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Abstract We study the joint problem of sequential change detection and multiple hypoth-
esis testing. Suppose that the common distribution of a sequence of i.i.d. random variables
changes suddenly at some unobservable time to one of finitely many distinct alternatives,
and one needs to both detect and identify the change at the earliest possible time. We pro-
pose computationally efficient sequential decision rules that are asymptotically either Bayes-
optimal or optimal in a Bayesian fixed-error-probability formulation, as the unit detection
delay cost or the misdiagnosis and false alarm probabilities go to zero, respectively. Numeri-
cal examples are provided to verify the asymptotic optimality and the speed of convergence.

Keywords Sequential change detection and hypothesis testing · Asymptotic optimality ·
Optimal stopping

1 Introduction

Sequential change detection and identification refers to the joint problem of sequential
change point detection (CPD) and sequential multiple hypothesis testing (SMHT), where
one needs to detect, based on a sequence of observations, a sudden and unobservable change
as early as possible and identify its cause as accurately as possible. In a Bayesian setup, this
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problem boils down to optimally solving the trade-off between the expected detection delay
and the false alarm and misdiagnosis costs.

The sequential analysis methods such as Wald’s (1947) sequential probability ratio test
and Page’s (1954) cumulative sum were developed for the quality control problems, in which
a production process may suddenly get out of control at some unknown and unobservable
time and one needs to detect the failure time as soon as possible. However, it is more realistic
to assume that a production process consists of multiple processing units, each of which is
prone to failure, and one needs to detect the earliest failure time and accurately identify the
failed component.

In economics and biosurveillance, elevated concerns about financial crises and bioterror-
ism have increased the importance of early warning systems (see Bussiere and Fratzscher
2006 and Heffernan et al. 2004); structural changes need to be detected in time series such
as the S&P 500 index for better financial risk management and over-the-counter medication
sales for early signs of a possible disease outbreak. There are a number of potential causes
of structural changes, and one needs to identify the cause of the change in order to take
the most appropriate countermeasures. Although most existing structural change detection
methods employ retrospective tests on historical data, online tests are more appropriate in
these settings because time-inhomogeneous data arrive sequentially, and the changes must
be identified as soon as possible after they occur.

In this paper, we focus on two online Bayesian formulations and propose two computa-
tionally efficient and asymptotically optimal strategies inspired by the separate asymptotic
analyses of SMHT (Baum and Veeravalli 1994; Dragalin et al. 1999; Dragalin et al. 2000)
and CPD (Tartakovsky and Veeravalli 2004).

We suppose that a system starts in regime 0 and suddenly switches at some unknown and
unobservable disorder time θ to one of finitely many regimes μ ∈ M := {1, . . . ,M}. One
observes a sequence of random variables X = (Xn)n≥1 which are, conditionally on θ and μ,
independent and distributed according to some cumulative distribution function F0 before
time θ and Fμ at and after time θ ; namely,

X1, . . . ,Xθ−1
︸ ︷︷ ︸

F0-distributed

,Xθ ,Xθ+1 . . .
︸ ︷︷ ︸

Fμ-distributed

.

The objective is to detect the change as quickly as possible, and at the same time to iden-
tify the new regime μ as accurately as possible. More precisely, we want to find a strategy
(τ, d), consisting of a pair of detection time τ and diagnosis rule d , in order to minimize
the expected detection delay time and the false alarm and misdiagnosis probabilities. This
paper studies the following formulations:

(i) In the minimum Bayes risk formulation, one minimizes a Bayes risk which is the sum
of the expected detection delay time and the false alarm and misdiagnosis probabilities.

(ii) In the Bayesian fixed-error-probability formulation, one minimizes the expected detec-
tion delay time subject to some small upper bounds on the false alarm and misdiagnosis
probabilities.

The precise formulations are given as Problems 1 and 2, respectively, on p. 341 in Sect. 2.
A majority of practitioners prefer working with the Bayesian fixed-error-probability formu-
lation because the hard constraints on error probabilities are easier to set up and understand
than the costs of detection delay, false alarm, and misdiagnosis in the minimum Bayes risk
formulation. The Bayesian fixed-error-probability formulation is often solved by means of
its Lagrange relaxation, which turns out to be a minimum Bayes risk problem where the
costs are the Lagrange multipliers (or shadow prices) of the false alarm and misdiagnosis
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Fig. 1 (a) The union of the shaded regions is the optimal stopping regions. (b) The dotted triangles are the
stopping regions of one of the strategies we propose in this paper

constraints. We discuss in more detail the correspondence between the optimal solutions of
these two formulations in Sect. 2. Another reason for solving the minimum Bayes risk for-
mulation is that it allows the expert opinions about the risks to be naturally included in the
solution. Therefore, we decide to study both formulations in this paper.

Finding the optimal solutions under both formulations requires intensive computations.
For example, the minimum Bayes risk formulation reduces to an optimal stopping prob-
lem as shown by Dayanik et al. (2008) (see also Lovejoy (1991), White (1991), Borkar
(1991), and Runggaldier (1991) for general solution methods available for the partially ob-
served Markov decision processes and Burnetas and Katehakis (1997) for adaptive control
for Markov decision processes), and the optimal strategy is to stop as soon as the posterior
probability process � = (�(0)

n , . . . ,�(M)
n )n≥0, where

�(i)
n := P{The system is in regime i at time n | X1, . . . ,Xn} for every i ∈ M0 and n ≥ 0,

with M0 := M ∪{0}, enters some suitable region of the M-dimensional probability simplex.
Figure 1(a) illustrates the optimal stopping regions for a typical problem with M = 2.

The process � starts in the lower-left corner, which corresponds to the “no change” state or
regime 0. As observations are made, it progresses through the light-colored region, where
raising a change-alarm is suboptimal. If it enters the shaded region in the top corner, then
declaring a regime switch from 0 to 1 is optimal. If it enters the shaded region in the lower-
right corner, then declaring a regime switch from 0 to 2 is optimal. The first hitting time to
one of those shaded regions and the corresponding estimate of the new regime minimize the
costs for the minimum Bayes risk formulation.

These shaded regions can in principle be found by dynamic programming methods; see,
for example, Derman (1970), Puterman (1994) and Bertsekas (2005). However, those meth-
ods are generally computationally intensive due to the curse of dimensionality. The state
space increases exponentially in the number of regimes, and finding an optimal strategy
by using the classical dynamic programming methods tends to be practically impossible in
higher dimensions.

Our goal is to obtain a practical solution that is both near-optimal and computationally
feasible. We propose two simple and asymptotically optimal strategies by approximating the
optimal stopping regions with simpler shapes. In particular, our strategy for the minimum
Bayes risk formulation raises a change alarm and estimates the new regime when the pos-
terior probability of at least one of the change types exceeds some predetermined threshold
for the first time. In Fig. 1(b), the stopping regions of this strategy correspond to the union of
the triangles in the two corners. Those triangular regions determine a stopping and selection
strategy, and hence the problem is simplified to designing the triangular regions to minimize
the risks.
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We give an asymptotic analysis of the change detection and identification problem. The
SMHT and CPD are the special cases. The asymptotic optimality of our strategies can be
proved using nonlinear renewal theory after casting the log-likelihood-ratio (LLR) processes

�n(i, j) := log
�(i)

n

�
(j)
n

, n ≥ 1, i ∈ M, j ∈ M0 \ {i}, (1)

as the sum of suitable random walks and some slowly-changing stochastic processes. We
show that the r-quick convergence of Lai (1977) for an appropriate subset of the LLR pro-
cesses in (1) is a sufficient condition for asymptotic optimality. We also pursue higher-order
asymptotic approximations for the minimum Bayes risk formulation as inspired by Baum
and Veeravalli (1994)’s work for SMHT.

The remainder of the paper is organized as follows. We formulate the Bayesian sequential
change detection and identification problem in Sect. 2. In Sect. 3, we propose two sequen-
tial change detection and identification strategies and obtain sufficient conditions for their
asymptotic optimality in terms of the LLR processes. In Sect. 4 we study certain conver-
gence properties of the LLR processes that are required to implement the asymptotically
optimal strategies. In Sect. 5, we obtain higher-order asymptotic approximations for the
minimum Bayes risk formulation using nonlinear renewal theory. Section 6 concludes with
numerical examples. The proofs and some auxiliary results are presented in the appendix.

2 Problem formulations

Consider a probability space (�, F ,P) hosting a stochastic process X = (Xn)n≥1 taking val-
ues in some measurable space (E, E ). Let θ : � �→ {0,1, . . .} and μ : � �→ M := {1, . . . ,M}
be independent random variables defined on the same probability space with the probability
distributions

P{θ = t} =
{

p0, if t = 0

(1 − p0)(1 − p)t−1p, if t ≥ 1

}

and νi = P{μ = i} > 0, i ∈ M

for some known constants p0 ∈ [0,1), p ∈ (0,1), and positive constants ν = (νi)i∈M . The
random variable θ has an exponential tail with

� := − lim
t↑∞

log P{θ ≥ t + 1}
t

= ∣

∣log(1 − p)
∣

∣. (2)

Given μ = i and θ = t , the random variables X1,X2, . . . are conditionally independent,
and (Xn)1≤n≤t−1 and (Xn)n≥t have common conditional probability density functions f0 and
fi , respectively, with respect to some σ -finite measure m on (E, E ); namely,

P{θ = t,μ = i,X1 ∈ E1, . . . ,Xn ∈ En}

= (1 − p0)(1 − p)t−1pνi

(t−1)∧n
∏

k=1

∫

Ek

f0(x)m(dx)

n
∏

l=t∧n

∫

El

fi(x)m(dx),

for every i ∈ M, t ≥ 1, n ≥ 1, and (E1 ×· · ·×En) ∈ E n. The following assumptions remove
certain trivial cases; see Remark 4.10 below.

Assumption 2.1 For every i ∈ M0 and j ∈ M0 \ {i}, 0 < fi(X1)/fj (X1) < ∞ a.s., and Fi

and Fj are distinguishable;
∫

{x∈E:fi (x)�=fj (x)} fi(x)m(dx) > 0.
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Let F = (Fn)n≥0 denote the filtration generated by X; namely, F0 = {∅,�} and Fn =
σ(X1, . . . ,Xn) for every n ≥ 1. A sequential change detection and identification rule (τ, d)

is a pair consisting of an F-stopping time τ (in short, τ ∈ F) and a random variable d : � �→
M that is measurable with respect to the observation history Fτ up to the stopping time τ

(namely, d ∈ Fτ ). Let


 := {

(τ, d) : τ ∈ F and d ∈ Fτ is an M-valued random variable
}

be the collection of all sequential change detection and identification rules. The objective is
to find a strategy (τ, d) that solves optimally the trade-off between the mth moment

D(m)(τ ) := E
[

(τ − θ)m
+
]

, (3)

of the detection delay time (τ − θ)+ for some m ≥ 1 and the false alarm and misdiagnosis
probabilities

R0i (τ, d) := P{d = i, τ < θ}, i ∈ M, (4)

Rji(τ, d) := P{d = i,μ = j, θ ≤ τ < ∞}, i ∈ M, j ∈ M \ {i}. (5)

Here and for the rest of the paper, x+ := max(x,0) and x− := max(−x,0) for any x ∈ R.
We formulate the optimal trade-offs between (3)–(5) as in the following two related prob-

lems:

Problem 1 (Minimum Bayes risk formulation) For fixed m ≥ 1, c > 0, and strictly positive
constants a = (aji)i∈M,j∈M0\{i}, calculate the minimum Bayes risk inf(τ,d)∈
 R(c,a,m)(τ, d),
where

R(c,a,m)(τ, d) := cD(m)(τ ) +
∑

i∈M

∑

j∈M0\{i}
ajiRji(τ, d) (6)

is the expected sum of all risks arising from the detection delay time, false alarm and mis-
diagnosis, and find a strategy (τ ∗, d∗) ∈ 
 which attains the minimum Bayes risk, if such a
strategy exists.

Problem 2 (Bayesian fixed-error-probability formulation) For fixed positive constants m ≥
1 and R = (Rji)i∈M,j∈M0\{i}, calculate the smallest mth moment inf(τ,d)∈
(R) D

(m)(τ ) of
detection delay time among all decision rules in


(R) := {

(τ, d) ∈ 
 : Rji(τ, d) ≤ Rji, i ∈ M, j ∈ M0 \ {i}}

with the same predetermined upper bounds on false alarm and misdiagnosis probabilities,
and find a strategy (τ ∗, d∗) ∈ 
(R) which attains the minimum, if such a strategy exists.

Problem 1 can in principle be solved optimally by stochastic dynamic programming.
A standard way to solve Problem 2 optimally is by working through its Lagrange relaxation,
which turns out to be an instance of Problem 1, where aji serves as the Lagrange multiplier
of the constraint Rji(τ, d) ≤ Rji for every i ∈ M and j ∈ M0 \ {i}. Indeed, if for some a,
a decision rule (τ ∗, d∗) ∈ 
 attains the minimum Bayes risk inf(τ,d)∈
 R(c,a,m)(τ, d) and if
Rji(τ

∗, d∗) = Rji for every i ∈ M, j ∈ M0 \ {i}, then for every (τ, d) ∈ 
(R) ⊆ 
,

cD(m)
(

τ ∗)+
∑

i∈M

∑

j∈M0\{i}
ajiRji

(

τ ∗, d∗)≤ cD(m)(τ ) +
∑

i∈M

∑

j∈M0\{i}
ajiRji(τ, d)

implies that c(D(m)(τ ∗) − D(m)(τ )) ≤ ∑

i∈M
∑

j∈M0\{i} aji(Rji(τ, d) − Rji(τ
∗, d∗)) =

∑

i∈M
∑

j∈M0\{i} aji(Rji(τ, d)−Rji) ≤ 0, and hence, the same (τ ∗, d∗) rule is also optimal
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for the Bayesian fixed-error-probability formulation. The asymptotically optimal decision
rules proposed for Problems 1 and 2 will likewise be related.

On the one hand, a majority of practitioners favor the formulation in Problem 2 over
that in Problem 1, because the hard constraints Rji(τ, d) ≤ Rji, i ∈ M, j ∈ M0 \ {i} in
Problem 2 are easier to set up and to understood than the (shadow) costs c and a of deci-
sion delay, false alarm, and misdiagnosis. On the other hand, some practitioners still find
Problem 1 useful to incorporate expert opinions.

