
MIT Open Access Articles

Q-learning and policy iteration algorithms
for stochastic shortest path problems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Yu, Huizhen, and Dimitri P. Bertsekas. “Q-Learning and Policy Iteration Algorithms for
Stochastic Shortest Path Problems.” Annals of Operations Research 208, no. 1 (April 18, 2012):
95–132.

As Published: http://dx.doi.org/10.1007/s10479-012-1128-z

Publisher: Springer-Verlag

Persistent URL: http://hdl.handle.net/1721.1/93745

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/93745
http://creativecommons.org/licenses/by-nc-sa/4.0/

LIDS REPORT 2871 1

Q-Learning and Policy Iteration Algorithms for

Stochastic Shortest Path Problems∗

Huizhen Yu† Dimitri P. Bertsekas‡

Abstract

We consider the stochastic shortest path problem, a classical finite-state Markovian decision
problem with a termination state, and we propose new convergent Q-learning algorithms that
combine elements of policy iteration and classical Q-learning/value iteration. These algorithms
are related to the ones introduced by the authors for discounted problems in [BY10b]. The
main difference from the standard policy iteration approach is in the policy evaluation phase:
instead of solving a linear system of equations, our algorithm solves an optimal stopping problem
inexactly with a finite number of value iterations. The main advantage over the standard Q-
learning approach is lower overhead: most iterations do not require a minimization over all
controls, in the spirit of modified policy iteration. We prove the convergence of asynchronous
deterministic and stochastic lookup table implementations of our method for undiscounted, total
cost stochastic shortest path problems. These implementations overcome some of the traditional
convergence difficulties of asynchronous modified policy iteration, and provide policy iteration-
like alternative Q-learning schemes with as reliable convergence as classical Q-learning. We also
discuss methods that use basis function approximations of Q-factors and we give an associated
error bound.

Sep 2011; revised Mar 2012

∗Work supported by the Air Force Grant FA9550-10-1-0412 and by NSF Grant ECCS-0801549.
†Huizhen Yu is with the Lab. for Information and Decision Systems, M.I.T., Cambridge, Mass., 02139.

janey yu@mit.edu
‡Dimitri Bertsekas is with the Dept. of Electr. Engineering and Comp. Science, and the Lab. for Information and

Decision Systems, M.I.T., Cambridge, Mass., 02139. dimitrib@mit.edu

1 Introduction

Stochastic shortest path (SSP) problems are a class of infinite horizon Markov decision processes
(MDP) with the total cost criterion. They involve Markov chains with control-dependent transition
probabilities and costs, and the objective is to reach a special destination state at minimum expected
cost. In this paper we consider SSP with a finite state and control space, and the mathematical
model is as follows. It involves a state space So = {0, 1, . . . , n}, with state 0 viewed as the destination
state. Let S = {1, . . . , n}, and let U(i) be the finite set of feasible controls at state i ∈ S. From
state i ∈ S under control u ∈ U(i), a transition to state j ∈ So occurs with probability pij(u) and
incurs a one-stage cost ĝ(i, u, j). At state 0 the control set is U(0) = {0}, and we have p00(0) = 1,
ĝ(0, 0, 0) = 0, i.e., 0 is an absorbing and cost-free state. The goal is to reach state 0 with minimal
total expected cost.

Policies of SSP are defined as in a standard MDP; however, a model assumption that ensures
the suitability of the total cost criterion, will later be placed on certain policies of the SSP. More
specifically, we denote a general history-dependent, randomized policy by π. A randomized Markov
policy is a policy of the form π = {ν0, ν1, . . .}, where each function νt, t = 0, 1, . . ., maps each state
i ∈ S to a probability distribution νt(· | i) over the set of feasible controls U(i). If in addition, all νt
are equal to some ν, π is said to be a stationary policy and is also denoted by ν. If all νt(· | i) assign
probability 1 to a single control µt(i), π is said to be deterministic, and if all µt are equal to some
µ, π is said to be deterministic stationary and is also denoted by µ. The set of all deterministic
stationary policies is denoted ΠSD. The notion of a proper policy will be used to classify policies of
SSP. In particular, let us call a policy proper, if under that policy the destination state 0 is reached
with probability 1 from every initial state, and improper otherwise.

We define the total cost of a policy π for initial state i ∈ S to be

Jπ(i) = lim inf
k→∞

Jπ,k(i)

with Jπ,k(i) being the expected k-stage costs of π for state i:

Jπ,k(i) = E

[
k−1∑
t=0

ĝ(it, ut, it+1)
∣∣∣ i0 = i

]
,

where it and ut denote the state and control, respectively, at time t, and the expectation is with
respect to the probability law of {i0, u0, . . . , ik} induced by π. The optimal cost at state i ∈ S,
denoted J∗(i), is the infimum of Jπ(i) over π, and the optimal cost vector J∗ is the vector with
components J∗(i), i = 1, . . . , n.

