Skip to main content
Log in

A decomposition approach for solving a broadcast domination network design problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider an optimization problem that integrates network design and broadcast domination decisions. Given an undirected graph, a feasible broadcast domination is a set of nonnegative integer powers f i assigned to each node i, such that for any node j in the graph, there exists some node k having a positive f k -value whose shortest distance to node j is no more than f k . The cost of a broadcast domination solution is the sum of all node power values. The network design problem constructs edges that decrease the minimum broadcast domination cost on the graph. The overall problem we consider minimizes the sum of edge construction costs and broadcast domination costs. We show that this problem is NP-hard in the strong sense, even on unweighted graphs. We then propose a decomposition strategy, which iteratively adds valid inequalities based on optimal broadcast domination solutions corresponding to the first-stage network design solutions. We demonstrate that our decomposition approach is computationally far superior to the solution of a single large-scale mixed-integer programming formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benders, J. F. (1962). Partitioning procedures for solving mixed variables programming problems. Numerische Mathematik, 4(1), 238–252.

    Article  Google Scholar 

  • Berge, C. (1962). Theory of graphs and its applications. New York: Wiley.

    Google Scholar 

  • Blair, J. R. S., & Horton, S. B. (2005). Broadcast covers in graphs. Congressus Numerantium, 173, 109–115.

    Google Scholar 

  • Blair, J. R. S., Heggernes, P., Horton, S., & Manne, F. (2004). Broadcast domination algorithms for interval graphs, series-parallel graphs, and trees. Congressus Numerantium, 169, 55–77.

    Google Scholar 

  • Cambazard, H., & Jussien, N. (2005). Identifying and exploiting problem structures using explanation-based constraint programming. In R. Barták & M. Milano (Eds.), Lecture notes in computer science: Vol. 3524. Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR 2005) (pp. 94–109). Berlin: Springer.

    Chapter  Google Scholar 

  • Cambazard, H., Hladik, P.-E., Déplanche, A.-M., Jussien, N., & Trinquet, Y. (2004). Decomposition and learning for a hard real time task allocation problem. In M. Wallace (Ed.), Lecture notes in computer science: Vol. 3258. Principles and practice of constraint programming (CP 2004) (pp. 153–167). Berlin: Springer.

    Chapter  Google Scholar 

  • Carøe, C. C., & Tind, J. (1997). L-shaped decomposition of two-stage stochastic programs with integer recourse. Mathematical Programming, 83(1–3), 451–464.

    Google Scholar 

  • Codato, G., & Fischetti, M. (2006). Combinatorial Benders’ cuts for mixed-integer linear programming. Operations Research, 54(4), 756–766.

    Article  Google Scholar 

  • de Jaenisch, C. F. (1862). Applications de l’analyse mathematique au jue des echecs. Petrograd.

  • Dunbar, J. E., Erwin, D. J., Haynes, T. W., Hedetniemi, S. M., & Hedetniemi, S. T. (2006). Broadcasts in graphs. Discrete Applied Mathematics, 154, 59–75.

    Article  Google Scholar 

  • Erwin, D. J. (2004). Dominating broadcasts in graphs. Bulletin of the Institute of Combinatorics and Its Applications, 42, 89–105.

    Google Scholar 

  • Flippo, O. E., & Rinnooy Kan, A. H. G. (1993). Decomposition in general mathematical programming. Mathematical Programming, 60, 361–382.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-completeness. San Francisco: Freeman.

    Google Scholar 

  • Geoffrion, A. M. (1972). Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10(4), 237–260.

    Article  Google Scholar 

  • Haynes, T. W., Hedetniemi, S. T., & Slater, P. J. (Eds.) (1998a). Domination in graphs: advanced topics. New York: Dekker,

    Google Scholar 

  • Haynes, T. W., Hedetniemi, S. T., & Slater, P. J. (1998b). Fundamentals of domination in graphs. New York: Dekker.

    Google Scholar 

  • Heggernes, P., & Lokshtanov, D. (2006). Optimal broadcast domination in polynomial time. Discrete Mathematics, 306(24), 3267–3280.

    Article  Google Scholar 

  • Hooker, J. N. (2000). Logic-based methods for optimization: combining optimization and constraint satisfaction. New York: Wiley.