As we introduced in Sect. 1, let � = (�(0)
n , . . . ,�(M)

n )n≥0 be the posterior probability
process defined by

�(0)
n := P{θ > n|Fn} and �(i)

n := P{θ ≤ n,μ = i|Fn}, i ∈ M, n ≥ 0.

Dayanik et al. (2008) proved that � is a Markov process satisfying

�(i)
n = α(i)

n (X1, . . . ,Xn)
∑

j∈M0
α

(j)
n (X1, . . . ,Xn)

, i ∈ M0,

where α(i)
n (x1, . . . , xn) equals

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

(1 − p0)(1 − p)n

n
∏

l=1

f0(xl), i = 0

p0νi

n
∏

k=1

fi(xk) + (1 − p0)pνi

n
∑

k=1

(1 − p)k−1
k−1
∏

l=1

f0(xl)

n
∏

m=k

fi(xm), i ∈ M

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

for every n ≥ 1 and (x1, . . . , xn) ∈ En, and

α(i)
n (x1, . . . , xn)m(dx1) · · ·m(dxn) =

{

P{θ > n,X1 ∈ dx1, . . . ,Xn ∈ dxn}, i = 0
P{θ ≤ n,μ = i,X1 ∈ dx1, . . . ,Xn ∈ dxn}, i ∈ M

}

.

Remark 2.2 Assumption 2.1 implies that 0 < �(i)
n < 1 a.s. for every finite n ≥ 1 and i ∈ M.

Let us denote by α(i)
n the random variable α(i)

n (X1, . . . ,Xn) for every n ≥ 0. Then the
LLR processes defined in (1) can be written as

�n(i, j) = log
α(i)

n

α
(j)
n

, i ∈ M, j ∈ M0 \ {i}, n ≥ 1. (7)

In our analyses, it is often very convenient to work under the conditional probability
measures:

Pi{X1 ∈ E1, . . . ,Xn ∈ En} := P{X1 ∈ E1, . . . ,Xn ∈ En|μ = i}, (8)

P
(t)
i {X1 ∈ E1, . . . ,Xn ∈ En} := P{X1 ∈ E1, . . . ,Xn ∈ En|μ = i, θ = t}, t ≥ 0, (9)

defined for every i ∈ M, n ≥ 1, (E1 × · · · × En) ∈ E n. Let Ei and E
(t)
i , respectively, be

the expectations with respect to Pi and P
(t)
i . Under P

(0)
i and P

(∞)
i , the random variables

X1,X2, . . . are independent and have common probability density functions fi(·) and f0(·),
respectively. We denote by P

(∞) any P
(∞)
i for any i ∈ M. The LLR processes in (1) or (7)

play a role in changing probability measures as the next lemma shows.

Lemma 2.3 (Change of measure) For every i ∈ M, an F-stopping time τ , and an Fτ -
measurable event F ,
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P
(

F ∩ {μ = j, θ ≤ τ < ∞})= νi Ei

[

1F∩{θ≤τ<∞}e−�τ (i,j)
]

, j ∈ M \ {i},
P
(

F ∩ {τ < θ})= νi Ei

[

1F∩{θ≤τ<∞}e−�τ (i,0)
]

.

The next proposition introduces the key risk components and its proof follows directly
from Lemma 2.3 after setting F := {d = i} ∈ Fτ for every i ∈ M.

Proposition 2.4 For every strategy (τ, d) ∈ 
, c > 0, m ≥ 1 and strictly positive constants
a = (aji)i∈M,j∈M\{i}, we can rewrite (4)–(6) as

R(c,a,m)(τ, d) =
∑

i∈M

νiR
(c,a,m)
i and Rji(τ, d) = νi Ei

[

1{d=i,θ≤τ<∞}e−�τ (i,j)
]

,

i ∈ M, j ∈ M0 \ {i},
where for every i ∈ M

R
(c,a,m)
i (τ, d) := cD

(m)
i (τ ) + R

(a)
i (τ, d), (τ, d) ∈ 
, (10)

D
(m)
i := Ei

[

(τ − θ)m
+
]

, (11)

R
(a)
i (τ, d) := Ei

[

1{d=i,θ≤τ<∞}G
(a)
i (τ )

]

, (τ, d) ∈ 
, (12)

G
(a)
i (n) :=

∑

j∈M0\{i}
ajie

−�n(i,j), n ≥ 1. (13)

Here (10)–(12) correspond to the conditional risks given μ = i, written in terms of the
process G

(a)
i (n), which is a linear combination of the exponents of the LLR processes and

serves as the Radon-Nikodym derivative.

Remark 2.5 In the remainder, we prove a number of results in the Pi -a.s. sense for given
i ∈ M. These also hold automatically P

(t)
i -a.s. for every t ≥ 1. Indeed, because P{θ <

∞} = 1, P{θ = t} > 0 for every t ≥ 1 and Pi (F ) =∑∞
t=0 P{θ = t}P(t)

i (F ) for every F ∈ F ,
Pi (F ) = 1 implies P

(t)
i (F ) = 1 for every t ≥ 1.

3 Asymptotically optimal sequential detection and identification strategies

We will introduce two strategies that are computationally efficient and asymptotically opti-
mal. The first strategy raises an alarm as soon as the posterior probability of the event that
at least one of the change types occurred exceeds some suitable threshold, and is shown
to be asymptotically optimal for Problem 1. The second strategy is its variant expressed in
terms of the LLR processes and is shown to be asymptotically optimal for Problem 2. The
asymptotic performance analyses of both rules depend on the same convergence results of
the LLR processes. The proofs can be conducted in parallel and almost simultaneously both
for Problem 1 and for Problem 2 because the detection times can be approximated by the
first hitting times of certain processes that share the same asymptotic properties.

Definition 3.1 ((τA, dA)-strategy for the minimum Bayes risk problem) For every set A =
(Ai)i∈M of strictly positive constants, let (τA, dA) be the strategy defined by

τA := min
i∈M

τ
(i)
A and dA ∈ arg min

i∈M
τ

(i)
A ,

where τ
(i)
A := inf

{

n ≥ 1 : �(i)
n >

1

1 + Ai

}

, i ∈ M. (14)
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Define the logarithm of the odds-ratio processes as

�(i)
n := log

�(i)
n

1 − �
(i)
n

= − log

[

∑

j∈M0\{i}
exp

(−�n(i, j)
)

]

, i ∈ M, n ≥ 1. (15)

Then (14) can be rewritten as

τ
(i)
A = inf

{

n ≥ 1 : 1 − �(i)
n

�
(i)
n

< Ai

}

= inf
{

n ≥ 1 : �(i)
n > − logAi

}

, i ∈ M. (16)

The values of A determine the sizes of the polyhedrons that approximate the original optimal
stopping regions, e.g., the triangular regions when M = 2 as in Fig. 1(b), and need to be
determined so as to minimize the Bayes risk.

Definition 3.2 ((υB, dB)-strategy for the Bayesian fixed-error-probability formulation) For
every set B = (Bi)i∈M and Bi = (Bij )j∈M0\{i}, i ∈ M of strictly positive constants, let
(υB, dB) be the strategy defined by

υB := min
i∈M

υ
(i)
B and dB ∈ arg min

i∈M
υ

(i)
B ,

where υ
(i)
B := inf

{

n ≥ 1 : �n(i, j) > − logBij for every j ∈ M0 \ {i}}, i ∈ M.

(17)

We show that, after choosing suitable A and B , the strategy (τA, dA) is asymptotically
optimal for Problem 1 as c goes to zero, and the strategy (υB, dB) is asymptotically optimal
for Problem 2 as

‖R‖ := max
i∈M,j∈M0\{i}

Rji

goes to zero—while Rji/Rki for every j, k ∈ M0 \ {i} remains bounded away from zero in
the sense that

minj∈M0\{i} Rji

maxj∈M0\{i} Rji

> ki for every i ∈ M (18)

for any strictly positive constants k = (ki)i∈M —and this limit mode will still be denoted by
“‖R‖ ↓ 0” for brevity.

More precisely, we find functions A(c) of the unit sampling cost c in Problem 1 and B(R)

of the upper bounds (Rji)i∈M,j∈M0\{i} on the false alarm and misdiagnosis probabilities in
Problem 2 so that (τA(c), dA(c)) ∈ 
 for every c > 0, (υB(R), dB(R)) ∈ 
(R) for every R > 0,
and

R(c,a,m)(τA(c), dA(c)) ∼ inf
(τ,d)∈


R(c,a,m)(τ, d) as c ↓ 0, (19)

D(m)(υB(R)) ∼ inf
(τ,d)∈
(R)

D(m)(τ ) as ‖R‖ ↓ 0, (20)

for every fixed m ≥ 1 and every set a = (aji)i∈M,j∈M0\{i} of strictly positive constants. Here
“xγ ∼ yγ as γ → γ0” means limγ→γ0 xγ /yγ = 1. In fact, we obtain results stronger than
(19)–(20); for every i ∈ M

R
(c,a,m)
i (τA(c), dA(c)) ∼ inf

(τ,d)∈

R

(c,a,m)
i (τ, d) as c ↓ 0, (21)

D
(m)
i (υB(R)) ∼ inf

(τ,d)∈
(R)

D
(m)
i (τ ) as ‖R‖ ↓ 0. (22)
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Remark 3.3 For all i ∈ M, let Bi := maxj∈M0\{i} Bij , Bi := minj∈M0\{i} Bij and �(i)
n :=

minj∈M0\{i} �n(i, j), n ≥ 1. Then,

υ
(i)
B ≤ υ

(i)
B ≤ υ

(i)
B for every i ∈ M (23)

where υ
(i)
B := inf{n ≥ 1 : �(i)

n > − logBi} and υ
(i)
B := inf{n ≥ 1 : �(i)

n > − logBi}. Notice
that (15) implies �(i)

n ≤ �n(i, j) for every n ≥ 1 and j ∈ M0 \ {i}, and hence

�(i)
n ≥ �(i)

n , n ≥ 1. (24)

3.1 Convergence of false alarm and misdiagnosis probabilities and detection delay

As c and R decrease to zero in Problems 1 and 2, respectively, we expect that the optimal
stopping regions shrink, or equivalently the values of A and B should decrease. We therefore
study the asymptotic behaviors of the false alarm and misdiagnosis probabilities and the
change detection time as

‖A‖ := max
i∈M

Ai and ‖B‖ := max
i∈M,j∈M0\{i}

Bij

go to zero, and then adapt their values as functions of c and R so as to attain asymptotically
optimal strategies. Here in concordance with (18) the limits Bi ↓ 0 for every i ∈ M are
taken such that

Bi/Bi = minj∈M0\{i} Bij

maxj∈M0\{i} Bij

≥ bi for some constants 0 < bi ≤ 1. (25)

We first study the asymptotic behaviors of the false alarm and misdiagnosis probabilities.
The upper bounds can be obtained by a direct application of Proposition 2.4.

Proposition 3.4 (Bounds on false alarm and misdiagnosis probabilities) (i) For every
fixed A = (Ai)i∈M and a = (aji)i∈M,j∈M0\{i}, we have R

(a)
i (τA, dA) ≤ aiAi for every

i ∈ M, where ai := maxj∈M0\{i} aji and Rji(τA, dA) ≤ νiAi ≤ νi‖A‖ for every i ∈ M and
j ∈ M0 \ {i}.

(ii) For every B = (Bij )i∈M,j∈M\{i}, we have Rji(υB, dB) ≤ νiBij for every i ∈ M and
j ∈ M0 \ {i}.

Corollary 3.5 (i) maxi∈M R
(a)
i (τA, dA) ↓ 0 as ‖A‖ ↓ 0, (ii) maxi∈M,j∈M0\{i} Rji(υB, dB) ↓

0 as ‖B‖ ↓ 0.

Proposition 3.6 Fix i ∈ M. We have Pi -a.s. (i) τ
(i)
A ↑ ∞ as Ai ↓ 0, (ii) τA ↑ ∞ as ‖A‖ ↓ 0,

(iii) υ
(i)
B ↑ ∞ as Bi ↓ 0, and (iv) υB ↑ ∞ as ‖B‖ ↓ 0.

The asymptotic behavior of the detection delay is closely related to the convergence of
the average increment �n(i, j)/n. According to the next proposition, �n(i, j)/n converges
Pi -a.s. as n ↑ ∞ to some strictly positive constant for every i ∈ M and j ∈ M0 \ {i}. The
proof of Proposition 3.7 is deferred to Sect. 4, where the limiting values are analytically
expressed in terms of the Kullback-Leibler divergence between the alternative probability
measures.

Proposition 3.7 For every i ∈ M and j ∈ M0 \ {i}, we have Pi -a.s. �n(i, j)/n → l(i, j)

as n ↑ ∞ for some strictly positive constant l(i, j).
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Let us fix any i ∈ M. We show that, for small values of A and B , the stopping times τ
(i)
A

and υ
(i)
B in (14) and (17) are essentially determined by the process �(i, j (i)), where

j (i) ∈ arg min
j∈M0\{i}

l(i, j) is any index in M0 \ {i} that attains l(i) := min
j∈M0\{i}

l(i, j) > 0,

(26)

and Pi -a.s. �n(i, j (i))/n ≈ �(i)
n /n ≈ �(i)

n /n ≈ l(i) for sufficiently large n as the next propo-
sition suggests.

Proposition 3.8 For every i ∈ M, we have Pi -a.s. (i) �(i)
n /n → l(i) and (ii) �(i)

n /n → l(i)

as n ↑ ∞.

The proof of part (i) follows from Proposition 3.7, and part (ii) follows from part (i) and
Baum and Veeravalli (1994, Lemma 5.2). Proposition 3.8 implies the following convergence
results.

Lemma 3.9 For every i ∈ M and any j (i) ∈ arg minj∈M0\{i} l(i, j), we have Pi -a.s.

(i) − τ
(i)
A

logAi

Ai↓0−−−→ 1

l(i)
, (ii) − (τ

(i)
A − θ)+
logAi

Ai↓0−−−→ 1

l(i)
,

(iii) − υ
(i)
B

logBij (i)

Bi↓0−−−→ 1

l(i)
, (iv) − (υ

(i)
B − θ)+

logBij (i)

Bi↓0−−−→ 1

l(i)
.