SSP problems have a long history and have been studied by several authors, starting with Eaton
and Zadeh [EZ62], who first introduced the problem and the notion of a proper policy. Veinott [Vei69]
derived some of the underlying contraction properties, attributing them to A. J. Hoffman. Derman
[Der70] and Whittle [Whi83], among others, have streamlined the analysis (they referred to the
problem as the “first passage problem,” “transient programming”). Bertsekas and Tsitsiklis [BT91]
analyzed finite-state SSP problems with a compact control space, and introduced the following model
assumption, which allows SSP to have both positive and negative one-stage costs. We will adopt
their SSP model assumption in this paper.

Assumption 1.1.

(i) There is at least one proper policy in ΠSD.

(ii) Any improper policy in ΠSD incurs infinite cost for at least one initial state.

Under this assumption, the optimal cost vector J∗ takes finite values and solves uniquely Bell-
man’s equation [BT91]. Furthermore, the fundamental value iteration (VI) and policy iteration (PI)

2

algorithms are valid : VI converges to the optimal cost vector, when started from an arbitrary initial
condition, and PI terminates with an optimal policy, when started from a proper policy. Interme-
diate between VI and PI is another important algorithm for MDP, the modified PI method. It is
similar to PI, but it performs policy evaluation approximately, with a finite number of value iteration
for the associated policy. For discounted MDP and other DP problems for which Bellman’s equa-
tion involves a sup-norm contraction, convergence of modified PI (with some form of synchronous
or regular order of state updates, including Gauss-Seidel variants) has been shown by Rothblum
[Rot79] (see also the more recent work by Canbolat and Rothblum [CR12]). For SSP problems
under Assumption 1.1, no such result is presently available, to our knowledge, and convergence of
modified PI is usually shown under certain restrictive assumptions, for example, by requiring that
the initial policy is proper and that the initial cost estimates are such that the convergence to the
optimal costs is monotonic from above (see e.g., [WB93, Put94, BT96, Ber07] for related accounts).

Simulation-based algorithms, commonly used for solving large MDP problems, often implement
VI, PI, or modified PI on the space of the so-called Q-factors, which are more convenient to work
with than costs in the context of sampling. These algorithms aim to find the optimal Q-factor
Q∗(i, u) of each state-control pair (i, u), i.e., the optimal cost starting from state i using u at the
first step and using an optimal policy thereafter. From the optimal Q-factors Q∗, the optimal costs
J∗ and an optimal policy can be identified. Mathematically, Q∗ and the deterministic versions of
VI, PI, and modified PI for Q-factors are equivalent to their standard counterparts for costs; one can
therefore deduce their properties in SSP problems, such as the optimality equation and convergence
guarantees, from the results on SSP and from the theory of total cost MDP (e.g., [BT91, Fei92, Put94,
Ber07]). These properties and deterministic algorithms form the basis for stochastic algorithms that
involve simulation, which due to stochastic noise, asynchronous computation, and above all, the
combination of both, have additional dimensions of complexity.

The classical Q-learning algorithm of Watkins [Wat89] is an asynchronous stochastic iterative
version of VI for Q-factors (see also textbook accounts in e.g., Bertsekas and Tsitsiklis [BT96], Sutton
and Barto [SB98]). It is analyzed by Tsitsiklis [Tsi94] as a special case of general asynchronous
stochastic approximation algorithms involving contraction or monotone nonexpansive mappings,
and it has strong convergence properties. Its convergence for discounted MDP was established in
[Tsi94], and for SSP under Assumption 1.1, it was established partially in [Tsi94] and fully in the
authors’ paper [YB11]. In contrast to the convergence guarantee of the VI-based classical Q-learning,
the convergence of asynchronous stochastic modified PI schemes for Q-factors is subject to serious
doubt because monotonic convergence is generally impossible to maintain in the stochastic setting.
Even for discounted MDP, asynchronous implementations of modified PI may fail to converge, as
shown through counterexamples by Williams and Baird [WB93]. We refer to [BT96, Section 5.4] for
an extensive discussion of this convergence issue. As explained there, with a malicious ordering of
the state-control pairs at which Q-factors and policies are updated, nonconvergence/cycling behavior
is possible.

