Skip to main content

Advertisement

Log in

Efficient solutions for the far from most string problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Computational molecular biology has emerged as one of the most exciting interdisciplinary fields. It has currently benefited from concepts and theoretical results obtained by different scientific research communities, including genetics, biochemistry, and computer science. In the past few years it has been shown that a large number of molecular biology problems can be formulated as combinatorial optimization problems, including sequence alignment problems, genome rearrangement problems, string selection and comparison problems, and protein structure prediction and recognition. This paper provides a detailed description of string selection and string comparison problems. For finding good-quality solutions of a particular class of string comparison molecular biology problems, known as the far from most string problem, we propose new heuristics, including a Greedy Randomized Adaptive Search Procedure (GRASP) and a Genetic Algorithm (GA). Computational results indicate that these randomized heuristics find better quality solutions compared with results produced by the best state-of-the-art heuristic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aiex, R. M., Resende, M. G. C., & Ribeiro, C. C. (2002). Probability distribution of solution time in grasp: an experimental investigation. Journal of Heuristics, 8, 343–373.

    Article  Google Scholar 

  • Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., & Protasi, M. (1999). Complexity and approximation. Berlin: Springer.

    Book  Google Scholar 

  • Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing, 6, 154–160.

    Article  Google Scholar 

  • Domínguez-Marín, P., Nickel, S., Hansen, P., & Mladenović, N. (2005). Heuristic procedures for solving the discrete ordered median problem. Annals of Operations Research, 136(1), 145–173.

    Article  Google Scholar 

  • Easton, T., & Singireddy, A. (2007). A specialized branching and fathoming technique for the longest common subsequence problem. International Journal of Operational Research, 4(2), 98–104.

    Google Scholar 

  • Eiben, A. E., Aarts, E. H. L., & Van Hee, K. M. (1991). Global convergence of genetic algorithms: A Markov chain analysis. In Lecture Notes in Computer Science: Vol. 496. Proceedings of 1st workshop on parallel problem solving from nature (pp. 3–12). Berlin: Springer.

    Chapter  Google Scholar 

  • Fagin, R. (1974). Generalized first-order spectra and polynomial time recognizable sets. In R. Karp (Ed.), Complexity of computation (pp. 43–73). Providence: Am. Math. Soc.

    Google Scholar 

  • Feo, T. A., & Resende, M. G. C. (1989). A probabilistic heuristic for a computationally difficult set covering problem. Operations Research Letters, 8, 67–71.

    Article  Google Scholar 

  • Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization, 6, 109–133.

    Article  Google Scholar 

  • Festa, P. (2007). On some optimization problems in molecular biology. Mathematical Biosciences, 207(2), 219–234.

    Article  Google Scholar 

  • Festa, P., & Resende, M. G. C. (2002). GRASP: An annotated bibliography. In C. C. Ribeiro & P. Hansen (Eds.), Essays and surveys on metaheuristics (pp. 325–367). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Fleurent, C., & Ferland, J. A. (1996). Genetic and hybrid algorithms for graph coloring. Annals of Operations Research, 63, 437–461.

    Article  Google Scholar 

  • Frances, M., & Litman, A. (1997). On covering problems of codes. Theory of Computing Systems, 30(2), 113–119.

    Google Scholar 

  • Garey, M., & Johnson, D. (1979). Computers and intractability: a guide to the theory of NP-completeness. San Francisco: Freeman.

    Google Scholar 

  • Glover, F. (1996). Tabu search and adaptive memory programming: Advances, applications and challenges. In R. Barr, R. Helgason, & J. Kennington (Eds.), Interfaces in computer science and operations research (pp. 1–75). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.

    Google Scholar 

  • Goldberg, D. E., & Segrest, P. (1987). Finite Markov chain analysis of genetic algorithms. In J. J. Grefenstette (Ed.), Proceedings of the second international conference on genetic algorithms (Lawrence Erlbaum associates) (pp. 1–8).

    Google Scholar 

  • Gomes, F. C., Meneses, C. N., Pardalos, P. M., & Viana, G. V. R. (2008). A parallel multistart algorithm for the closest string problem. Computers & Operations Research, 35(11), 3636–3643.