Remark 3.10 We shall always assume that 0 < Bij < 1 or −∞ < logBij < 0 for all i ∈ M
and j ∈ M0\{i} as we are interested in the limits of certain quantities as ‖B‖ ↓ 0. Because

(25) implies that biBi ≤ Bi ≤ Bij ≤ Bi , we have 1 ≤ − logBij

− logBi
≤ − logBi

− logBi
≤ − log(biBi )

− logBi
≤ 1 +

− logbi

− logBi
, which implies that

1 = lim
Bi↓0

logBij

logBi

= lim
Bi↓0

logBi

logBi

= lim
Bi↓0

logBij

logBi

for every i ∈ M, j ∈ M0 \ {i}, (27)

where the last equality follows from the first two equalities.

Because we want to minimize the mth moment of the detection delay time for any m ≥ 1,
we will strengthen the convergence results of Lemma 3.9. Condition 3.11 below for some
r ≥ m is both necessary and sufficient for the Lm-convergences.

Condition 3.11 (Uniform Integrability) For some r ≥ m,

(i) the family {(τ (i)
A /(− logAi))

r}Ai>0 is Pi -uniformly integrable for every i ∈ M,
(ii) the family {(υ(i)

B /(− logBij (i)))
r}Bi>0 is Pi -uniformly integrable for every i ∈ M.

Lemma 3.12 Let m ≥ 1 be any integer.

(i) Condition 3.11 (i) holds for some r ≥ m if and only if Ei[(τ (i)
A )m] < ∞ for every Ai > 0

and

− τ
(i)
A

logAi

Lm(Pi )−−−−→
Ai↓0

1

l(i)
and −D

(m)
i (τA)

logAi

Ai↓0−−−→ 1

l(i)
for every i ∈ M.

(28)
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(ii) Condition 3.11 (ii) holds for some r ≥ m if and only if Ei[(υ(i)
B )m] < ∞ for every Bi > 0

and

− υ
(i)
B

logBij (i)

Lm(Pi )−−−−→
Bi↓0

1

l(i)
and −D

(m)
i (υB)

logBij (i)

Bi↓0−−−→ 1

l(i)
for every i ∈ M,

(29)

where the limits Bi ↓ 0 for all i ∈ M are taken such that (25) is satisfied.

The proof of Lemma 3.12 follows from Lemma 3.9, Chung (2001, Theorem 4.5.4),
Gut (2005, Theorem 5.2) and because τ

(i)
A − θ ≤ (τ

(i)
A − θ)+ ≤ τ

(i)
A and υ

(i)
B − θ ≤ (υ

(i)
B −

θ)+ ≤ υ
(i)
B . Using renewal theory, one can show that Condition 3.11 holds if �n(i, j) =

X1 + · · · + Xn is a random walk for some sequence (Xn)n≥1 of i.i.d. random variables with
EX1 > 0 and E[(X1)

r−] < ∞; see Lai (1975). In the case of the SMHT, �n(i, j) is indeed a
random walk with positive drift for every i ∈ M and j ∈ M0 \ {i}; see Baum and Veeravalli
(1994).

Condition 3.11 is often hard to verify. An alternative sufficient condition can be given in
terms of the r-quick convergence. The r-quick convergence of suitable stochastic processes
is known to be sufficient for the asymptotic optimalities of certain sequential rules based on
non-i.i.d. observations in CPD and SMHT problems. We will show that the r-quick conver-
gence of the LLR processes is also sufficient for the joint sequential change detection and
identification problem.

Definition 3.13 (The r-quick convergence) Let (ξn)n≥0 be any stochastic process and r > 0.
Then r-quick- lim infn→∞ ξn ≥ c if and only if E[(Tδ)

r ] < ∞ for every δ > 0, where

Tδ := inf
{

n ≥ 1 : inf
m≥n

ξm > c − δ
}

, δ > 0. (30)

According to Proposition 3.15, stated below and proved in the appendix, Condition 3.11
holds if (�(i)

n /n)n≥1 and (�(i)
n /n)n≥1 converge r-quickly to l(i) under Pi for every i ∈ M,

which we put together as a different condition:

Condition 3.14 For some r ≥ 1, (i) r-quick- lim infn↑∞ �(i)
n /n ≥ l(i) under Pi ,

(ii) r-quick- lim infn↑∞ �(i)
n /n ≥ l(i) under Pi for every i ∈ M.

Proposition 3.15 Let m ≥ 1. (i) If Condition 3.14 (i) holds for some r ≥ m, then (28) and
Condition 3.11 (i) hold. (ii) If Condition 3.14 (ii) holds for some r ≥ m, then (29) and
Condition 3.11 (ii) hold.

Remark 3.16 Condition 3.14 (i) implies (ii) by (24). Moreover, Condition 3.14 holds if
r-quick- lim infn↑∞(�n(i, j)/n) ≥ l(i, j) under Pi for every i ∈ M and j ∈ M0 \ {i}.

3.2 Asymptotic optimality

We now prove the asymptotic optimalities of (τA, dA) and (υB, dB) for Problems 1 and 2
under Condition 3.11 (i) and (ii), respectively.

We first derive a lower bound on the expected detection delay under the optimal strat-
egy. The lower bound on the expected detection delay under the optimal strategy can be
obtained similarly to CPD and SMHT; see Baum and Veeravalli (1994), Dragalin et al.
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(1999), Dragalin et al. (2000), Lai (2000), Tartakovsky and Veeravalli (2004) and Baron and
Tartakovsky (2006). This lower bound and Lemma 3.12 below can be combined to obtain
asymptotic optimality for both problems.

Lemma 3.17 For every i ∈ M, we have

lim inf
Ri↓0

inf
(τ,d)∈
(R)

D
(m)
i (τ )

(| log(Rj(i)i/νi)|/l(i))m
≥ 1.

We now study how to set A in terms of c in order to achieve asymptotic optimality in
Problem 1. We see from Proposition 3.4 and Lemma 3.12 that the false alarm and misdi-
agnosis probabilities decrease faster than the expected delay time and are negligible when
A and B are small. Indeed, we have, in view of the definition of the Bayes risk in (10), by
Proposition 3.4 and Lemma 3.12, for any 0 < σi < ai for every i ∈ M,

R
(c,a,m)
i (τA, dA) ∼ c

(− logAi

l(i)

)m

+ σiAi ∼ c

(− logAi

l(i)

)m

as Ai ↓ 0. (31)

This motivates us to choose the value of Ai such that it minimizes

g
(c)
i (x) := c

(− logx

l(i)

)m

+ σix, (32)

over x ∈ (0,∞). Hence let

Ai(c) ∈ arg min
x∈(0,∞)

g
(c)
i (x), c > 0. (33)

For example, Ai(c) = c/(σi l(i)) when m = 1. It can be easily verified that for every m ≥ 1
we have Ai(c)

c↓0−−→ 0 in such a way that logAi(c) ∼ log c as c ↓ 0. Hence we have

R
(c,a,m)
i (τA(c), dA(c)) ∼ g

(c)
i

(

Ai(c)
)∼ c

(− log c

l(i)

)m

as c ↓ 0. (34)

Consequently, it is sufficient to show that

lim inf
c↓0

inf(τ,d)∈
 R
(c,a,m)
i (τ, d)

g
(c)
i (Ai(c))

≥ 1. (35)

The proof of the asymptotic optimality below is similar to that of Theorem 3.1 in Baron
and Tartakovsky (2006) for CPD.

Proposition 3.18 (Asymptotic optimality of (τA, dA) in Problem 1) Fix m ≥ 1 and a set
of strictly positive constants a. Under Conditions 3.11 (i) or 3.14 (i) for the given m, the
strategy (τA(c), dA(c)) is asymptotically optimal as c ↓ 0; that is (21) holds for every i ∈ M.

It should be remarked here that the asymptotic optimality results hold for any 0 < σi < ai .
However, for higher-order approximation, it is ideal to choose such that

R
(a)
i (τA, dA)/Ai

Ai↓0−−−→ σi. (36)

In Sect. 5, we achieve this value using nonlinear renewal theory.
We now show that (υB, dB) is asymptotically optimal for Problem 2. By Proposition 3.4,

if we set

Bij (R) := Rji/νi for every i ∈ M, j ∈ M0 \ {i},
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then we have (υB(R), dB(R)) ∈ 
(R) for every fixed positive constants R = (Rji)i∈M,j∈M0\{i}.
By Lemma 3.12 (ii), υB(R) ≤ υ

(i)

B(R)
and because Ri ↓ 0 is equivalent to Bij (i)(R) ↓ 0,

lim sup
Ri↓0

Dm
i (υB(R))

(| log(Rj(i)i/νi)|/l(i))m
= lim sup

Ri↓0

Dm
i (υB(R))

(| logBij (i)(R)|/l(i))m
≤ 1.

This together with Lemma 3.17 shows the asymptotic optimality.

Proposition 3.19 (Asymptotic optimality of (υB, dB) in Problem 2) Fix m ≥ 1. Under Con-
ditions 3.11 (ii) or 3.14 (ii) for the given m, the strategy (υB(R), dB(R)) is asymptotically
optimal as ‖R‖ ↓ 0, i.e., (22) holds for every i ∈ M.

4 The convergence results of the LLR processes

In this section, we will prove Proposition 3.7 and obtain the limits l(i, j) for every i ∈ M
and j ∈ M0 \ {i}, which can be expressed in terms of the Kullback-Leibler divergence of
the pre- and post-change probability density functions and the exponential decay rate � in
(2) of the disorder time probability distribution. Under some mild condition, we show that
the convergence also holds in Lr for every r ≥ 1.

Let us denote the Kullback-Leibler divergence of fi from fj by

q(i, j) :=
∫

E

(

log
fi(x)

fj (x)

)

fi(x)m(dx), i ∈ M, j ∈ M0 \ {i},

which always exists and is non-negative. Furthermore, Assumption 2.1 ensures that

q(i, j) > 0, i ∈ M, j ∈ M0 \ {i}. (37)

To ensure that E
(0)
i [log(f0(X1))/(fj (X1))] exists for every i ∈ M, j ∈ M0 \ {i}, we assume

the following.

Assumption 4.1 For every i ∈ M, we assume that q(i,0) < ∞.

Since E
(0)
i [(log(fi(X1)/fj (X1)))−] ≤ 1 for every i ∈ M, j ∈ M0 \ {i}, Assumption 4.1

guarantees the existence of

E
(0)
i

[

log
f0(X1)

fj (X1)

]

= E
(0)
i

[

log
fi(X1)

fj (X1)

]

− E
(0)
i

[

log
fi(X1)

f0(X1)

]

= q(i, j) − q(i,0),

i ∈ M, j ∈ M0 \ {i}. (38)

4.1 Decomposition of the LLR processes

We will decompose each LLR process (1) into some random walk with a positive drift
and some stochastic process whose running average increment vanishes in the limit. In the
SMHT case (namely, when p0 = 1), for every i ∈ M and j ∈ M \ {i},

�n(i, j) = log

(

νi

∏n

k=1 fi(Xk)

νj

∏n

k=1 fj (Xk)

)

= log

(

νi

νj

)

+
n
∑

k=1

log

(

fi(Xk)

fj (Xk)

)

, n ≥ 1,

is a Pi -random walk. Its running average increment �n(i, j)/n converges Pi -a.s. to the
Kullback-Leibler divergence q(i, j) as n ↑ ∞ by the strong law of large numbers (SLLN).
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Although (�(i, j))j∈M0\{i}, for p0 �= 0, are not Pi -random walks, this observation nonethe-
less motivates us to approximate them by some random walks. Let

�i := {

j ∈ M \ {i} : q(i, j) < q(i,0) + �
}

, i ∈ M.

We show that �(i, j) can be approximated by a random walk with drift q(i, j) > 0 if j ∈ �i

and with q(i,0)+� > 0 otherwise; namely, with drift min(q(i, j), q(i,0)+�) if j ∈ M \{i}
and q(i,0) + � if j = 0. Define

L(j)
n :=

⎧

⎪
⎨

⎪
⎩

log(1 − p0) + n log(1 − p), j = 0

log

[

p0 + (1 − p0)p

n
∑

k=1

k−1
∏

l=1

(

(1 − p)
f0(Xl)

fj (Xl)

)
]

, j ∈ M

⎫

⎪
⎬

⎪
⎭

, (39)

K(j)
n := log

[

p0

n
∏

k=1

(

1

1 − p

fj (Xk)

f0(Xk)

)

+ (1 − p0)p

n
∑

k=1

n
∏

l=k

(

1

1 − p

fj (Xl)

f0(Xl)

)
]

≡ log

[

n
∏

k=1

(

1

1 − p

fj (Xk)

f0(Xk)

)
]

+ L(j)
n , (40)

for every n ≥ 1 and j ∈ M0. Then it can be checked easily that, for any j ∈ M0 \ {i}, we
have

α(i)
n

α
(j)
n

=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

νi expL(i)
n

1 − p0

n
∏

l=1

(

1

1 − p

fi(Xl)

f0(Xl)

)

, j = 0

νi expL(i)
n

νj expL
(j)
n

n
∏

l=1

fi(Xl)

fj (Xl)
= νi expL(i)

n

νj expK
(j)
n

n
∏

l=1

(

1

1 − p

fi(Xl)

f0(Xl)

)

, j ∈ M \ {i}

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

.

(41)

By (7), after taking logarithms on both sides, each LLR process can be written as

�n(i, j) =
n
∑

l=1

hij (Xl) + εn(i, j), j ∈ M0 \ {i}, (42)

where

hij (x) :=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

log
fi(x)

f0(x)
+ �, j ∈ M0 \ (�i ∪ {i})

log
fi(x)

fj (x)
, j ∈ �i

⎫

⎪
⎪
⎬

⎪
⎪
⎭

, x ∈ E, (43)

εn(i, j) :=

⎧

⎪
⎨

⎪
⎩

L(i)
n − log(1 − p0) + logνi, j = 0

L(i)
n − L(j)

n + logνi − logνj , j ∈ �i

L(i)
n − K(j)

n + logνi − logνj , j ∈ M \ (�i ∪ {i})

⎫

⎪
⎬

⎪
⎭

, n ≥ 1. (44)

Moreover,
∑n

l=1 hij (Xl) can be split into post- and pre-change terms, and we have

�n(i, j) =
n
∑

l=θ∨1

hij (Xl) +
n∧(θ−1)
∑

l=1

hij (Xl) + εn(i, j), n ≥ 1, (45)

for every fixed j ∈ M0 \ {i}. Notice that the first term in (45) is conditionally a random walk
under P

(t)
i given θ = t for every t ≥ 0.
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4.2 The convergence of the LLR processes

Fix i ∈ M and j ∈ M0 \ {i}. In view of (42), we can explore the convergence for
(
∑n

l=1 hij (Xl))/n and εn(i, j)/n separately. For the first term, notice that

1

n

n
∑

l=1

hij (Xl) = 1

n

n
∑

l=θ∨1

hij (Xl) + 1

n

n∧(θ−1)
∑

l=1

hij (Xl).