Despite the difficulties just mentioned, asynchronous stochastic Q-learning algorithms, relating
to PI and modified PI, were proposed and proved to be convergent for discounted MDP by the
authors [BY10b]. These algorithms differ notably from the classical Q-learning algorithm in that
they iterate within the larger space of cost and Q-factor pairs (J,Q), and perform policy evaluation
via an optimal stopping problem, where J(i) plays the role of a stopping cost at state i. The
algorithms do not involve a minimization over all controls at every iteration, and therefore require
lower overhead per iteration than classical Q-learning, which is the generic advantage that modified
PI has over VI. Yet as shown in [BY10b], for discounted problems, they retain the strong convergence
guarantee that the classical Q-learning algorithm offers [Tsi94].

In this paper we adapt the algorithms of [BY10b] to solve SSP problems and we analyze their
properties. The case of SSP problems deserves separate investigation because of a major difference
from the discounted case: under the SSP model Assumption 1.1, the mappings underlying our

3

algorithms, as well as the mapping underlying the classical Q-learning algorithm, are nonexpansive
instead of contracting. A different line of analysis is thus needed, and it is not clear a priori to what
extent convergence properties that hold in discounted problems also hold for SSP problems, partly
because the conclusions one can obtain for monotone nonexpansive mappings are usually weaker
than those for contraction mappings. Indeed, the convergence of the classical Q-learning algorithm
under Assumption 1.1 has only recently been fully established in [YB11] by the authors; the analysis
there uses properties special to SSP to remove the boundedness condition on the Q-learning iterates
that is required in the convergence theorem of [Tsi94] for the case of SSP. Moreover in our context,
each algorithm is associated with multiple nonexpansive mappings instead of the single mapping of
the framework of [Tsi94]. Thus besides the need to study properties that are unique to the SSP
context, the convergence issues of our algorithms of [BY10b] are largely unsettled for SSP problems
prior to this work. Neither can their convergence for general SSP models be deduced from the
analysis of classical Q-learning in [Tsi94], nor can it be deduced from the authors’ earlier results for
discounted problems [BY10b].

In this work we first prove the convergence of the asynchronous deterministic version of our
Q-learning algorithm. We then address the convergence of our asynchronous stochastic Q-learning
algorithm using the framework of [Tsi94], to which we add proper extensions to address the use
of multiple mappings in an asynchronous stochastic approximation algorithm. Building on the
convergence results of [Tsi94] and the boundedness results of [YB11], we prove that the iterates
of our stochastic Q-learning algorithm are bounded and convergent under Assumption 1.1. Dis-
counted MDP and undiscounted SSP problems are the only two types of MDP for which classical
Q-learning with a totally asynchronous implementation is proved to converge. Thus with this paper
and [BY10b], we establish that our new PI-like Q-learning algorithms have convergence guarantees
that fully match those of the classical Q-learning algorithm.

The paper is organized as follows. In Section 2, we introduce the deterministic synchronous and
asynchronous forms of our Q-learning algorithm for the case of exact/lookup table representation of
Q-factors, and we discuss their connection with PI and VI. We also analyze basic properties of the
associated mappings and prove convergence of the algorithms. This section serves as the basis for the
subsequent sections. In Section 3, we introduce the asynchronous stochastic Q-learning algorithm,
and we establish its convergence. In Section 4, we discuss function approximation of costs and
Q-factors, including a simulation-based approximation algorithm, and we give an associated error
bound.

2 Deterministic Forms of New Q-Learning Algorithms

In this section, we introduce deterministic versions of our PI-like Q-learning algorithms, presenting
first a synchronous prototype algorithm and then its asynchronous implementations. We analyze
the mappings underlying the algorithms and provide a convergence proof for the general class of
SSP models satisfying Assumption 1.1. These deterministic algorithms and basic properties of their
associated mappings will be the basis for the development of stochastic algorithms in later sections.

We begin this section by introducing notation and the Bellman equation mappings associated
with VI and PI for Q-factors in SSP problems.

2.1 Background and Notation

We consider SSP problems whose models satisfy Assumption 1.1. In such an SSP, the optimal cost
function J∗ is finite-valued and it is the unique solution of the Bellman equation [BT91]:

J∗(i) = min
u∈U(i)

{
g(i, u) +

∑
j∈S

pij(u)J∗(j)
}
, i ∈ S, (2.1)

4

where g(i, u) =
∑
j∈So pij(u)ĝ(i, u, j) denotes the expected one-stage cost of applying control u at

state i. Any policy in ΠSD that minimizes the right-hand side for every state is an optimal policy
for the SSP. For a state i and feasible control u ∈ U(i), the optimal Q-factor Q∗(i, u) is the cost of
starting from state i, using u at the first step and using an optimal policy thereafter. The optimal
costs and optimal Q-factors are thus related by

J∗(i) = min
u∈U(i)

Q∗(i, u), i ∈ S, (2.2)

and
Q∗(i, u) = g(i, u) +

∑
j∈S

pij(u)J∗(j), i ∈ S, u ∈ U(i). (2.3)

Once the optimal Q-factors Q∗(i, u) have been computed, the optimal cost function J∗ and an
optimal policy in ΠSD can be identified by the minimization in Eq. (2.2).

