Skip to main content
Log in

A mixed-objective integer DEA model

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Traditional efficiency studies using data envelopment analysis (DEA) models considered all input and output variables as continuous, which appears to be unwarranted. Some integer-valued DEA models have been proposed for dealing with the integral constraints in many cases, such as environmental performance measurement, Olympics efficiency assessment, hotel performance evaluation and so on. In existing integer-valued DEA models, the focus is on either input-oriented projection of an inefficient DMU onto the production frontier that aims at reducing input amounts as much as possible while keeping at least the present output levels, or output-oriented projection that maximizes output levels under at most the present input consumption. The present paper develops an integer-valued DEA model that deals with input excesses and output shortfalls simultaneously in a way that maximizes both. An empirical example in the literature is re-examined to compare the DEA model developed here with existing real and integer valued approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amirteimoori, A., Kordrostami, S., & Azmayande, O. H. (2007). Data envelopment analysis with selective convexity and integer-valued factors. Applied Mathematics and Computation, 188(1), 734–738.

    Article  Google Scholar 

  • Banker, R. J., & Morey, R. C. (1986). The use of categorical variables in data envelopment analysis. Management Science, 32(12), 1613–1627.

    Article  Google Scholar 

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., Golany, B., Seiford, L., & Stutz, J. (1985). Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. Journal of Econometrics, 30(1–2), 91–107.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., Wei, Q., & Huang, Z. M. (1989). Cone ratio data envelopment analysis and multi-objective programming. International Journal of Systems Science, 20(7), 1099–1118.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., Huang, Z. M., & Sun, D. B. (1990). Polyhedral cone-ratio DEA models with an illustrative application to large commercial banks. Journal of Econometrics, 46(1–2), 73–91.

    Article  Google Scholar 

  • Chambers, R. G., Chung, Y., & Färe, R. (1996). Benefit and distance functions. Journal of Economic Theory, 70(2), 407–419.

    Article  Google Scholar 

  • Chambers, R. G., Chung, Y., & Färe, R. (1998). Profit, directional distance functions, and Nerlovian efficiency. Journal of Optimization Theory and Applications, 98(2), 351–364.

    Article  Google Scholar 

  • Edvardsen, D. F., & Forsund, F. R. (2003). International benchmarking of electricity distribution utilities. Resource and Energy Economics, 25(4), 353–371.

    Article  Google Scholar 

  • Färe, R., Grosskopf, S., Lovell, C. A. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach. Review of Economics and Statistics, 71, 90–98.

    Article  Google Scholar 

  • Golany, B., & Yu, G. (1997). Estimating returns to scale in DEA. European Journal of Operational Research, 103(1), 28–37.

    Article  Google Scholar 

  • Kamakura, W. A. (1988). A Note on the use of categorical variables in data envelopment analysis. Management Science, 34(10), 1273–1276.

    Article  Google Scholar 

  • Kuosmanen, T., & Matin, R. K. (2009). Theory of integer-valued data envelopment analysis. European Journal of Operational Research, 192(2), 658–667.

    Article  Google Scholar 

  • Liang, L., Yang, F., Cook, W. D., & Zhu, J. (2006). DEA models for supply chain efficiency evaluation. Annals of Operation Research, 145(1), 35–49.

    Article  Google Scholar 

  • Lins, M. P. E., Angulo, M. L., & Silva, A. C. M. (2004). A multi-objective approach to determine alternative targets in data envelopment analysis. International Journal of Operational Research, 55, 1090–1101.

    Google Scholar 

  • Liu, W. B., Meng, W., Li, X. X., & Zhang, D. Q. (2010). DEA models with undesirable outputs. Annals of Operational Research, 173(1), 177–194.

    Article  Google Scholar 

  • Lozano, S., & Villa, G. (2006). Data envelopment analysis of integer-valued inputs and outputs. Computers & Operations Research, 33(10), 3004–3014.

    Article  Google Scholar 

  • Lozano, S., & Villa, G. (2007). Integer DEA models. In J. Zhu & W. D. Cook (Eds.), Modeling data irregularities and structural complexities in data envelopment analysis (pp. 271–290). New York: Springer.

    Chapter  Google Scholar 

  • Matin, R. K., & Kuosmanen, T. (2009). Theory of integer-valued data envelopment analysis under alternative returns to scale axioms. Omega, 37(5), 988–995.

    Article  Google Scholar 

  • Rousseau, J. J., & Semple, J. H. (1993). Categorical outputs in data envelopment analysis. Management Science, 39(3), 384–386.

    Article  Google Scholar 

  • Sakis, J. (2006). The adoption of environmental and risk management practices: Relationships to environmental performance. Annals of Operational Research, 145, 367–381.

    Article  Google Scholar 

  • Seiford, L. M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 142, 16–20.

    Article  Google Scholar 

  • Thompson, R. G., Langemeier, L. N., Lee, C. T., Lee, E., & Thrall, R. M. (1990). The role of multiplier bounds in efficiency analysis with application to Kansas farming. Journal of Econometrics, 46(1–2), 93–108.

    Article  Google Scholar 

  • Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498–509.

    Article  Google Scholar 

  • Wei, Q., Yan, H., & Xiong, L. (2008). A bi-objective generalized data envelopment analysis model and point-to-set mapping projection. European Journal of Operational Research, 190(3), 855–876.

    Article  Google Scholar 

  • Wu, J., Liang, L., Zha, Y., & Yang, F. (2009). Determination of cross-efficiency under the principle of rank priority in cross-evaluation. Expert Systems With Applications, 36(3), 4826–4829.

    Article  Google Scholar 

  • Wu, J., Zhou, Z., & Liang, L. (2010). Measuring the performance of nations at Beijing summer Olympics using integer-valued DEA model. Journal of Sports Economics, 11(5), 549–566.

    Article  Google Scholar 

  • Zenios, C., Zenios, S., Agathocleous, K., & Soteriou, A. (1999). Benchmarks of the efficiency of bank branches. Interfaces, 29(3), 37–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiang Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Zhou, Z. A mixed-objective integer DEA model. Ann Oper Res 228, 81–95 (2015). https://doi.org/10.1007/s10479-011-0938-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0938-8

Keywords

Navigation