Because θ is an a.s. finite random variable, the first term on the righthand side converges
P

(t)
i -a.s. to

l(i, j) :=
{

q(i,0) + �, j = 0

min
{

q(i, j), q(i,0) + �
}

, j ∈ M \ {i}

}

≡
{

q(i,0) + �, j ∈ M0 \ (�i ∪ {i})

q(i, j), j ∈ �i

}

(46)

by the SLLN, while the second term converges to zero. Then Remark 2.5 implies
Lemma 4.2, and, under some mild additional conditions, Lemma 4.3 below.

Lemma 4.2 For every i ∈ M and j ∈ M0 \ {i}, we have (1/n)
∑n

l=1 hij (Xl)
Pi -a.s.−−−−→
n↑∞ l(i, j).

Lemma 4.3 For every i ∈ M, j ∈ M0 \ {i} and r ≥ 1, we have (1/n)
∑n

l=1 hij (Xl)
Lr (Pi )−−−−→
n↑∞

l(i, j), if

E
(∞)

∣

∣hij (X1)
∣

∣
r
< ∞ and E

(0)
i

∣

∣hij (X1)
∣

∣
r
< ∞. (47)

Note that (47) holds if and only if the following condition holds.

Condition 4.4 For every i ∈ M, j ∈ M0 \ {i}, and r ≥ 1, suppose that

E
(∞)

∣

∣

∣

∣
log

fi(X1)

fj (X1)

∣

∣

∣

∣

r

< ∞ and E
(0)
i

∣

∣

∣

∣
log

fi(X1)

fj (X1)

∣

∣

∣

∣

r

< ∞ if j ∈ �i,

E
(∞)

∣

∣

∣

∣
log

fi(X1)

f0(X1)

∣

∣

∣

∣

r

< ∞ and E
(0)
i

∣

∣

∣

∣
log

fi(X1)

f0(X1)

∣

∣

∣

∣

r

< ∞ if j /∈ �i.

We now show that εn(i, j)/n converges Pi -a.s. to zero. The convergence result holds in
Lr(Pi ) as well for r ≥ 1 under a mild condition. To show this, we first determine the limits
of (L(·)

n /n)n≥1 and (K(·)
n /n)n≥1 as n ↑ ∞ under Pi .

Lemma 4.5 For every i ∈ M, we have the followings under Pi .

(i) L(i)
n /n

n↑∞−−−→ 0 a.s.

(ii) L
(j)
n /n

n↑∞−−−→ [q(i, j) − q(i,0) − �]+ a.s. for every j ∈ M \ {i}.
(iii) K

(j)
n /n

n↑∞−−−→ [q(i, j) − q(i,0) − �]− a.s. for every j ∈ M \ {i}.
(iv) L(i)

n converges a.s. as n ↑ ∞ to a finite random variable L(i)∞ .
(v) L

(j)
n converges a.s. as n ↑ ∞ to a finite random variable L

(j)
∞ for every j ∈ �i .

(vi) For every j ∈ M, (|L(j)
n /n|r )n≥1 is uniformly integrable for every r ≥ 1, if

E
(∞)

[

f0(X1)/fj (X1)
]

< ∞ and E
(0)
i

[

f0(X1)/fj (X1)
]

< ∞. (48)
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(vii) For every j ∈ M, (|K(j)
n /n|q)n≥1 is uniformly integrable for every 0 ≤ q ≤ r , if (48)

holds and

E
(∞)

∣

∣

∣

∣
log

fj (X1)

f0(X1)

∣

∣

∣

∣

r

< ∞ and E
(0)
i

∣

∣

∣

∣
log

fj (X1)

f0(X1)

∣

∣

∣

∣

r

< ∞, for some r ≥ 1. (49)

Notice in Lemma 4.5 (vi) that in order for L(i)
n to converge in Lr under Pi to zero, it is

sufficient to have

E
(∞)

[

f0(X1)/fi(X1)
]

< ∞ (50)

because E
(0)
i [f0(X1)/fi(X1)] = ∫

E
f0(x)m(dx) = 1 < ∞. The characterization of εn(i, j) in

(44) leads to the next convergence result.

Lemma 4.6 For every i ∈ M and j ∈ M0 \ {i}, we have εn(i, j)/n → 0 as n ↑ ∞ Pi -a.s.

Moreover, the convergence holds in Lr under Pi as well for some r ≥ 1 given the follow-
ing condition.

Condition 4.7 Given i ∈ M, j ∈ M0 \ {i} and r ≥ 1, we suppose that (50) holds and (i)
j ∈ �i and (48) holds, or (ii) j /∈ �i or j = 0 and (49) holds for the given r .

Lemma 4.8 Fix i ∈ M, j ∈ M0 \ {i} and r ≥ 1. Under Condition 4.7, εn(i, j)/n → 0 as
n ↑ ∞ in Lr(Pi ).

By combining the results in Lemmas 4.5 and 4.6, Proposition 3.7 indeed holds with l(·, ·)
as defined in (46). Moreover, the following convergence results hold by Lemmas 4.5 and 4.8.

Proposition 4.9 For every i ∈ M and j ∈ M0 \ {i}, we have �n(i, j)/n → l(i, j) as n ↑ ∞
in Lr(Pi ) for some r ≥ 1 if Conditions 4.4 and 4.7 hold for the given r .

Remark 4.10

(i) Observe from (46) that we have l(i, j) ≤ l(i,0) for every i ∈ M and j ∈ M0 \ {i}, and
the equality holds if and only if j ∈ M0 \ (�i ∪ {i}).

(ii) Because q(i, j) = 0 if and only if
∫

{x∈E:fi (x)�=fj (x)} fi(x)m(dx) = 0, Assumption 2.1
guarantees that l(i, j) > 0 for every i ∈ M and j ∈ M0 \ {i}.

(iii) We later assume, in Sect. 5 below for higher-order approximations, that there is a
unique j (i) ∈ M0 \{i} such that l(i) = l(i, j (i)) = minj∈M0\{i} l(i, j) for every i ∈ M.
Then (i) implies l(i) < l(i,0) and q(i, j (i)) < q(i,0) + �, and j (i) ∈ �i and �i �= ∅.

Remark 4.11 We proved a number of results on the convergence of the LLR processes.
However, those results do not guarantee their r-quick convergence. A sufficient condition
derived by means of Jensen’s inequality can be found in our technical report (Dayanik et al.
2011).

5 Higher-order approximations

In this section, we derive a higher-order asymptotic approximation for the minimum Bayes
risk in Problem 1 by choosing the values of σ in (31) as discussed in the previous section.
Proposition 3.4 (i) gives an upper bound on (R

(a)
i (·, ·))i∈M , and here we investigate if there

exists some σ such that (36) holds.
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5.1 Asymptotic behaviors of the false alarm and misdiagnosis probabilities

Fix i ∈ M. By (12) and because τA = τ
(i)
A on {dA = i, θ ≤ τA < ∞}, we have

R
(a)
i (τA, dA)/Ai = Ei

[

1{dA=i,θ≤τA<∞}G
(a)
i

(

τ
(i)
A

)

/Ai

]= Ei

[

exp
{−H

(a)
i (Ai)

}]

, (51)

where H
(a)
i (Ai) := − logG

(a)
i

(

τ
(i)
A

)+ logAi − log 1{dA=i,θ≤τA<∞}. (52)

Suppose that H
(a)
i (Ai) is bounded from below by some constant b and H

(a)
i (Ai) converges

as Ai ↓ 0 in distribution to some random variable H
(a)
i under Pi . Then, because x �→ e−x

is continuous and bounded on x ∈ [b,∞], we have R
(a)
i (τA, dA)/Ai

Ai↓0−−−→ Ei[exp{−H
(a)
i }],

and therefore (36) holds with σi = Ei[exp{−H
(a)
i }].

Recall that τ
(i)
A is the first time the process �(i)

n exceeds the threshold − logAi , and
− logAi ↑ ∞ ⇐⇒ Ai ↓ 0. The following lemma shows that the convergence holds on con-
dition that the overshoot

Wi(Ai) := �
(i)

τ
(i)
A

− (− logAi) = �
(i)

τ
(i)
A

+ logAi ≥ 0 (53)

converges in distribution as Ai ↓ 0 to some random variable Wi under Pi .

Lemma 5.1 Fix i ∈ M. If j (i) is unique and the overshoot Wi(Ai) in (53) converges in
distribution as Ai ↓ 0 to some random variable Wi under Pi , then (36) holds with σi :=
aj(i)iEi[exp{−Wi}].

In Lemma 5.1 above, σi does not depend on aji for any j ∈ M0 \ {i, j (i)} and therefore
we see that Rji(τA, dA) is negligible compared with Rj(i)i(τA, dA) for any j ∈ M0 \ {i, j (i)}
for small A.

5.2 Nonlinear renewal theory and the overshoot distribution

We now see that Lemma 5.1 indeed holds via nonlinear renewal theory on condition that
j (i) is unique. We obtain the limiting distribution of the overshoot (53).

Observe that, for every k ∈ M0 \ {i},
�(i)

n = − log
∑

j∈M0\{i}
exp

(−�n(i, j)
)= �n(i, k) − ηn(i, k), n ≥ 1 where (54)

ηn(i, k) = log

(

1 +
∑

j∈M0\{i,k}
exp

(

�n(i, k) − �n(i, j)
)

)

, n ≥ 1. (55)

By (45) and (54), we have �(i)
n =∑n

l=θ∨1 hij (i)(Xl) + ξn(i, j (i)), where

ξn

(

i, j (i)
) :=

n∧(θ−1)
∑

l=1

hij (i)(Xl) + εn

(

i, j (i)
)− ηn

(

i, j (i)
)

,

n ≥ 1, j (i) ∈ arg min
j∈M0

l(i, j). (56)

We will take advantage of the fact that, given θ , the process
∑n

l=θ∨1 hij (i)(Xl) is con-
ditionally a random walk and ξn(i, j (i)) can be shown to be “slowly-changing”, in the
sense that ξn+1(i, j (i)) − ξn(i, j (i)) ≈ 0 for large n. This implies that the increments of the
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slowly-changing process ξn(i, j (i)) are negligible compared to those of the random walk
term

∑n

l=θ∨1 hij (i)(Xl) at every large n. This result can be used to obtain the overshoot dis-
tribution of the process �(i) at its boundary-crossing time τ

(i)
A for small Ai by means of

the nonlinear renewal theory (Woodroofe 1982; Siegmund 1985). Let us firstly give a few
definitions and state a fundamental theorem of nonlinear renewal theory.

Definition 5.2 A sequence of random variables (ξn)n≥1 is called uniformly continuous in
probability (u.c.i.p.) if for every ε > 0, there is δ > 0 such that P{max0≤k≤nδ |ξn+k − ξn| ≥
ε} ≤ ε for every n ≥ 1.

Definition 5.3 A sequence of random variables (ξn)n≥1 is said to be slowly-changing if it is
u.c.i.p. and

max{|ξ1|, . . . , |ξn|}
n

in probability−−−−−−−→
n↑∞

0. (57)

Remark 5.4 If a process converges a.s. to a finite random variable, then it is a slowly-
changing process. Moreover, the sum of two slowly-changing processes is also a slowly-
changing process.

The following theorem states that, if a process is the sum of a random walk with positive
drift and a slowly-changing process, then the overshoot at the first time it exceeds some
threshold has the same asymptotic distribution as that of the overshoot of the random walk,
as the threshold tends to infinity.

Theorem 5.5 (Woodroofe 1982, Theorem 4.1; Siegmund 1985, Theorem 9.12) On some
(�, E ,P), let (Zn)n≥1 be a sequence of i.i.d. random variables with some common nonarith-
metic distribution and mean 0 < EZ1 < ∞. Let (ξn)n≥1 be a slowly-changing process and
(Zk)k≥n+1 be independent of (ξl)1≤l≤n for every n ≥ 1. If ˜Tb := inf{n ≥ 1 :∑n

i=1 Zi −ξn > b}
and Tb := inf{n ≥ 1 :∑n

i=1 Zi > b} for every b ≥ 0,

Wb :=
˜Tb
∑

i=1

Zi − ξ˜Tb
− b

d−−−−→
b↑∞

W, with P{W ≤ w} =
∫ w

0 P{∑T0
i=1 Zi > s}ds

E[∑T0
i=1 Zi]

,

0 ≤ w < ∞.

We fix i ∈ M and obtain the limiting distribution of the overshoot Wi(Ai) as Ai ↓ ∞
using Theorem 5.5.

Lemma 5.6 Fix i ∈ M and t ≥ 0. If j (i) is unique, then ξn(i, j (i)) is slowly-changing
under P

(t)
i .

For every t ≥ 1 and j (i) ∈ arg minj∈M0\{i} l(i, j), define a stopping time,

T
(t)
i := inf

{

n ≥ t :
n
∑

l=t

log

(

fi(Xl)

fj (i)(Xl)

)

> 0

}

,

and random variable W
(t)
i whose distribution is given by

P
(t)
i

{

W
(t)
i ≤ w

}=
∫ w

0 P
(t)
i {∑T

(t)
i

l=t log fi (Xl )

fj (i)(Xl )
> s}ds

E
(t)
i [∑T

(t)
i

l=t log fi (Xl )

fj (i)(Xl )
]

, 0 ≤ w < ∞. (58)
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The next lemma follows immediately from Theorem 5.5.

Lemma 5.7 Fix i ∈ M and t ≥ 0. If j (i) is unique, then the overshoot Wi(Ai) converges to
W

(t)
i in distribution under P

(t)
i as Ai ↓ 0.