Denote the set of all state and feasible control pairs by R =
{

(i, u) | i ∈ S, u ∈ U(i)
}

. Let

Q ∈ <|R| denote a vector with components Q(i, u): Q =
{
Q(i, u) | (i, u) ∈ R

}
, and let Q∗ denote

the vector of optimal Q-factors.

The relations (2.1)-(2.3) show that under Assumption 1.1, Q∗ is real-valued and solves uniquely
the equation,

Q = FQ, (2.4)

where F is the mapping given by

(FQ)(i, u) = g(i, u) +
∑
j∈S

pij(u) min
v∈U(j)

Q(j, v), (i, u) ∈ R. (2.5)

This is Bellman’s equation for Q-factors.1

For other policies, Q-factors can be similarly defined. In particular, for any policy µ ∈ ΠSD and
state-control pair (i, u) ∈ R, the Q-factor for µ and (i, u), denoted Qµ(i, u), is the cost of starting
from state i, applying control u, and afterwards following policy µ. When µ is a proper policy, these
Q-factors are finite-valued and solve uniquely the Bellman equation corresponding to µ,

Q = FµQ,

where Fµ is the mapping given by

(FµQ)(i, u) = g(i, u) +
∑
j∈S

pij(u)Q
(
j, µ(j)

)
, (i, u) ∈ R, (2.6)

and µ(j) denotes the control applied by the deterministic policy µ at state i.

When µ is a proper policy, Fµ is a weighted sup-norm contraction, with the norm and the modulus
of contraction depending on µ. If all policies in ΠSD are proper, then the Bellman equation mapping
F is also a weighted sup-norm contraction. Both facts follow from [BT96, Prop. 2.2, p. 23-24]. In
general, under the SSP model Assumption 1.1, F is not necessarily a contraction with respect to any
norm. Instead, it is only guaranteed to be nonexpansive with respect to the unweighted sup-norm,
and this is a source of analytical and algorithmic complications in SSP problems.

We specify some notational conventions. Throughout the paper, we adopt the following con-
vention for treating the termination state 0 in various equations and algorithms. We write the
optimality and other equations for all states except the cost-free and absorbing state 0, since for
that state the cost of any policy is 0. In our notation, for example, Q∗ = FQ∗ is Bellman’s equa-
tion after eliminating the terms involving state 0. (Note in particular that

∑
j∈S pij(u) ≤ 1 in

1That the Bellman equation (2.4) for Q-factors has a unique solution can alternatively be established by considering
an equivalent SSP problem on the state space R ∪ {(0, 0)} and applying the results of [BT91].

5

these equations.) For some of our algorithms, however, it will be simpler to use notation such as
J∗(0), J(0), or Q∗(0, 0), Q(0, 0), to refer to the cost and Q-factor at state 0 with control 0. There-
fore, for simplicity as well as convenience, we regard the space <n of cost vectors J∗ and J as the
n-dimensional subspace

{(
J(0), J(1), . . . , J(n)

)
| J(0) = 0

}
, embedded within <n+1, and we will

use the two notions interchangeably depending on the context. Similarly for Q-factors, we denote
Ro = R ∪

{
(0, 0)

}
, and we regard the space <|R| of Q∗ and Q as the |R|-dimensional subspace{

{Q(i, u) | (i, u) ∈ Ro}
∣∣Q(0, 0) = 0

}
, embedded within <|Ro|. We will use these two views inter-

changeably depending on the context. Furthermore, in the definition of any particular policy, we
will implicitly assume that the policy applies at state 0 the only available control, 0.

Generally, all vectors in our development are viewed as column vectors in some Euclidean space
<d of appropriate finite dimension d. All vector inequalities are meant to be componentwise.