    Book  Google Scholar 

  • Hooker, J. N. (2005a). A hybrid method for the planning and scheduling. Constraints, 10(4), 385–401.

    Article  Google Scholar 

  • Hooker, J. N. (2005b). Planning and scheduling to minimize tardiness. In Lecture notes in computer science: Vol. 3709. Principles and practice of constraint programming (CP 2005) (pp. 314–327). Berlin: Springer.

    Chapter  Google Scholar 

  • Hooker, J. N. (2007). Planning and scheduling by logic-based Benders decomposition. Operations Research, 55(3), 588.

    Article  Google Scholar 

  • Hooker, J. N., & Ottosson, G. (2003). Logic-based Benders decomposition. Mathematical Programming, 96(1), 33–60.

    Google Scholar 

  • Laporte, G., & Louveaux, F. V. (1993). The integer L-shaped method for stochastic integer programs with complete recourse. Operations Research Letters, 13(3), 133–142.

    Article  Google Scholar 

  • Laporte, G., Louveaux, F. V., & Mercure, H. (1992). The vehicle routing problem with stochastic travel times. Transportation Science, 26(3), 161–170.

    Article  Google Scholar 

  • Laporte, G., Louveaux, F. V., & Van Hamme, L. (1994). Exact solution to a location problem with stochastic demands. Transportation Science, 28(2), 95–103.

    Article  Google Scholar 

  • Lokshtanov, D. (2007). Broadcast domination. Master’s thesis, Department of Informatics, University of Bergen, Bergen, Norway.

  • Ore, O. (1967). Theory of graphs (3rd ed., Vol. 38). Providence: Am. Math. Soc.

    Google Scholar 

  • Penuel, J., Smith, J. C., & Yuan, Y. (2010). An integer decomposition algorithm for solving a two-stage facility location problem with second-stage activation costs. Naval Research Logistics, 57(5), 391–402.

    Google Scholar 

  • Saharidis, G. K. D., & Ierapetritou, M. G. (2010). Improving Benders decomposition using maximum feasible subsystem (MFS) cut generation strategy. Computers & Chemical Engineering, 34(8), 1237–1245.

    Article  Google Scholar 

  • Saharidis, G. K. D., Boile, M., & Theofanis, S. (2010a). Initialization of the Benders master problem using valid inequalities applied to fixed-charge network problems. Expert Systems With Applications, 38(6), 6627–6636.

    Article  Google Scholar 

  • Saharidis, G. K. D., Minoux, M., & Ierapetritou, M. G. (2010b). Accelerating Benders method using covering cut bundle generation. International Transactions in Operational Research, 17(2), 221–237.

    Article  Google Scholar 

  • Sen, S., & Higle, J. L. (2005). The C 3 theorem and a D 2 algorithm for large-scale stochastic mixed-integer programming: Set convexification. Mathematical Programming, 104(1), 1–20.

    Article  Google Scholar 

  • Shen, S. (2011). Domination problems. In J. J. Cochran (Ed.), Encyclopedia of operations research and management science. Hoboken: Wiley.

    Google Scholar 

  • Sherali, H. D., & Adams, W. P. (1990). A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics, 3(3), 411–430.

    Article  Google Scholar 

  • Sherali, H. D., & Adams, W. P. (1994). A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discrete Applied Mathematics, 52(1), 83–106.

    Article  Google Scholar 

  • Sherali, H. D., & Fraticelli, B. M. P. (2002). A modification of Benders’ decomposition algorithm for discrete subproblems: An approach for stochastic programs with integer recourse. Journal of Global Optimization, 22(1–4), 319–342.

    Article  Google Scholar 

  • Van Slyke, R. M., & Wets, R. (1969). L-shaped linear programs with applications to optimal control and stochastic programming. SIAM Journal on Applied Mathematics, 17(4), 638–663.

    Article  Google Scholar 

  • Wollmer, R. (1980). Two-stage linear programming under uncertainty with 0–1 first stage variables. Mathematical Programming, 19(1), 279–288.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqian Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, S., Smith, J.C. A decomposition approach for solving a broadcast domination network design problem. Ann Oper Res 210, 333–360 (2013). https://doi.org/10.1007/s10479-011-0962-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0962-8

Keywords

Navigation