Note that the distribution of W
(t)
i under P

(t)
i is identical to that of W

(0)
i under P

(0)
i for

every t ≥ 1, which leads to Lemma 5.8 below.

Lemma 5.8 Fix i ∈ M. If j (i) is unique, then as Ai ↓ 0 the overshoot Wi(Ai) converges
in distribution under Pi to a random variable Wi whose distribution under Pi is identical to
that of W(0)

i in (58) under P
(0)
i .

Finally, Lemmas 5.1 and 5.8 prove Proposition 5.9 below.

Proposition 5.9 Fix i ∈ M and suppose j (i) is unique. Then R
(a)
i (τA, dA)/Ai

Ai↓0−−−→
aj(i)iEi[e−Wi ], where Wi is the random variable defined in Lemma 5.8. Therefore, a higher-
order approximation for Problem 1 can be achieved by setting in (32)

σi := aj(i)iEi

[

e−Wi
]

. (59)

6 Numerical examples

To assess the performance of the asymptotically optimal rule, one firstly needs to find, for
comparison, the optimal solution. As outlined in Sect. 2, in order to solve optimally the
fixed-error-probability formulation, one first needs to transform it to a minimum Bayes risk
formulation by means of Lagrange relaxation, and then solve repeatedly the latter for differ-
ent values of Lagrange multipliers. Because this method requires extensive calculations and
its details are not of the primary interest of this paper, we focus on the minimum Bayes risk
formulation and evaluate the performance of the strategy (τA(c), dA(c)) numerically in the
i.i.d. Gaussian case described below. Its asymptotic optimality ensures that the strategy is
near-optimal when the unit detection delay cost c is small. Our numerical example suggests
that it is near-optimal even for mildly higher values of the unit detection delay cost.

6.1 The Gaussian case

Suppose that the observations Xn = (X(1)
n , . . . ,X(K)

n ), n ≥ 1 form a sequence of K-tuple
Gaussian random variables. Conditionally on θ and μ, they are mutually independent and
have common means (λ

(1)

0 , . . . , λ
(K)

0 ) before θ and (λ(1)
μ , . . . , λ(K)

μ ) at and after θ and com-
mon variances (1, . . . ,1) at all times. The Kullback-Leibler divergence between the proba-
bility density functions under μ = i and μ = j is q(i, j) = 1

2

∑K

k=1(λ
(k)
i − λ

(k)
j )2 for every

i ∈ M, j ∈ M0 \ {i}. Because Conditions 4.4 and 4.7 are satisfied, Propositions 3.7 and 4.9
hold with

l(i, j) = min

{

� + 1

2

K
∑

k=1

(

λ
(k)
i − λ

(k)

0

)2
,

1

2

K
∑

k=1

(

λ
(k)
i − λ

(k)
j

)2

}

, j ∈ M \ {i}, (60)

and l(i,0) = � + 1
2

∑K

k=1(λ
(k)
i − λ

(k)

0 )2 for every i ∈ M.
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Table 1 The limits l(i, j) of Proposition 3.7 calculated for the numerical example (arg minj∈M0\{i} l(i, j)

values are indicated in boldface)

i\j 0 1 2 3

1 0.12540 – 0.0050 0.12540

2 0.15040 0.0050 – 0.12500

3 0.42540 0.18000 0.1250 –

Fig. 2 The realization of process j : (�n(μ, j)/n)n≥1 for every j ∈ {0,1,2,3} \ {μ} and process phi:

(�
(μ)
n /n)n≥1 given that (a) μ = 1, θ = 10, (b) μ = 1, θ = 1000, and (c) μ = 2, θ = 10

6.2 Numerical validation of Proposition 3.7

Let M = 3, K = 1, p0 = 0, p = 0.1, (ν1, ν2, ν3) = (1/3,1/3,1/3), and (λ
(1)

0 , λ
(1)

1 , λ
(1)

2 , λ
(1)

3 )

= (0,0.2,0.3,0.8). The limiting values l(·, ·) in (60) are reported in Table 1. Figure 2 shows
sample realizations of (�n(μ, j)/n)n≥1, j ∈ {0,1,2,3} \ {μ} and (�(μ)

n /n)n≥1 given (a)
μ = 1 and θ = 10, (b) μ = 1 and θ = 1000 and (c) μ = 2 and θ = 10. The figures and the
limiting values in Table 2 are consistent as expected from Proposition 3.7. As guaranteed by
Proposition 3.8, the process (�(i)

n /n)n≥1 converges to l(i).

6.3 The numerical comparison of the minimum and asymptotically minimum Bayes risks

We calculate the minimum and asymptotically minimum Bayes risks for the following ex-
ample. We assume that M = 2, K = 2, p0 = 0, p = 0.01, (ν1, ν2) = (0.1,0.9), and the mean
vectors λ0 = (λ

(1)

0 , λ
(2)

0 ) and λi = (λ
(1)
i , λ

(2)
i ), i = 1,2 before and after the change, respec-

tively, satisfy

λ
(1)

1 = λ
(1)

0 + 1.0, λ
(1)

2 = λ
(1)

0 + 1.0, λ
(2)

1 = λ
(2)

0 + 0.0, λ
(2)

2 = λ
(2)

0 + 0.5.

Table 2 compares the performances of the strategy (τA(c), dA(c)) and the optimal strategy
for fixed aji = 1 for every i ∈ M and j ∈ M0 \ {i} as the unit detection delay cost c de-
creases. The optimal stopping regions are found by the value iteration described by Dayanik
et al. (2008). The Bayes risks of the strategies are estimated via Monte Carlo simulation.
For accurate approximations, we used (59), and (σi)i∈M are computed with Monte Carlo
methods.

We see that (τA(c), dA(c)) is asymptotically optimal; the ratio of the optimal and approx-
imate Bayes risk values converges to 1 as c ↓ 0 as listed in the last column. Moreover, the
approximate and the minimum Bayes risk values are close even for large c values, and this
is due to the higher-order approximation as studied in Sect. 5.
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Table 2 Numerical comparisons of the optimal and approximate (τA(c), dA(c)) Bayes risk values

c Minimum Bayes risk R(τA(c), dA(c)) Ratio

0.020 0.2896362 0.30860624 1.065496

0.015 0.2422770 0.25750238 1.062843

0.010 0.1869979 0.19718571 1.054481

0.005 0.1203246 0.12367423 1.027838
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Appendix A: Proofs and auxiliary results

A.1 Proof of Remark 2.2

We will prove that

0 <

n
∏

k=1

fi(Xk)

f0(Xk)
< ∞ for every i ∈ M, (61)

which implies that P-a.s. 0 < �(i)
n = α(i)

n /(
∑

j∈M0
α

(j)
n ) = (α(i)

n /
∏n

k=1 f0(Xk))/

(
∑

j∈M0
α

(j)
n /

∏n

k=1 f0(Xk)) < 1 for every i ∈ M, because α(0)
n /

∏n

k=1 f0(Xk) = (1 −
p0)(1 − p)n > 0 and

α
(j)
n

∏n

k=1 f0(Xk)
= p0νj

n
∏

k=1

fj (Xk)

f0(Xk)
+ (1 − p0)pνj

n
∑

k=1

(1 − p)k−1
n
∏

m=k

fj (Xm)

f0(Xm)
> 0

for every j ∈ M.

To prove (61), let Ei := {x : 0 < fi(x)/f0(x) < ∞} for every i ∈ M. Then Assumption 2.1
implies that

1 = P{X1 ∈ Ei} =
∑

j∈M

P{θ ≤ 1,μ = j}P{X1 ∈ Ei | θ ≤ 1,μ = j}

+ P{θ > 1}P{X1 ∈ Ei | θ > 1}
=

∑

j∈M

P{θ ≤ 1,μ = j}
∫

Ei

fj (x)m(dx) + P{θ > 1}
∫

Ei

f0(x)m(dx).

Because P{θ ≤ 1,μ = j} > 0 for every j ∈ M and P{θ > 1} > 0, we must have
∫

Ei
fj (x)m(dx) = 1 for every j ∈ M0. Therefore, for every i ∈ M, P{0 <

∏n

k=1
fi (Xk)

f0(Xk)
<

∞} = P{0 <
fi(Xk)

f0(Xk)
< ∞ ∀1 ≤ k ≤ n} equals
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n
∑

t=0

∑

j∈M

P{θ = t,μ = j}P(t)
j

{

0 <
fi(Xk)

f0(Xk)
< ∞,1 ≤ k ≤ n

}

+ P{θ > n}P(∞)

{

0 <
fi(Xk)

f0(Xk)
< ∞,1 ≤ k ≤ n

}

=
n
∑

t=0

∑

j∈M

P{θ = t,μ = j}
[∫

Ei

f0(x)m(dx)

]t−1[∫

Ei

fj (x)m(dx)

]n−t+1

+ P{θ > n}
[∫

Ei

f0(x)m(dx)

]n

= 1.

A.2 Proof of Lemma 2.3

Because P(F ∩ {μ = j, θ ≤ τ < ∞}) =∑∞
n=0 P(F ∩ {τ = n} ∩ {θ ≤ n,μ = j}) =

∞
∑

n=0

E
[

1F∩{τ=n}�(j)
n

]=
∞
∑

n=0

E

[

1F∩{τ=n}
�

(j)
n

�
(i)
n

�(i)
n

]

=
∞
∑

n=0

E

[

1F∩{τ=n,θ≤n,μ=i}
�

(j)
n

�
(i)
n

]

=
∞
∑

n=0

E

[

1{μ=i}
(

1F∩{τ=n,θ≤n}
�

(j)
n

�
(i)
n

)]

= νi

∞
∑

n=0

Ei

[

1F∩{τ=n,θ≤n}
�

(j)
n

�
(i)
n

]

= νiEi

[

1F∩{θ≤τ<∞}
�(j)

τ

�
(i)
τ

]

,

the first equality follows. The proof of the second equality is similar.

A.3 Proof of Proposition 3.4

(i) Since τA = τ
(i)
A on {dA = i, τA < ∞}, G

(a)
i (τA) ≤ ai

∑

j∈M0\{i} exp{−�
τ
(i)
A

(i, j)} =
ai exp{−�

(i)

τ
(i)
A

} < aiAi by (13), where the equality and the last inequality follow from (15)

and (16), respectively. Hence, we have R
(a)
i (τA, dA) = Ei[1{dA=i,θ≤τA<∞}G

(a)
i (τA)] ≤ ai Ai .

Because exp{−�τA(i, j)} = �(j)
τA

/�(i)
τA

≤ (1 − �(i)
τA

)/�(i)
τA

< Ai , we have Rji(τA, dA) =
νiEi[1{dA=i,θ≤τA<∞} exp{−�τA(i, j)}] ≤ νiAi ≤ νi‖A‖. (ii) Because υB = υ

(i)
B on {dB =

i, θ ≤ υB < ∞}, and �
υ

(i)
B

(i, j) > − logBij , Proposition 2.4 implies Rji(υB, dB) =
νiEi[1{dB=i,θ≤υB<∞} exp{−�υB

(i, j)}] ≤ νiBij .

A.4 Proof of Proposition 3.6

For (i), because (τ
(i)
A ) increases as Ai ↓ 0, it is enough to show that there is a subse-

quence the limit of which exists and equals ∞, Pi -a.s. Fix n ≥ 1. By (14), we have
Pi{τ (i)

A ≤ n} = Pi (
⋃n

k=1{�(i)
k > 1/(1 + Ai)}) ≤ ∑n

k=1 Pi{�(i)
k > 1/(1 + Ai)}. Therefore,

lim supAi↓0 Pi{τ (i)
A ≤ n} ≤ ∑n

k=1 lim supAi↓0 Pi{�(i)
k > 1/(1 + Ai)} ≤ ∑n

k=1 Pi{�(i)
k = 1},

which is zero by Remark 2.2. Namely, τ
(i)
A → ∞ in probability under Pi as Ai ↓ 0. Hence,

there is a subsequence of (Ai) along which Pi -a.s. τ
(i)
A ↑ ∞, which proves (i).

Because P{dA = j,μ = i} = P{dA = j, θ ≤ τA < ∞,μ = i} + P{dA = j, τA < θ,μ =
i} ≤ Rij (τA, dA) + R0j (τA, dA) ≤ 2νjAj by Proposition 3.4 (i), for every fixed n ≥ 1, we
have



Ann Oper Res (2013) 208:337–370 359

Pi{τA ≤ n} =
∑

j∈M

Pi{τA ≤ n,dA = j} ≤ Pi

{

τ
(i)
A ≤ n

}

+
∑

j∈M\{i}
Pi{dA = j} ≤ Pi

{

τ
(i)
A ≤ n

}+
∑

j∈M\{i}

2νj

νi

Aj ,

which goes to zero as ‖A‖ ↓ 0 by (i) and by Proposition 3.4. Namely, τA → ∞ in probability
under Pi as ‖A‖ ↓ 0; therefore, there is a subsequence of (τA)A>0 that goes to ∞, Pi -a.s.
as ‖A‖ ↓ 0. Because (τA)A>0 is increasing Pi -a.s. as ‖A‖ ↓ 0, its limit exists and equals ∞,
Pi -a.s. as well, and (ii) follows.

Similarly, we have Pi{υ(i)
B ≤ n} ≤ ∑n

k=1 Pi{�(i)
k > − logBi}. Because, for every fixed

k ≥ 1, {�(i)
k > − logBi} = {minj∈M0\{i} �k(i, j) > − logBi} = {maxj∈M0\{i}(�

(j)

k /�
(i)
k ) <

Bi} ⊆ {∑j∈M0\{i}(�
(j)

k /�
(i)
k ) < MBi} = {(1 − �

(i)
k )/�

(i)
k < MBi} = {�(i)

k > 1/(1 +
MBi)}, we have lim supBi↓0 Pi{υ(i)

B ≤ n} ≤ ∑n

k=1 lim supBi↓0 Pi{�(i)
k > 1/(1 + MBi)} ≤

∑n

k=1 Pi{�(i)
k = 1} = 0 by Remark 2.2. Therefore, as in the proof of (i), Pi -a.s. υ

(i)
B →

∞ as Bi ↓ 0, and (iii) follows. Furthermore, (iv) is immediate because, for every fixed
n ≥ 1, Proposition 3.4 (ii) implies Pi{υB ≤ n} ≤ Pi{υ(i)

B ≤ n} + 1
νi

∑

j∈M\{i}(R0j (υB, dB) +
Rij (υB, dB)) ≤ Pi{υ(i)

B ≤ n} + 1
νi

∑

j∈M\{i} νj (Bj0 + Bji)
‖B‖↓0−−−→ 0.