2.2 A Prototype Algorithm

In its basic form, our algorithm operates on the joint cost/Q-factor space of (J,Q) and computes
iteratively a sequence (Jk, Qk), k ≥ 0, in a way reminiscent of PI, in order to find the optimal costs
and Q-factors (J∗, Q∗). The distinctive feature of the algorithm is that at the policy evaluation
phase of each iteration, Q-factors Qk are updated not by solving a linear equation Q = FµQ for
some policy µ [cf. Eq. (2.6)], but by solving exactly or inexactly a certain optimal stopping problem,
which is defined based on the progress of the algorithm. This phase involves mappings that are
characteristic to our algorithms and are defined as follows.

Let ΠSR denote the set of stationary randomized policies. For each ν ∈ ΠSR, let ν(u | i), where
(i, u) ∈ R, denote the probability of using control u at state i under ν. For a given J ∈ <|S| and
ν ∈ ΠSR, define a mapping FJ,ν : <|R| 7→ <|R| by

(FJ,νQ)(i, u) = g(i, u) +
∑
j∈S

pij(u)
∑

v∈U(j)

ν(v | j) min
{
J(j), Q(j, v)

}
, (i, u) ∈ R. (2.7)

The form of FJ,ν reveals its connection with an optimal stopping problem,2 which is defined on the
state space Ro, with the Markov chain being the same as the one induced by the randomized policy
ν in the SSP problem, and with the stopping costs specified by the vector J . In particular, at a state
(i, u) ∈ Ro, the probability of transition to state (j, v) ∈ Ro is pij(u)ν(v | j), the cost of stopping is
J(i), and the expected one-stage cost of continuation is g(i, u). The mapping FJ,ν and the equation
Q = FJ,νQ are in fact the Bellman operator and the Bellman equation of this optimal stopping
problem, respectively (they both are for the Q-factors associated with the continuation action; cf.
Footnote 2). When the SSP model satisfies Assumption 1.1, the equation Q = FJ,νQ has a unique
solution QJ,ν , which is the vector of optimal Q-factors (with the continuation action) of the optimal
stopping problem, and FmJ,νQ converges to QJ,ν for any initial Q. (Here by FmJ,ν we mean the m-fold

2 The type of optimal stopping problem we encounter here is the standard optimal stopping problem in MDP (see
e.g., [Put94]). It involves an uncontrolled finite-state Markov chain and the option to stop the process at any state.
Described in the MDP framework, it has two controls at each state: to continue the process and to stop the process.
Suppose the state space is S and the transition probabilities of the Markov chain are pij , i, j ∈ S. Then the Bellman
equation is

J(i) = min
{
c(i) , g(i) +

∑
j∈S

pijJ(j)
}
, i ∈ S,

where c(i) is the stopping cost and g(i) the expected one-stage cost for continuation at state i. Correspondingly, the
Bellman equation for Q-factors, with us standing for “to stop” and uc “to continue,” is given by

Q(i, us) = c(i), Q(i, uc) = g(i) +
∑
j∈S

pij min
{
c(j), Q(j, uc)

}
, i ∈ S,

and it is a system of equations in the Q-factors Q(i, uc) associated with the control “to continue.”

6

composition of FJ,ν with itself.) This fact will be helpful in understanding our algorithm. We state
it, together with another important property, in the following proposition.

Proposition 2.1. Under Assumption 1.1, the mapping FJ,ν given by Eq. (2.7) has the following
properties:

(i) For any J and ν ∈ ΠSR, FJ,ν has a unique fixed point QJ,ν , and limm→∞ FmJ,νQ = QJ,ν for

any Q ∈ <|R|.

(ii) For any ν ∈ ΠSR, Q∗ is the unique fixed point of FJ∗,ν , i.e., Q∗ = FJ∗,νQ
∗.

Proof. Due to its length, we give the proof of (i) in Appendix A. The uniqueness part in (ii) follows
from (i). We show here FJ∗,νQ

∗ = Q∗. By Eq. (2.2), J∗(j) ≤ Q∗(j, v) for all v ∈ U(j), j ∈ S, so by
Eqs. (2.7), (2.3),

(FJ∗,νQ
∗)(i, u) = g(i, u) +

∑
j∈S

pij(u)
∑

v∈U(j)

ν(v | j)J∗(j) = g(i, u) +
∑
j∈S

pij(u)J∗(j) = Q∗.

Our basic algorithm is as follows. At iteration k, given (Jk, Qk), the algorithm selects a random-
ized policy νk and computes Qk+1 by

Qk+1 = FmkJk,νk
Qk (2.8)

for some chosen integer mk ≥ 1. This is the policy evaluation phase. Subsequently the algorithm
computes Jk+1 by

Jk+1(i) = min
u∈U(i)

Qk+1(i, u), i ∈ S. (2.9)

This cost minimization step is analogous to the policy improvement phase.

