Skip to main content
Log in

Optimization of the quantile criterion for the convex loss function by a stochastic quasigradient algorithm

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A stochastic quasigradient algorithm is suggested for solving the quantile optimization problem with a convex loss function. The algorithm is based on stochastic finite-difference approximations of gradients of the quantile function by using the order statistics. The algorithm convergence almost surely is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahadur, R. R. (1966). A note on quantile in large samples. Annals of Mathematical Statistics, 37, 577–580.

    Article  Google Scholar 

  • Borell, C. (1975). Convex set functions in d-spaces. Periodica Mathematica Hungarica, 6(2), 111–136.

    Article  Google Scholar 

  • Brascamp, H. J., & Lieb, E. H. (1976). On extensions of the Brunn-Minkowski and Prekopa-Liendler theorems, including inequalities for log-concave functions, and with application to the diffusion equations. Journal of Functional Analysis, 22, 366–389.

    Article  Google Scholar 

  • Das Gupta, S. (1980). Brunn-Minkowski inequality and its aftermath. Journal of Multivariate Analysis, 10, 296–318.

    Article  Google Scholar 

  • David, H. A., & Nagaraja, H. N. (2003). Order statistics, 3rd edn. New Jersey: Willey.

    Book  Google Scholar 

  • Deák, I. (2003). Solving stochastic programming problems by successive regression approximations—numerical results. In K. Marti, Y. Ermoliev, & G. Pug (Eds.), Lecture notes in economics and mathematical systems: Vol. 532. Dynamic stochastic optimization (pp. 209–224). Berlin: Springer.

    Chapter  Google Scholar 

  • Dentcheva, D. (2009). Optimization models with probabilistic constraints. In A. Shapiro, D. Dentcheva, & A. Ruszczynski (Eds.), Lectures on stochastic programming: modeling and theory (pp. 87–155). Philadelphia: SIAM.

    Chapter  Google Scholar 

  • Ermoliev, Y. M. (1976). Stochastic programming methods. Moscow: Nauka [in Russian].

    Google Scholar 

  • Gardner, R. J. (2002). The Brunn-Minkowski inequality. Bulletin (New Series) of the American Mathematical Society, 39(3), 355–405.

    Article  Google Scholar 

  • Kan, Y. S. (1996). A quasi-gradient algorithm for minimizing the quantile function. Journal of Computer & Systems Sciences International, 35(2), 245–251.

    Google Scholar 

  • Kan, Y. S. (2003). On convergence of a stochastic quasigradient algorithm of quantile optimization. Automation and Remote Control, 64(2), 263–278.

    Article  Google Scholar 

  • Kan, Y. S., & Kibzun, A. I. (1996). Convex properties of probability and quantile functions in optimization problems. Automation and Remote Control, 57(3), 368–383.

    Google Scholar 

  • Kibzun, A. I., & Kan, Y. S. (1996). Stochastic programming problems with probability and quantile functions. Chichester: Wiley.

    Google Scholar 

  • Kibzun, A. I., & Kurbakovskiy, V. Y. (1991). Guaranteeing approach to solving quantile optimization problems. Annals of Operations Research, 30, 81–93.

    Article  Google Scholar 

  • Kibzun, A. I., & Matveev, E. L. (2010). Sufficient conditions for quasiconcavity of the probability function. Automation and Remote Control, 71(3), 413–430.

    Article  Google Scholar 

  • Lepp, R. (1983). Stochastic approximation type algorithm for the maximization of the probability functions. Eesti NSV Teaduste Akadeemia Toimetised, Füüsika * Matemaatika, 32(2), 150–156.

    Google Scholar 

  • Lusternik, L. (1935). The Brunn-Minkowski inequality for Lebesgue-measurable sets. Doklady Akademii Nauk SSSR, 3(2), 55–58 [in Russian].

    Google Scholar 

  • Malyshev, V. V., & Kibzun, A. I. (1987). Analysis and synthesis of high precision aircraft control. Moscow: Mashinostroenie [in Russian].

    Google Scholar 

  • Mihalevich, V. S., Gupal, A. M., & Norkin, V. I. (1987). Optimization methods of non-convex functions. Moscow: Nauka [in Russian].

    Google Scholar 

  • Norkin, V. I., & Roenko, N. V. (1991). α-Concave functions and measures and their applications. Kibernetika I Sistemnyj Analiz, 6, 77–88 [in Russian].

    Google Scholar 

  • Prékopa, A. (1973). On logarithmic concave measures and functions. Acta Scientiarum Mathematicarum, 34, 335–343.

    Google Scholar 

  • Prékopa, A. (1995). Stochastic programming. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Prékopa, A. (2003). Probabilistic programming. In A. Ruszczynsk & A. Shapiro (Eds.), Handbooks oper. res. management sci.: Vol. 10. Stochastic programming (pp. 267–351). New York: Elsevier.

    Google Scholar 

  • Reiss, R. D. (1989). Approximate distributions of order statistics. New York: Springer.

    Book  Google Scholar 

  • Rinott, Y. (1976). On convexity of measures. Annals of Probability, 6, 1020–1026.

    Article  Google Scholar 

  • Shiryaev, A. N. (1980). Probability. Moscow: Nauka [in Russian].

    Google Scholar 

  • Tretiakov, G. (2002). Stochastic quasi-gradient algorithms for maximization of the probability function. A new formula for the gradient of the probability function. In Lecture notes in economics and mathematical systems: Vol. 513. Stochastic optimization techniques. Numerical methods and technical applications (pp. 117–139).

    Google Scholar 

  • Zhigljavsky, A., & Zhilinskas, A. (2008). Stochastic global optimization. Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Kibzun.

Additional information

The work was supported by Russian Foundation of Basic Research (project N0 09-08-00369).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kibzun, A., Matveev, E. Optimization of the quantile criterion for the convex loss function by a stochastic quasigradient algorithm. Ann Oper Res 200, 183–198 (2012). https://doi.org/10.1007/s10479-011-0987-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0987-z

Keywords

Navigation