A.5 Proof of Lemma 3.9

First, (16) implies that �
(i)

τ
(i)
A

−1
/(τ

(i)
A − 1) ≤ −logAi/(τ

(i)
A − 1) and −logAi/τ

(i)
A < �

(i)

τ
(i)
A

/

τ
(i)
A . By Proposition 3.8 (i) and Proposition 3.6 (i), we have l(i) ≤ lim infAi↓0[(− logAi)/

(τ
(i)
A − 1)] and lim supAi↓0[(− logAi)/τ

(i)
A ] ≤ l(i), Pi -a.s, which proves (i). Because τ

(i)
A −

θ ≤ (τ
(i)
A − θ)+ ≤ τ

(i)
A and θ/(− logAi)

Pi-a.s.−−−−→
Ai↓0

0, (ii) follows from (i). Similarly, (23) im-

plies that �
(i)

υ
(i)
B

−1
/(υ

(i)
B − 1) ≤ −logBi/(υ

(i)
B − 1) and −logBi/υ

(i)
B < �

υ
(i)
B

/υ
(i)
B . By Propo-

sition 3.8 (ii) and Proposition 3.6 (iii), we have l(i) ≤ lim infBi↓0[(− logBi)/(υ
(i)
B − 1)]

and lim supBi↓0[(− logBi)/υ
(i)
B ] ≤ l(i), Pi -a.s. If we divide and multiply by − logBij (i)

before we take the limits and use (27), then (iii) follows; (iv) follows from (iii) because

υ
(i)
B − θ ≤ (υ

(i)
B − θ)+ ≤ υ

(i)
B and θ/(− logBij (i))

Bi↓0−−−→ 0 Pi -a.s.

A.6 Proof of Proposition 3.15

Fix i ∈ M. (i) Lemma 3.9 (i) and Fatou’s lemma give the inequality

lim inf
Ai↓0

Ei

[(

τ
(i)
A /(− logAi)

)m]≥ 1/l(i)m. (62)

Let us next define Tδ := inf{n ≥ 1 : infk≥n(�
(i)
k /k) > l(i) − δ} for every 0 < δ < l(i).

Because by hypothesis �(i)
n /n converges m-quickly (m ≤ r) to l(i) as n ↑ ∞ un-

der Pi , Ei[(Tδ)
m] < ∞ for every 0 < δ < l(i). On {τ (i)

A > Tδ} ≡ {τ (i)
A − 1 ≥ Tδ}, we

have �
(i)

τ
(i)
A

−1
/(τ

(i)
A − 1) ≥ l(i) − δ ⇐⇒ τ

(i)
A ≤ �

(i)

τ
(i)
A

−1
/(l(i) − δ) + 1. Because �

(i)

τ
(i)
A

−1
<

− logAi by definition, τ
(i)
A < −logAi/(l(i) − δ) + 1 on {τ (i)

A > Tδ}, and we obtain τ
(i)
A =

τ
(i)
A 1{τ (i)

A
>Tδ } + τ

(i)
A 1{τ (i)

A
≤Tδ } < −logAi/(l(i) − δ) + 1 + Tδ . After dividing both sides by

(− logAi) and taking the m-norm on both sides, Minkowski’s inequality applied to the
righthand side gives
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Ei

[(

τ
(i)
A

− logAi

)m]1/m

< Ei

[(

1

l(i) − δ
+ 1

− logAi

+ Tδ

− logAi

)m]1/m

≤ 1

l(i) − δ
+ 1

− logAi

+ Ei[(Tδ)
m]1/m

− logAi

,

which is finite for every 0 < δ < l(i). Then lim supAi↓0 Ei[(τ (i)
A /(− logAi))

m]1/m ≤
1/(l(i) − δ) for 0 < δ < l(i). Letting δ ↓ 0 gives lim supAi↓0 Ei[(τ (i)

A /(− logAi))
m]1/m ≤

1/l(i), which together with (62) proves (i).
(ii) Lemma 3.9 (iii) and Fatou’s lemma imply that

lim inf
Bi↓0

Ei

[(

υ
(i)
B /(− logBij (i))

)m]≥ 1/l(i)m. (63)

Let us define Tδ := inf{n ≥ 1 : infk≥n(�
(i)
k /k) > l(i) − δ} for every 0 < δ < l(i). Because

by hypothesis �(i)
n /n converges m-quickly (m ≤ r) to l(i) as n ↑ ∞ under Pi , we have

Ei[(Tδ)
m] < ∞ for every 0 < δ < l(i). Using a similar argument as in the first part, we can

show that υ
(i)
B < − logBi/(l(i) − δ) + 1 + Tδ . After diving both sides by (− logBi) and

taking the m-norm of both sides, an application of Minkowski’s inequality on the righthand
side gives

Ei

[(

υ
(i)
B

− logBi

)m]1/m

< Ei

[(

1

l(i) − δ
+ 1

− logBi

+ Tδ

− logBi

)m]1/m

≤ 1

l(i) − δ
+ 1

− logBi

+ Ei[(Tδ)
m]1/m

− logBi

,

which is finite for every 0 < δ < l(i). Then lim supBi↓0 Ei[(υ(i)
B /(− logBi))

m]1/m ≤
1/(l(i) − δ) for 0 < δ < l(i). Letting δ ↓ 0 gives lim supBi↓0 Ei[(υ(i)

B /(− logBi))
m]1/m ≤

1/l(i). After raising both sides to power m, the inequality υ
(i)
B ≤ υ

(i)
B implies

lim supBi↓0 Ei[(υ(i)
B /(− logBi))

m] ≤ lim supBi↓0 Ei[(υ(i)
B /(− logBi))

m] ≤ 1/l(i)m. Divid-
ing and multiplying the lefthand side with (− logBij (i))

m prior to taking the limit give
lim supBi↓0 Ei[(υ(i)

B /(− logBij (i)))
m] ≤ 1/l(i)m thanks to (27). The last inequality and (63)

prove (ii).

A.7 Proof of Remark 3.16

Because Condition 3.14 (i) implies (ii), it is enough to show for (i). Fix i ∈ M. For every
fixed δ > 0 and n > (2 logM)/δ, we have �(i)

n /n > l(i) − δ ⇐⇒ ∑

j∈M0\{i} e
−�n(i,j) <

e−n(l(i)−δ)

⇐� e−�n(i,j) <
e−n(l(i)−δ)

M
, ∀j ∈ M0 \ {i}

⇐⇒ �n(i, j)

n
> l(i) − δ + logM

n
, ∀j ∈ M0 \ {i}

⇐� �n(i, j)

n
> l(i, j) − δ + logM

n
, ∀j ∈ M0 \ {i}

⇐� �n(i, j)

n
> l(i, j) − δ

2
, ∀j ∈ M0 \ {i}.

Let Tδ(i) := inf{n ≥ 1 : infk≥n(�
(i)
k /k) > l(i)−δ} and Tδ(i, j) := inf{n ≥ 1 : infk≥n(�k(i, j)/

k) > l(i, j) − δ} for j ∈ M0 \ {i} and δ > 0. Then Tδ(i) ≤ (maxj∈M0\{i} Tδ/2(i, j)) ∨
(2 logM)/δ, and
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Ei

[(

Tδ(i)
)r]≤ Ei

[

max
j∈M0\{i}

(

Tδ/2(i, j)
)r ∨

(

2 logM

δ

)r]

≤
∑

j∈M0\{i}
Ei

[(

Tδ/2(i, j)
)r]+

(

2 logM

δ

)r

< ∞

for every δ > 0, because r-quick- lim infn↑∞(�n(i, j)/n) ≥ l(i, j) under Pi for every j ∈
M0 \ {i}. Therefore, r-quick- lim infn↑∞ �(i)

n /n ≥ l(i) under Pi for every i ∈ M.

A.8 Proof of Lemma 3.17

The proof requires the following three lemmas.

Lemma A.1 For every i ∈ M, j ∈ M0 \ {i}, L > 0, c > 1, we have

inf
(τ,d)∈
(R)

Pi{τ − θ > L} ≥ 1 −
∑

j∈M0\{i} Rji

νi

− ecLl(i,j)

νi

Rji

− Pi

{

sup
n≤θ+L

�n(i, j) > cLl(i, j)
}

.

Proof By Proposition 2.4, Rji(τ, d) = νiEi[1{d=i,θ≤τ<∞}e−�τ (i,j)] = E[1{μ=i,θ≤τ<∞,d=i} ·
e−�τ (i,j)], and

Rji(τ, d) ≥ E
[

1{μ=i,θ≤τ≤θ+L,d=i,�τ (i,j)<B}e−�τ (i,j)
]

≥ e−B
P
{

μ = i, θ ≤ τ ≤ θ + L,d = i,�τ (i, j) < B
}

≥ e−B
(

P{μ = i, θ ≤ τ < ∞, d = i} − P{μ = i, θ + L < τ < ∞}
− P

{

μ = i, sup
n≤θ+L

�n(i, j) > B
})

,

for every fixed B > 0. Hence, we have P{μ = i, τ − θ > L} ≥ P{μ = i, θ + L < τ <

∞} ≥ P{μ = i, θ ≤ τ < ∞, d = i}− eBRji(τ, d)−P{μ = i, supn≤θ+L �n(i, j) > B} = νi −
νiR

(1)
i (τ, d) − eBRji(τ, d) − P{μ = i, supn≤θ+L �n(i, j) > B}. Dividing by νi = P{μ = i}

gives Pi{τ −θ > L} ≥ 1−R
(1)
i (τ, d)− eB

νi
Rji(τ, d)−Pi{supn≤θ+L �n(i, j) > B}. By setting

B = cLl(i, j) and taking infimum on both sides,

inf
(τ,d)∈
(R)

Pi{τ − θ > L} ≥ 1 − sup
(τ,d)∈
(R)

R
(1)
i (τ, d) − ecLl(i,j)

νi

sup
(τ,d)∈
(R)

Rji(τ, d)

− Pi

{

sup
n≤θ+L

�n(i, j) > cLl(i, j)
}

.

Now the lemma holds because (τ, d) ∈ 
(R) implies that R
(1)
i (τ, d) ≤

∑

j∈M0\{i} Rji

νi
and

Rji(τ, d) ≤ Rji . �

Lemma A.2 For every i ∈ M and c > 1, we have Pi{supn≤θ+L �n(i, j (i)) > cLl(i)} L↑∞−−−→
0.

Proof Since �n(i, j (i))/n converges Pi -a.s. to l(i) as n ↑ ∞ by Assumption 3.7, there is
Pi -a.s. finite Kc such that supn>Kc

�n(i,j (i))+
n

= supn>Kc

�n(i,j (i))

n
< (1 + (c − 1)/2)l(i), Pi -

a.s. Moreover, Pi{supn≤θ+L �n(i, j (i)) > cLl(i)} ≤
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Pi

{

sup
n≤θ+L

�n

(

i, j (i)
)

+ > cLl(i)
}

≤ Pi

{

sup
n≤Kc

�n

(

i, j (i)
)

+ + sup
Kc<n≤θ+L

n
�n(i, j (i))+

n
> cLl(i)

}

≤ Pi

{

sup
n≤Kc

�n

(

i, j (i)
)

+ + (θ + L) sup
Kc<n≤θ+L

�n(i, j (i))+
n

> cLl(i)

}

≤ Pi (FL)

(64)

where FL := { supn≤Kc
�n(i,j (i))+
L

+ θ+L
L

supn>Kc

�n(i,j (i))+
n

> cl(i)}. Because both Kc and θ are
Pi -a.s. finite,

lim
L↑∞

[

supn≤Kc
�n(i, j (i))+
L

+ θ + L

L
sup
n>Kc

�n(i, j (i))+
n

]

= sup
n>Kc

�n(i, j (i))+
n

<

(

1 + c − 1

2

)

l(i) < cl(i), Pi-a.s.

by Remark 2.2. Thus, 1FL
→ 0 as L ↑ ∞ Pi -a.s., implying Pi (FL)

L↑∞−−−→ 0, and the claim
holds by (64). �

Lemma A.3 For every 0 < δ < 1, i ∈ M and j (i), lim infRi↓0 inf(τ,d)∈
(R) Pi{τ − θ ≥
δ

| log(Rj (i)i /νi )|
l(i)

} ≥ 1.

Proof Fix 0 < Rj(i)i < νi . Then − log(Rj(i)i/νi) = | log(Rj(i)i/νi)|. If in Lemma A.1 we set
j = j (i), L := L(Rj(i)i) = δ| log(Rj(i)i/νi)|/l(i), and choose c > 1 such that 0 < cδ < 1,
then we have

inf
(τ,d)∈
(R)

Pi

{

τ − θ ≥ δ
| log(Rj(i)i/νi)|

l(i)

}

≥ 1 −
∑

j∈M0\{i} Rj(i)i

νi

−
(

Rj(i)i

νi

)1−cδ

− Pi

{

sup
n≤θ+L

�n

(

i, j (i)
)

> cLl(i)
}

,

which is 1 − o(1) as Ri ↓ 0, because 0 < 1 − cδ < 1 and by Lemma A.2 noting that Ri ↓ 0
implies L ↑ ∞. �

Proof of Lemma 3.17 Fix a set of positive constants R, 0 < δ < 1 and (τ, d) ∈ 
. By Markov
inequality,

Ei

[

D
(m)
i (τ )

(| log(Rj(i)i/νi)|/l(i))m

]

≥ δPi

{

(τ − θ)m+
(| log(Rj(i)i/νi)|/l(i))m

≥ δ

}

= δPi

{

τ − θ ≥ δ
1
m

| log(Rj(i)i/νi)|
l(i)

}

.