To convey some intuition about the algorithm and its variants to be introduced shortly, we note
a correspondence between the Q-factors of the original SSP problem and the optimal Q-factors QJ,ν
of the optimal stopping problem associated with FJ,ν for a vector J and a randomized policy ν. If
J is the cost vector Jπ of some policy π (possibly randomized and history-dependent) in the SSP,
then QJ,ν is the Q-factor vector of a policy that switches optimally from following the policy ν to
following the policy π. This means that if ν is some trial policy and J(i) are costs known to be
achievable from each state i, by solving the corresponding optimal stopping problem Q = FJ,νQ for
policy evaluation, the “improving part” of ν can be taken into account, while the “non-improving
part” of ν can be avoided, when estimating the least costs that are attainable at each state. [In
particular, if J = J∗, then QJ,ν = Q∗ regardless of ν by Prop. 2.1(ii); similarly, if J ≈ J∗, we still
have QJ,ν ≈ Q∗ regardless of the choice of ν.] The property of FJ,ν just described is desirable in
model-free learning. There, due to the stochastic nature of the environment, one generally does not
obtain policies with successively improving performance over the entire state space. Moreover, in
addition to assessing the most promising policies, one also needs to try out other policies in order
to explore the environment. The ability of an algorithm to improve cost estimates incrementally, on
only parts of the state space at a time if necessary, with flexibility in the choice of policies, helps
to address the multiple objectives present in learning. Adding to this discussion the fact that fixed
point iterations with FJ,ν converge to QJ,ν under our SSP model assumption (Prop. 2.1(i)), our
motivation for using the mapping FJ,ν in the policy evaluation phase of the algorithm (2.8)-(2.9)
can be seen.

We note, however, that the character of the algorithm (2.8)-(2.9) is strongly affected by the choice
the randomized policies νk and the number mk of fixed point iterations in the policy evaluation
phases. As the preceding discussion already suggested, for the algorithm to have a strong PI charac-
ter, mk should not be too small, and νk should be chosen based on policy improvement: either νk+1

7

is equal to the policy µk+1 attaining the minimum in Eq. (2.9), or it is an “exploration-enhanced”
version of µk+1, which combines µk+1 with some policy, for example, the one that randomly samples
the control space.

Generally, depending on the choices of νk and mk, the behavior of the algorithm (2.8)-(2.9) is
intermediate between PI and VI. In particular, the algorithm (2.8)-(2.9) reduces to VI, if mk = 1,
or if νk has rather poor performance so that it is always better to take the stopping action in the
optimal stopping problem corresponding to FJk,νk . This is similar to the qualitative behavior of the
algorithm for discounted MDP; more detailed discussion can be found in [BY10b, Section 2], where
the algorithm was first proposed.

Under Assumption 1.1, the basic algorithm (2.8)-(2.9) converges to (J∗, Q∗) regardless of the
choices of νk and mk, and in particular, regardless of whether νk is proper. This is in contrast to PI
and modified PI, which need additional care to handle improper policies in SSP. The convergence of
our basic algorithm will be proved as a special case of the convergence of asynchronous algorithms
which we present next.

2.3 Deterministic Asynchronous Algorithms

The basic algorithm (2.8)-(2.9) may be viewed as synchronous in the sense that the Q-factors of
all state-control pairs are simultaneously updated at each iteration. In corresponding asynchronous
versions, J is updated selectively, for only some of the states, and Q is also updated at some iterations
and for some of the state-control pairs. Asynchronous algorithmic models are necessary for analysis
of PI algorithms where the states and state-control pairs at which J and Q are updated, respectively,
are generated by simulating the policy that is currently evaluated. Asynchronous models are also
needed for analysis of distributed algorithms involving a network of processors, each assigned a
subset of components of J and Q, and updating asynchronously these components.

An asynchronous implementation of the basic algorithm (2.8)-(2.9) is as follows. We generate a
sequence of pairs (Jk, Qk), starting from an arbitrary pair (J0, Q0). Given (Jk, Qk), to obtain the
next pair (Jk+1, Qk+1), we first select a randomized policy νk, a subset Rk of state-control pairs,
and a subset of states Sk such that Rk ∪ Sk 6= ∅. We then generate Qk+1 according to

Qk+1(i, u) =

{
(FJk,νk Qk)(i, u) if (i, u) ∈ Rk,

Qk(i, u) if (i, u) /∈ Rk,
(2.10)

and Jk+1 according to

Jk+1(i) =

{
minu∈U(i)Qk(i, u) if i ∈ Sk,

Jk(i) if i /∈ Sk.
(2.11)

The basic synchronous algorithm (2.8)-(2.9) is obtained from the above algorithm if we either update
all the costs but none of the Q-factors, or update none of the costs but all the Q-factors (possibly
multiple times with the same policy νk).