    Article  Google Scholar 

  • Guvenir, H. A., & Erel, E. (1998). Multicriteria inventory classification using a genetic algorithm. European Journal of Operational Research, 105(1), 29–37.

    Article  Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Hollstein, R. B. (1971). Artificial genetic adaptation in computer control systems. PhD thesis, 1971.

  • Koza, J. R., Bennett, F. H. III, Andre, D., & Keane, M. A. (1999). Genetic programming III, Darwinian invention and problem solving. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Lanctot, J., Li, M., Ma, B., Wang, S., & Zhang, L. (1999). Distinguishing string selection problems. In Proceedings of the annual ACM-SIAM symposium on discrete algorithms (SODA) (pp. 633–642).

    Google Scholar 

  • Lanctot, J., Li, M., Ma, B., Wang, S., & Zhang, L. (2003). Distinguishing string selection problems. Information and Computation, 185(1), 41–55.

    Article  Google Scholar 

  • Li, M., Ma, B., & Wang, L. (1999). Finding similar regions in many strings. In Proceedings of the annual ACM symposium on theory of computing (pp. 473–482).

    Google Scholar 

  • Liepins, G. E., & Hilliard, M. R. (1989). Genetic algorithms: Foundations and applications. Annals of Operations Research, 21(1–4), 31–58.

    Article  Google Scholar 

  • Meneses, C. N., Gomes, F. C., Pardalos, P. M., & Viana, G. V. R. (2005a). Parallel algorithm for the closest string problem. In R. Mondaini (Ed.), Proceedings of the fourth Brazilian symposium on mathematical and computational biology/first international symposium on mathematical and computational biology (Vol. 2, pp. 326–332).

    Google Scholar 

  • Meneses, C. N., Oliveira, C. A. S., & Pardalos, P. M. (2005b). Optimization techniques for string selection and comparison problems in genomics. IEEE Engineering in Medicine and Biology Magazine, 24(3), 81–87.

    Article  Google Scholar 

  • Oliveira, C. A. S., & Pardalos, P. M. (2005). Network flow algorithm for the longest common subsequence problem. In R. Mondaini (Ed.), Proceedings of the fourth Brazilian symposium on mathematical and computational biology / first international symposium on mathematical and computational biology (Vol. 2, pp. 300–313).

    Google Scholar 

  • Pardalos, P. M., Oliveira, C. A. S., Lu, Z., & Meneses, C. N. (2004). Optimal solutions for the closest string problem via integer programming. INFORMS Journal on Computing, 16, 419–429.

    Article  Google Scholar 

  • Resende, M. G. C., & Ribeiro, C. C. (2002). Greedy randomized adaptive search procedures. In F. Glover & G. Kochenberger (Eds.), State-of-the-art handbook of metaheuristics Dordrecht: Kluwer Academic.

    Google Scholar 

  • Resende, M. G. C., & Ribeiro, C. C. (2005). GRASP and path-relinking: Recent advances and applications. In T. Ibaraki, K. Nonobe, & M. Yagiura (Eds.), Metaheuristics: progress as real problem solvers (pp. 29–63). Berlin: Springer.

    Chapter  Google Scholar 

  • Roman, S. (1992). Graduate Texts in Mathematics: Vol. 134. Coding and information theory. Berlin: Springer.

    Google Scholar 

  • Sim, J. S., & Park, K. (1999). The consensus string problem for a metric is NP-complete. In Proceedings of the annual Australasian workshop on combinatorial algorithms (AWOCA) (pp. 107–113).

    Google Scholar 

  • Wang, D., & Fang, S.-C. (1996). A semi-infinite programming model for earliness/tardiness production planning with a genetic algorithm. Computers & Mathematics with Applications, 31(8), 95–106.

    Article  Google Scholar 

  • White, A. R. P., Mann, J. W., & Smith, G. D. (1996). Genetic algorithms and network ring design. Annals of Operations Research, 86, 347–374.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Daniele Ferone for his help in the implementation and experimentation phase and the anonymous referees for their comments and suggestions which have been revealed useful to improve both quality and readability of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Festa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Festa, P., Pardalos, P.M. Efficient solutions for the far from most string problem. Ann Oper Res 196, 663–682 (2012). https://doi.org/10.1007/s10479-011-1028-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-1028-7

Keywords

Navigation