By taking limits on both sides,

lim inf
Ri↓0

inf
(τ̃ ,d̃)∈
(R)

Ei

[

D
(m)
i (τ̃ )

(| log(Rj(i)i/νi)|/l(i))m

]

≥ δ lim inf
Ri↓0

inf
(τ̃ ,d̃)∈
(R)

Pi

{

τ̃ − θ ≥ δ
1
m

| log(Rj(i)i/νi)|
l(i)

}

,
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which is greater than or equal to δ by Lemma A.3. The claim is proved because 0 < δ < 1
is arbitrary. �

A.9 Proof of Proposition 3.18

Assume on the contrary that lim infc↓0 inf(τ,d)∈
 R
(c,a,m)
i (τ, d)/g

(c)
i (Ai(c)) < 1, implying that

there is a decreasing subsequence (cn)n≥1 ↓ 0 and corresponding strategies (τ ∗
cn

, d∗
cn

) such
that

lim
n↑∞

R
(cn,a,m)
i (τ ∗

cn
, d∗

cn
)

g
(cn)
i (Ai(cn))

< 1. (65)

By (34), inf(τ,d)∈
 R
(cn,a,m)
i (τ, d) ≤ R

(cn,a,m)
i (τA(cn), dA(cn))

n↑∞−−−→ 0. Therefore,

‖R(τ ∗
cn

, d∗
cn

)‖ n↑∞−−−→ 0, where R(τ ∗
cn

, d∗
cn

) = (Rji(τ
∗
cn

, d∗
cn

))i∈M,j∈M0\{i} are the false alarm
and misdiagnosis probabilities corresponding to the strategy (τ ∗

cn
, d∗

cn
). Consequently,

Lemma 3.17 applies and we have D
(m)
i (τ ∗

cn
) ≥ inf(τ,d)∈
(R(τ∗

cn ,d∗
cn )) D

(m)
i (τ ) ≥

(| log(Rj(i)i (τ
∗
cn

, d∗
cn

)/νi)|/l(i))m(1 + o(1)), where o(1) ↓ 0 as n ↑ ∞. Finally,

R
(cn,a,m)
i (τ ∗

cn
, d∗

cn
) ≥ cnD

(m)
i (τ ∗

cn
) + aj(i)iRj (i)i (τ

∗
cn

, d∗
cn

)/νi ≥
cn

(∣

∣log
(

Rj(i)i

(

τ ∗
cn

, d∗
cn

)

/νi

)∣

∣/l(i)
)m(

1 + o(1)
)+ aj(i)iRj (i)i

(

τ ∗
cn

, d∗
cn

)

/νi

= g
(cn)
i log

(

Rj(i)i

(

τ ∗
cn

, d∗
cn

)

/νi

)(

1 + o(1)
)≥ g

(cn)
i

(

Ai(cn)
)(

1 + o(1)
)

,

where the last inequality follows from (33). However, this contradicts with (65), and the
proof is complete.

A.10 Proof of Lemma 4.3

By Lemma 4.2, it is sufficient to show that (|(1/n)
∑n

l=1 hij (Xl)|r )n≥1 is uniformly inte-
grable under Pi . The running sum

∑n

l=1 hij (Xl) is a random walk under both P
(∞) and

P
(0)
i , and it is uniformly integrable under both measures because (47) holds; see Gut

(1988, Theorem 4.1). Hence, it is also uniformly integrable as well under Pi because
EiZ ≤ E

(∞)Z + E
(0)
i Z for every random variable Z.

A.11 Proof of Lemma 4.5

We first prove the following.

Lemma A.4 Let (ξn)n≥1 be a positive stochastic process and T an a.s. finite random time
defined on the same probability space (�, E ,P). Given T , the random variables (ξn)n≥1 are
conditionally independent, and (ξn)1≤n≤T −1 and (ξn)n≥T have common conditional proba-
bility distributions P∞ and P0 on (R,B(R)), the expectations with respect to which are
denoted by E∞ and E0, respectively. Suppose that E∞[log ξ1] and E0[log ξ1] exist, and de-
fine

λ := E0[log ξ1], α := E∞[ξ1], β := E0[ξ1], γ := max{α,β},

�n := 1

n
log

n
∏

k=1

ξk, ψn := log

(

c +
n
∑

l=1

el�l

)

, ηn := ψn

n
, n ≥ 1

(66)

for some fixed constant c > 0. Then the followings results hold under P:
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(i) We have ηn
n↑∞−−−→ λ+ a.s.

(ii) If λ < 0, then the process ψn converges as n ↑ ∞ to a finite limit a.s.
(iii) If γ < ∞, then (|ηn|r )n≥1 is uniformly integrable.
(iv) If r ≥ 1 and max{E∞[| log ξ1|r ],E0[| log ξ1|r ]} < ∞, then (|�n|q)n≥1 is uniformly inte-

grable for every 0 ≤ q ≤ r .

Proof of Lemma A.4 Let ζn := log(
∏n

k=1 ξk) =∑n

k=1 log ξk . We will firstly prove (i)–(ii) by
considering cases −∞ < λ < 0, 0 ≤ λ < ∞, λ = ∞, and λ = −∞, separately.

Case 1: −∞ < λ < 0. First, because ηn ≥ (1/n) log e�1 = �1/n = (log ξ1)/n, we have
lim infn↑∞ ηn ≥ 0 a.s. It is, therefore, enough to prove that its limit superior is less than or
equal to zero.

By the SLLN and because T is a.s. finite, the exceptional set �0 := {ω ∈ � : ζn(ω)/n �

λ or T (ω) = ∞} has zero measure. Fix ω ∈ � \ �0 and choose sufficiently small ε > 0
such that λ + ε < 0. Then we can choose Nε(ω) ≥ T (ω) such that, for every k ≥ Nε(ω),
ζk(ω)−ζT (ω)−1(ω)

k−(T (ω)−1)
< λ + ε < 0. For every n ≥ Nε(ω),

eψn(ω) = c +
n
∑

k=1

eζk(ω) = c +
Nε(ω)−1
∑

k=1

eζk(ω) +
n
∑

k=Nε(ω)

eζk(ω). (67)

Because λ + ε < 0,

n
∑

k=Nε(ω)

eζk(ω) = eζT (ω)−1(ω)

n
∑

k=Nε(ω)

eζk(ω)−ζT (ω)−1(ω) ≤ eζT (ω)−1(ω)

n
∑

k=Nε(ω)

e(k−T (ω)+1)(λ+ε)

= eζT (ω)−1(ω)+(−T (ω)+1)(λ+ε)

n
∑

k=Nε(ω)

ek(λ+ε) ≤ eζT (ω)−1(ω)+(−T (ω)+1)(λ+ε)

∞
∑

k=0

ek(λ+ε)

which equals eζT (ω)−1(ω)+(−T (ω)+1)(λ+ε)/(1 − eλ+ε) and hence (67) is bounded by B(ω) :=
c+∑Nε(ω)−1

k=1 eζk(ω)+(eζT (ω)−1(ω)+(−T (ω)+1)(λ+ε))/(1 − eλ+ε) < ∞, independently of n. There-
fore, lim supn↑∞ ηn(ω) = lim supn↑∞(ψn(ω)/n) ≤ lim supn↑∞(logB(ω)/n) = 0, as desired.
Because P(� \ �0) = 1, we have lim supn↑∞ ηn ≤ 0 a.s. Finally, because ψn(ω) ≤ logB(ω)

for every n ≥ Nε(ω) for a.e. ω and because ψn is increasing in n, ψn converges to a finite
limit a.s.

Case 2: 0 ≤ λ < ∞. First note that, the SLLN and the finiteness of T imply
ηn ≥ 1

n
log(ξ1 · · · ξn) = 1

n

∑T −1
k=1 log ξk + n−T +1

n
· 1

n−T +1

∑n

k=T log ξk

a.s.−−−−→
n↑∞ λ; therefore,

lim infn↑∞ ηn ≥ λ a.s. It is now sufficient to show that lim supn↑∞ ηn − λ ≤ 0.
Fix any realization ω ∈ � \ �0 and ε > 0, where �0 is defined in Case 1. Let Nε(ω) ≥

T (ω) be such that

k ≥ Nε(ω) �⇒ ζk(ω) − ζT (ω)−1(ω)

k − (T (ω) − 1)
< λ + ε. (68)

Then for every n ≥ Nε(ω),

ηn(ω) − λ = 1

n
log

(

c +
n
∑

k=1

eζk(ω)

)

− λ

= 1

n
log

(

ce−nλ +
Nε(ω)−1
∑

k=1

eζk(ω)−nλ +
n
∑

k=Nε(ω)

eζk(ω)−nλ

)
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= 1

n
log

(

ce−nλ +
Nε(ω)−1
∑

k=1

eζk(ω)−nλ + eζT (ω)−1(ω)

n
∑

k=Nε(ω)

eζk(ω)−ζT (ω)−1(ω)−nλ

)

<
1

n
log

(

ce−nλ +
Nε(ω)−1
∑

k=1

eζk(ω)−nλ + eζT (ω)−1(ω)+(−T (ω)+1)(λ+ε) e
ε(n+1)

eε − 1

)

,

where the last inequality holds because by (68)

n
∑

k=Nε(ω)

eζk(ω)−ζT (ω)−1(ω)−nλ <

n
∑

k=Nε(ω)

e(k−T (ω)+1)(λ+ε)−nλ = e(−T (ω)+1)(λ+ε)

n
∑

k=Nε(ω)

ek(λ+ε)−nλ

≤ e(−T (ω)+1)(λ+ε)

n
∑

k=Nε(ω)

ek(λ+ε)−kλ ≤ e(−T (ω)+1)(λ+ε)

n
∑

k=0

ekε

< e(−T (ω)+1)(λ+ε) e
ε(n+1)

eε − 1
.

Moreover, for n ≥ τ̃ε(ω) := Nε(ω) ∨ [log(c + ∑Nε(ω)−1
k=1 eζk(ω))/λ], we have ce−nλ +

∑Nε(ω)−1
k=1 eζk(ω)−nλ ≤ 1; thus, letting A(ω) := ζT (ω)−1(ω) + (−T (ω) + 1)(λ + ε) gives

ηn(ω) − λ <
1

n
log

(

1 + eA(ω) e
ε(n+1)

eε − 1

)

= 1

n
log

(

eA(ω)+ε(n+1) 1

eε − 1

(

1 + eε − 1

eA(ω)+ε(n+1)

))

= 1

n

[

A(ω) + ε(n + 1) − log
(

eε − 1
)

+ log

(

1 + eε − 1

eA(ω)+ε(n+1)

)]

n↑∞−−−→ ε.

Because ε > 0 is arbitrary and P(� \ �0) = 1, we have lim supn↑∞ ηn − λ ≤ 0, a.s.
Case 3: λ = −∞. For m ∈ (0,1), n ≥ 1, define ξ (m)

n := m ∨ ξn ≥ m. Because −∞ =
E0[log ξ1] = E0[(log ξ1)+]−E0[(log ξ1)−], we have E0[(log ξ1)+] < ∞ and E0[(log ξ1)−] =
∞. Consequently, E0[(log ξ

(m)

1 )+] = E0[(logm ∨ log ξ1)+] = E0[(log ξ1)+] < ∞, and
E0[(log ξ

(m)

1 )−] = E0[(logm ∨ log ξ1)−] = E0[(logm)− ∧ (log ξ1)−] ≤ (logm)− < ∞.
Hence, λ(m) := E0[log ξ

(m)

1 ] is well-defined and

λ(m) = E0

[(

log ξ
(m)

1

)

+
]− E0

[(

log ξ
(m)

1

)

−
]= E0

[

(log ξ1)+
]− E0

[(

log ξ
(m)

1

)

−
]

(69)

for every m ∈ (0,1). Because 0 ≤ (log ξ
(m)

1 )− = (logm)− ∧ (log ξ1)− ↑ (log ξ1)− as m ↓ 0,
the monotone convergence theorem implies that limm↓0 E0[(log ξ

(m)

1 )−] = E0[(log ξ1)−] =
∞. Therefore, there exists m0 ∈ (0,1) such that for every m ≥ m0, E0[(log ξ

(m)

1 )−] >

E0[(log ξ1)+], and λ(m) ∈ (−∞,0) by (69). Now define ψ(m)
n := log(c + ξ

(m)

1 + ξ
(m)

1 ξ
(m)

2 +
· · · + ξ

(m)

1 · · · ξ (m)
n ) and η(m)

n := 1
n
ψ(m)

n for every n ≥ 1 and m ∈ (0,1). By Case 1,
limn↑∞ ψ(m)

n < ∞ and limn↑∞ η(m)
n = 0 a.s. for every m ≥ m0.

Because n �→ ψn is increasing, limn↑∞ ψn exists and log c ≤ ψn ≤ ψ
(m0)
n for all n ≥ 0

(note ξn ≤ ξ (m)
n , n ≥ 0), we have log c ≤ limn↑∞ ψn ≤ limn↑∞ ψ

(m0)
n . Therefore, limn↑∞ ψn

is a finite random variable and ηn = ψn/n
n↑∞−−−→ 0 a.s.

Case 4: λ = ∞. For every M > 1 and n ≥ 1, define ξ (M)
n := M ∧ ξn ≤ M . Since ∞ =

E0[log ξ1] = E0[(log ξ1)+]−E0[(log ξ1)−], we have E0[(log ξ1)+] = ∞ and E0[(log ξ1)−] <

∞. Then E0[(log ξ
(M)

1 )−] = E0[(logM∧ log ξ1)−] = E0[(log ξ1)−] < ∞, and E0[(log ξ
(M)

1 )+]
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= E0[(logM ∧ log ξ1)+] = E0[(logM)+ ∧ (log ξ1)+] = E0[(logM) ∧ (log ξ1)+] ≤ logM <

∞. Hence, λ(M) := E0[log ξ
(M)

1 ] is well-defined and

λ(M) = E0

[(

log ξ
(M)

1

)

+
]− E0

[(

log ξ
(M)

1

)

−
]= E0

[(

log ξ
(M)

1

)

+
]− E0

[

(log ξ1)−
]

(70)

for every M ≥ 1. Because 0 ≤ (log ξ
(M)

1 )+ = (logM) ∧ (log ξ1)+ ↑ (log ξ1)+ as M ↑ ∞, the
monotone convergence theorem implies limM↑∞ E0[(log ξ

(M)

1 )+] = E0[(log ξ1)+] = ∞.
Therefore, there exists M0 > 1 such that for every M ≥ M0, E0[(log ξ

(M)

1 )+] >

E0[(log ξ1)−] and therefore, λ(M) ∈ (0,∞) by (70). Now, define ψ(M)
n := log(c + ξ

(M)

1 +
ξ

(M)

1 ξ
(M)

2 + · · · + ξ
(M)

1 · · · ξ (M)
n ) and η(M)

n := ψ(M)
n /n for every n ≥ 1 and M > 1. By Case 2,

limn↑∞ η(M)
n = λ(M)

P-a.s for M ≥ M0. Because ξn ≥ M ∧ ξn = ξ (M)
n , we have ψn ≥ ψ(M)

n

and ηn ≥ η(M)
n . Therefore, lim infn↑∞ ηn ≥ limn↑∞ η(M)

n = λ(M) for every M ≥ M0.
Finally, lim infn↑∞ ηn ≥ limM↑∞ λ(M) equals by (70) limM↑∞(E0[(log ξ

(M)

1 )+] −
E0[(log ξ

(M)

1 )−]) = E0[(log ξ1)+] − E0[(log ξ1)−] = E0[log ξ1] = λ = ∞, by monotone con-
vergence, which implies limn↑∞ ηn = λ = λ+. This completes the proof of (i)–(ii).