In an efficient implementation of the above method, the sets Sk are empty for many iterations
and only the update (2.10) is performed on Q-factors. Moreover, νk may be selected in special ways
to give the algorithm a PI character. For example, assume that a deterministic policy µk is also
maintained and νk = µk. The algorithm updates Q according to

Qk+1(i, u) =

{
(FJk,µkQk)(i, u) if (i, u) ∈ Rk,
Qk(i, u) if (i, u) /∈ Rk,

(2.12)

8

and it updates J and µ according to

Jk+1(i) = min
u∈U(i)

Qk(i, u), µk+1(i) ∈ arg min
u∈U(i)

Qk(i, u), if i ∈ Sk; (2.13)

Jk+1(i) = Jk(i), µk+1(i) = µk(i), if i /∈ Sk. (2.14)

We may view Eq. (2.12) as a policy evaluation iteration only for the state-control pairs in Rk, and
Eqs. (2.13)-(2.14) as a policy improvement iteration only for the states in Sk.

The algorithmic variant (2.12)-(2.14) resembles an asynchronous version of modified PI, but dif-
fers from the latter in a major way by employing the mappings FJk,µk instead of Fµk [cf. Eq. (2.6)].
Asynchronous modified PI in general does not have convergence guarantees without additional re-
strictions on policy types and the initial conditions, as demonstrated by the counterexamples of
Williams and Baird [WB93] for discounted MDP, (which can be viewed as special cases of SSP
problems). By contrast our algorithm (2.12)-(2.14) will be shown to be convergent for any policies
and initial conditions. This advantage over modified PI is not confined to Q-factor computation: an
algorithm similar to (2.12)-(2.14) that operates on costs instead of costs/Q-factors, was proposed
and proved convergent by the authors in [BY10a].

Our convergence result is stated in the proposition below for the general asynchronous algorithm
(2.10)-(2.11). The proof will be given in the next subsection.

Theorem 2.1. Under Assumption 1.1, any sequence
{

(Jk, Qk)
}

generated by iteration (2.10)-(2.11)
converges to (J∗, Q∗), if every state or state-control pair is included in the subset Sk or Rk, respec-
tively, for infinitely many k.

We note that there are more general versions of the algorithm (2.10)-(2.11), which can use cost/Q-
factor values generated at earlier times when updating (Jk, Qk) to (Jk+1, Qk+1). These variants are
natural for a parallel distributed implementation with a network of processors, where communication
delays between processors need to be taken into account. As algorithmic models, these variants also
entail an extension of the algorithm (2.10)-(2.11), which employs a different policy νk for each
selected state-control pair in the set Rk. We do not introduce these algorithms here, for the extra
notation needed can obscure the main ideas and the basic properties of our algorithms, which are
the focus of this section. However, we note that with slight modification, our proof of Theorem 2.1
can be extended to show the convergence of these asynchronous algorithms when communication
delays are present. (The framework of asynchronous distributed computation with delays will be
considered in Section 3, where the stochastic version of our algorithm is analyzed.)

2.4 Basic Properties of Mappings and Convergence Analysis

We analyze some basic properties of the mappings underlying the algorithms (2.8)-(2.9) and (2.10)-
(2.11), which ensure their convergence. Whereas before we were focusing primarily on the PI-type
properties of the algorithms, in this section we shift the emphasis to VI-type properties. In particular,
we will analyze properties relating to monotonicity, nonexpansiveness, fixed points, and in special
cases, contraction. This analysis shows that the convergence guarantee does not depend critically on
the choices of policies νk and subsets Sk, Rk, so in this sense our analysis has a worst-case character.

For the convergence analysis, it is more convenient to consider the joint space of (J,Q) and
introduce a set of mappings {Lν | ν ∈ ΠSR} on this space, which combine the policy evaluation
and policy improvement/cost minimization phases of the basic algorithm. More specifically, let
M : <|R| 7→ <|S| denote the operator of minimization of Q-factors over the controls feasible at each
state: for all Q ∈ <|R|,

(MQ)(i) = min
u∈U(i)

Q(i, u), i ∈ S. (2.15)

