of Supercomputing. doi:10.1007/s11227-011-0625-1.

    Google Scholar 

  • Fedrizzi, M., & Giove, S. (2007). Incomplete pairwise comparison and consistency optimization. European Journal of Operational Research, 183(1), 303–313.

    Article  Google Scholar 

  • Hu, Z. H. (2010). Multi-signal cooperative decision for emergency management inspired by immune system. Journal of Computers, 5(9), 1410–1416.

    Google Scholar 

  • Kou, G., & Lou, C. (2010). Multiple factor hierarchical clustering algorithm for large scale Web page and search engine clickstream data. Annals of Operation Research. doi:10.1007/s10479-010-0704-3.

    Google Scholar 

  • Kou, G., Liu, X., Peng, Y., Shi, Y., Wise, M., & Xu, W. (2003). Multiple criteria linear programming to data mining: models, algorithm designs and software developments. Optimization Methods & Software, 18(4), 453–473, Part 2.

    Article  Google Scholar 

  • Kou, G., Peng, Y., Chen, Z., & Shi, Y. (2009). Multiple criteria mathematical programming for multi-class classification and application in network intrusion detection. Information Sciences, 179(4), 371–381.

    Article  Google Scholar 

  • Li, L. F., & Tang, S. M. (2008). An artificial emergency-logistics-planning system for severe disasters. IEEE Intelligent Systems, 23(4), 86–88.

    Article  Google Scholar 

  • Lim, K. H., & Swenseth, S. R. (1993). An iterative procedure for reducing problem size in large scale AHP problems. European Journal of Operational Research, 67, 64–74.

    Article  Google Scholar 

  • Mendonça, D., Beroggi, G. E. G., & Wallace, W. A. (2001). Decision support for improvisation during emergency response operations. International Journal of Emergency Management, 1(1), 30–40.

    Article  Google Scholar 

  • Millet, I., & Harker, P. T. (1990). Globally effective questioning in the analytic hierarchy process. European Journal of Operational Research, 48, 88–97.

    Article  Google Scholar 

  • Özdamar, L., Ekinci, E., & Küçükyazici, B. (2004). Emergency logistics planning in natural disasters. Annals of Operation Research, 129, 217–245.

    Article  Google Scholar 

  • Pelaez, J. I., & Lamata, M. T. (2003). A new measure of consistency for positive reciprocal matrices. Computers & Mathematics With Applications, 46(12), 1839–1845.

    Article  Google Scholar 

  • Peng, Y., Kou, G., Shi, Y., & Chen, Z. (2008). A descriptive framework for the field of data mining and knowledge discovery. International Journal of Information Technology & Decision Making, 7(4), 639–682.

    Article  Google Scholar 

  • Peng, Y., Wang, G., & Wang, H. (2010a). User preferences based software defect detection algorithms selection using MCDM. Information Sciences. doi:10.1016/j.ins.2010.04.019.

    Google Scholar 

  • Peng, Y., Zhang, Y., Tang, Y., & Li, S. (2010b). An incident information management framework based on data integration, data mining, and multi-criteria decision making. Decision Support Systems. doi:10.1016/j.dss.2010.11.025.

    Google Scholar 

  • Peng, Y., Kou, G., Wang, G., Wu, W., & Shi, Y. (2011a). Ensemble of software defect predictors: an AHP-based evaluation method. International Journal of Information Technology & Decision Making, 10(1), 187–206.

    Article  Google Scholar 

  • Peng, Y., Wang, G., Kou, G., & Shi, Y. (2011b). An empirical performance metric for classification algorithm selection in financial risk management. Applied Soft Computing, 11(2), 2906–2915.

    Article  Google Scholar 

  • Peng, Y., Kou, G., Wang, G., & Shi, Y. (2011c). FAMCDM: a fusion approach of MCDM methods to rank multiclass classification algorithms. OMEGA. doi:10.1016/j.omega.2011.01.009.

    Google Scholar 

  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytical hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (1994). How to make a decision: the analytic hierarchy process. Interfaces, 24, 19–43.

    Article  Google Scholar 

  • Saaty, T. L. (2001). Deriving the AHP 1–9 scale from first principles. In ISAHP 2001 proceedings, Bern, Switzerland.

    Google Scholar 

  • Saaty, T. L. (2003). Decision-making with the AHP: why is the principal eigenvector necessary. European Journal of Operational Research, 145(1), 85–89.

    Article  Google Scholar 

  • Saaty, T. L. (2008). Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 102(2), 251–318. doi:10.1007/BF03191825.

    Article  Google Scholar 

  • Tufekci, S., & Wallace, W. A. (1998). The emerging area of emergency management and engineering. IEEE Transactions on Engineering Management, 45(2), 103–105.

    Article  Google Scholar 

  • Yan, S. Y., & Shih, Y. L. (2009). Optimal scheduling of emergency roadway repair and subsequent relief distribution. Computers & Operations Research, 36(9), 2049–2065.

    Article  Google Scholar 

  • Yi, W., & Ozdamar, L. (2007). A dynamic logistics coordination model for evacuation and support in disaster response activities. European Journal of Operational Research, 179(3), 1177–1193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Kou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ergu, D., Kou, G. Questionnaire design improvement and missing item scores estimation for rapid and efficient decision making. Ann Oper Res 197, 5–23 (2012). https://doi.org/10.1007/s10479-011-0922-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0922-3

Keywords

Navigation