We now prove (iii) using the next sufficient condition for uniform integrability. �

Lemma A.5 (Woodroofe 1982) Let (Xn)n≥1 be a stochastic process and r ≥ 1 be fixed.
Then (|Xn|r )n≥1 is uniformly integrable if

∫∞
0 xr−1 supn≥1 P{|Xn| > x}dx < ∞.

Fix r ≥ 1. We will show that
∫ ∞

0 xr−1 supn≥1 P{|ηn|r > x}dx = ∫∞
0 xr−1 supn≥1 P{|ψn| >

nx1/r}dx < ∞, which implies the uniform integrability of (|ηn|r )n≥1 by Lemma A.5. Note
supn≥1 P{|ψn| > nx1/r} ≤ supn≥1 P{ψn < −nx1/r} + supn≥1 P{ψn > nx1/r}. Because ψn ≥
log c, we have P{ψn < −nx1/r} ≤ P{ψn < −x1/r} = 0 for every x ≥ | log c|r and n ≥ 1, and
hence

∫∞
0 xr−1 supn≥1 P{ψn < −nx1/r}dx ≤ ∫ | log c|r

0 xr−1dx < ∞.
On the other hand, because ξ1, ξ2, . . . are conditionally independent given T , and E[ξk |

T ] = α1{k≤T } + β1{k≥T } ≤ max{α,β} =: γ < ∞, Markov inequality gives

P
{

ψn > nx1/r
}= P

{

c +
n
∑

l=1

l
∏

k=1

ξk > enx1/r

}

≤ e−nx1/r

E

[

c +
n
∑

l=1

l
∏

k=1

ξk

]

= e−nx1/r

(

c +
n
∑

l=1

E

[

E

[

l
∏

k=1

ξk

∣

∣

∣

∣
T

]])

= e−nx1/r

(

c +
n
∑

l=1

E

[

l
∏

k=1

E[ξk|T ]
])

≤ e−nx1/r

(

c +
n
∑

l=1

γ l

)

≤ e−nx1/r

(

c +
n
∑

l=0

(1 + γ )l

)

= e−nx1/r

(

c + (1 + γ )n+1 − 1

γ

)

≤ e−nx1/r

(

c + 1 + γ

γ
(1 + γ )n

)

≤ e−nx1/r

(

c + 1 + γ

γ

)

(1 + γ )n

≤ e−n(x1/r−γ )
(

c + (1 + γ )/γ
)

≤ e−(x1/r−γ )
(

c + (1 + γ )/γ
)

for every x ≥ γ r and n ≥ 1.

Therefore,
∫∞

0 xr−1 supn≥1 P{ψn > nx1/r}dx ≤ ∫ γ r

0 xr−1dx + (c+ 1+γ

γ
)
∫ ∞

γ r xr−1e−(x1/r−γ )dx

= 1
r
γ r2 + (c + 1+γ

γ
)reγ

∫ ∞
γ

yr2−1e−ydy < ∞, which completes the proofs of (iii).
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Finally, for the proof of (iv), note �n = 1
n

∑n

k=1 log ξk and |�n|r ≤ ( 1
n

∑n

k=1 | log ξk|)r ≤
1
n

∑n

k=1 | log ξk|r since r ≥ 1 and x �→ xr is convex on x ∈ R+. Since E(| log ξk|r | T ) ≤
max{E∞[| log ξ1|r ],E0[| log ξ1|r ]} for every k ≥ 1,

E|�n|r ≤ E

[

1

n

n
∑

k=1

| log ξk|r
]

= 1

n

n
∑

k=1

E
[

E
(| log ξk|r | T )]≤ max

{

E∞
[| log ξ1|r

]

,E0
[| log ξ1|r

]}

< ∞

for every n ≥ 1, and supn≥1 E|�n|r < ∞. Moreover, for every ε > 0, there exists some δ > 0
such that max{P∞(A),P0(A)} < δ implies that max{E∞[| log ξ1|r1A],E0[| log ξ1|r1A]} < ε,
and

E
[|�n|r1A

]≤ 1

n

n
∑

k=1

E
[| log ξk|r1A

]≤ 1

n

n
∑

k=1

E
[

E
(| log ξk|r1A | T )]

≤ max
{

E∞
[| log ξ1|r1A

]

,E0

[| log ξ1|r1A

]}

< ε

for every n ≥ 1, which also implies, together with the boundedness of (E|�n|r )n≥1, that
(|�n|r )n≥1 is uniformly integrable. This completes the proof of (iv) and the lemma. �

Now we are ready to prove Lemma 4.5. Note that for every j ∈ M and n ≥ 2,

L(j)
n = log

[

p0 + (1 − p0)p

n
∑

k=1

k−1
∏

l=1

(

(1 − p)
f0(Xl)

fj (Xl)

)
]

= log

[

p0 + (1 − p0)p + (1 − p0)p

n−1
∑

k=1

k
∏

l=1

(

(1 − p)
f0(Xl)

fj (Xl)

)
]

= log
[

(1 − p0)p
]+ log

[

p0 + (1 − p0)p

(1 − p0)p
+

n−1
∑

k=1

k
∏

l=1

(

(1 − p)
f0(Xl)

fj (Xl)

)
]

= log
[

(1 − p0)p
]+ ψn−1

if in (66) we set ξl := (1 − p)
f0(Xl )

fj (Xl )
and c := p0+(1−p0)p

(1−p0)p
> 0.

Given that μ = i and θ = t for any fixed i ∈ M and t ≥ 1, the random variables
ξt , ξt+1, . . . are conditionally i.i.d. with a common distribution independent of t ; thus, the
change time θ plays the role of the random time T in Lemma A.4. Then by Lemma A.4

(i) and (38) we have L
(j)
n /n

Pi−a.s.−−−−→
n↑∞ (E

(0)
i [log((1 − p)

f0(X1)

fj (X1)
)])+ = [q(i, j) − q(i,0) − �]+,

which proves (ii) immediately if j ∈ M \ {i}, and (i) and (iv) by Lemma A.4 (ii) if j = i

after noticing that E
(0)
i [log((1 − p)

f0(X1)

fi (X1)
)] = q(i, i) − q(i,0) − � = −q(i,0) − � < 0, by

(37). Similarly, if j ∈ �i , (v) holds by Lemma A.4 (ii), since E
(0)
i [log((1 − p)

f0(X1)

fj (X1)
)] =

q(i, j) − q(i,0) − � < 0 by the definition of �i . By (40), the SLLN and (ii),

1

n
K(j)

n = 1

n

n∧(θ−1)
∑

l=1

log

(

1

1 − p

fj (Xl)

f0(Xl)

)

+ 1

n

n
∑

l=θ∧n

log

(

1

1 − p

fj (Xl)

f0(Xl)

)

+ 1

n
L(j)

n

Pi -a.s.−−−−→
n↑∞ 0 − q(i, j) + q(i,0) + � + [

q(i, j) − q(i,0) − �
]

+,
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which equals [q(i, j) − q(i,0) − �]− and proves (iii). For the proof of (vi), note that by
Minkowski’s inequality

∣

∣

∣

∣

1

n
L(j)

n

∣

∣

∣

∣

r

=
∣

∣

∣

∣

log[(1 − p0)p]
n

+ n − 1

n

ψn−1

n − 1

∣

∣

∣

∣

r

≤
(∣

∣

∣

∣

log[(1 − p0)p]
n

∣

∣

∣

∣
+
∣

∣

∣

∣

n − 1

n

ψn−1

n − 1

∣

∣

∣

∣

)r

≤ 2r−1

(∣

∣

∣

∣

log[(1 − p0)p]
n

∣

∣

∣

∣

r

+
∣

∣

∣

∣

n − 1

n

∣

∣

∣

∣

r ∣
∣

∣

∣

ψn−1

n − 1

∣

∣

∣

∣

r)

≤ 2r−1

(∣

∣

∣

∣

log[(1 − p0)p]
n

∣

∣

∣

∣

r

+
∣

∣

∣

∣

ψn−1

n − 1

∣

∣

∣

∣

r)

.

Because (| log[(1−p0)p]/n|r )n≥1 is bounded, and according to Lemma A.4 (iii) the process
(|ψn/n|r )n≥1 is uniformly integrable under Pi for every r ≥ 1 when (48) is satisfied, we have
(vi). Finally, for the proof of (vii), (40) implies

∣

∣

∣

∣

1

n
K(j)

n

∣

∣

∣

∣

r

=
∣

∣

∣

∣

∣

1

n
log

n
∏

k=1

(

1

1 − p

fj (Xk)

f0(Xk)

)

+ 1

n
L(j)

n

∣

∣

∣

∣

∣

r

≤ 2r−1

(∣

∣

∣

∣

∣

1

n
log

n
∏

k=1

(

1

1 − p

fj (Xk)

f0(Xk)

)
∣

∣

∣

∣

∣

r

+
∣

∣

∣

∣

1

n
L(j)

n

∣

∣

∣

∣

r
)

.

Because (48) holds, (|L(j)
n /n|)n≥1 is uniformly integrable by (vi). If we set ξk := [1/(1 −

p)][fj (Xk)/f0(Xk)] for every k ≥ 1 in (66), then (49) and Lemma A.4 (iv) imply that

(| 1
n

log
∏n

k=1(
1

1−p

fj (Xk)

f0(Xk)
)|r )n≥1 is uniformly integrable. Therefore, (|K(j)

n /n|r )n≥1 is uni-
formly integrable, and the proof of (vii) is complete.

A.12 Proof of Lemma 5.1

It is sufficient to prove that H
(a)
i (Ai) in (52) converges in distribution as Ai ↓ 0 to Wi −

logaj(i)i under Pi and that H
(a)
i (Ai) is bounded from below by some constant.

Because G
(a)
i (n) =∑

j∈M0\{i} ajie
−�n(i,j) = (

∑

j∈M0\{i} e
−�n(i,j))Mi(n) for every n ≥ 1,

where Mi(n) := (
∑

j∈M0\{i} ajie
−�n(i,j))/(

∑

j∈M0\{i} e
−�n(i,j)), we have by (15)

− logG
(a)
i

(

τ
(i)
A

)+ logAi = Wi(Ai) − logMi

(

τ
(i)
A

)

. (71)

Because j (i) is unique and �n(i, j)/n
Pi -a.s.−−−−→
n↑∞ l(i, j) for every j ∈ M0 \ {i} and l(i) <

l(i, j) for every j ∈ M0 \ {i, j (i)}, we have

Mi(n) = aj(i)i +∑

j∈M0\{i,j (i)} aji exp(n[�n(i,j (i))

n
− �n(i,j)

n
])

1 +∑

j∈M0\{i,j (i)} exp(n[�n(i,j (i))

n
− �n(i,j)

n
])

Pi -a.s.−−−−→
n↑∞ aj(i)i .

Because τ
(i)
A

Pi -a.s.−−−−→
Ai↓0

∞ by Proposition 3.6, this implies − log(Mi(τ
(i)
A ))

Pi -a.s.−−−−→
Ai↓0

− logaj(i)i .

By Proposition 3.4, Pi{dA = i, θ ≤ τA < ∞} = 1 − 1
νi

∑

j∈M0\{i} Rji(τA, dA) converges to 1
as Ai ↓ 0; i.e., 1{dA=i,θ≤τA<∞} converges in probability under Pi to 1. These together with
the assumption on the convergence of Wi(Ai) show the convergence of H

(a)
i (Ai). Finally,

because (71) is bounded from below by − logai and − log 1{dA=i,θ≤τA<∞} ≥ 0, H
(a)
i (Ai) is

bounded from below by − logai .
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A.13 Proof of Lemma 5.6

It is sufficient to show that ξn(i, j (i)) converges P
(t)
i -a.s. to a finite random variable by

Remarks 2.5 and 5.4. Firstly, because j (i) is unique, j (i) ∈ �i by Remark 4.10 (iii). Con-
sequently, εn(i, j (i)) converges P

(t)
i -a.s. to a finite random variable by Lemma 4.5 (iv) and

(v). Secondly, ηn(i, j (i)) converges P
(t)
i -a.s. to zero by Propositions 3.7 and 3.8. Finally,

limn↑∞
∑n∧(θ−1)

l=1 log(fi(Xl)/fj(i)(Xl)) exists P
(t)
i -a.s. and equals P

(t)
i -a.s. finite random vari-

able
∑θ−1

l=1 log(fi(Xl)/fj(i)(Xl)).

A.14 Proof of Lemma 5.8

Let g : R �→ R be continuous and bounded. By the bounded convergence theorem and
Lemma 5.7,

lim
Ai↓0

Ei

[

g
(

Wi(Ai)
)]= lim

Ai↓0

∞
∑

t=0

Pi{θ = t}E(t)
i

[

g
(

Wi(Ai)
)]

=
∞
∑

t=0

Pi{θ = t}E(t)
i

[

g
(

W
(t)
i

)]=
∞
∑

t=0

Pi{θ = t}E(0)
i

[

g
(

W
(0)
i

)]

= E
(0)
i

[

g
(

W
(0)
i

)]= Ei

[

g(Wi)
]

.
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