9

For each ν ∈ ΠSR, define a mapping Lν : <|S∪R| 7→ <|S∪R| by

Lν(J,Q) =
(
MQ, FJ,νQ

)
, (2.16)

i.e., Lν maps (J,Q) to (J ′, Q′) given by

J ′(i) =
(
MQ

)
(i) = min

u∈U(i)
Q(i, u), i ∈ S; Q′(i, u) = (FJ,νQ)(i, u), (i, u) ∈ R. (2.17)

The algorithms introduced earlier (as well as their more general variants) can be viewed as asyn-
chronous fixed point iterations with mappings Lν , whereby for each selected state or state-control
pair ` ∈ S ∪ R, we update the `th component of (J,Q) to be the `th component of Lν(J,Q) for
some mapping Lν , ν ∈ ΠSR, which may be chosen arbitrarily. Thus properties common to this set{
Lν | ν ∈ ΠSR

}
of mappings are important for the algorithmic analysis, and will be our focus below.

Let us introduce in addition two mappings associated with the set {Lν | ν ∈ ΠSR}, which will
play a key role in analyzing convergence in the presence of asynchrony. Define the mappings L and
L by taking componentwise supremum and infimum, respectively, of Lν(J,Q) over ν ∈ ΠSR, i.e., for
all x = (J,Q) ∈ <|S∪R|,

(Lx)(`) = sup
ν∈ΠSR

(Lνx)(`), (Lx)(`) = inf
ν∈ΠSR

(Lνx)(`), ∀ ` ∈ S ∪R. (2.18)

Stated more explicitly,

L(J,Q) =
(
MQ, F JQ

)
, L(J,Q) =

(
MQ, F JQ

)
,

where F J , F J are mappings given by for all (i, u) ∈ R,

(F JQ)(i, u) = sup
ν∈ΠSR

(FJ,νQ)(i, u) = g(i, u) +
∑
j∈S

pij(u) min

{
J(j), max

v∈U(j)
Q(j, v)

}
,

(F JQ)(i, u) = inf
ν∈ΠSR

(FJ,νQ)(i, u) = g(i, u) +
∑
j∈S

pij(u) min

{
J(j), min

v∈U(j)
Q(j, v)

}
.

Note that the componentwise supremum or infimum of Lν(J,Q) in the definition of L or L is attained
simultaneously for all components by some ν ∈ ΠSR. In other words, for any given (J,Q), there
exist some ν, ν ∈ ΠSR such that

L(J,Q) = Lν(J,Q), L(J,Q) = Lν(J,Q). (2.19)

Some basic properties of the mappings Lν , ν ∈ ΠSR, and L and L are given in the following
proposition.

Proposition 2.2. The mappings Lν , ν ∈ ΠSR given by Eq. (2.16), and their associated L,L map-
pings given by Eq. (2.18) are monotone and nonexpansive with respect to the sup-norm. Under
Assumption 1.1, they all have (J∗, Q∗) as their unique fixed point.

Proof. Consider any ν ∈ ΠSR and any two cost/Q-factor pairs (J1, Q1), (J2, Q2). If J1 ≤ J2 and
Q1 ≤ Q2, then by a direct calculation, MQ1 ≤ MQ2 and FJ1,νQ1 ≤ FJ2,νQ2, so Lν(J1, Q1) ≤
Lν(J2, Q2) and Lν is monotone. Observe that for any two sets of numbers {ai}i∈I , {bi}i∈I , where I
is an index set, |mini∈I ai −mini∈I bi| ≤ maxi∈I |ai − bi|.3 Using this fact, a direct calculation gives∥∥MQ1 −MQ2

∥∥
∞ ≤ ‖Q1 −Q2‖∞,

∥∥FJ1,νQ1 − FJ2,νQ2

∥∥
∞ ≤ max

{
‖J1 − J2‖∞ , ‖Q1 −Q2‖∞

}
,

3 The fact |mini∈I ai −mini∈I bi| ≤ maxi∈I |ai − bi| can be seen as follows. For every i ∈ I, since

ai ≤ bi + |ai − bi| ≤ bi + max
i′∈I
|ai′ − bi′ |,

we have mini∈I ai ≤ mini∈I bi + maxi∈I |ai − bi|. By the same argument, mini∈I bi ≤ mini∈I ai + maxi∈I |ai − bi|.
Hence, the desired inequality holds.

10

and therefore,∥∥Lν(J1, Q1)− Lν(J2, Q2)
∥∥
∞ ≤ max

{
‖J1 − J2‖∞ , ‖Q1 −Q2‖∞

}
=
∥∥(J1, Q1)− (J2, Q2)

∥∥
∞.

This shows that Lν is nonexpansive with respect to the sup-norm ‖ · ‖∞.

We now show that Lν has (J∗, Q∗) as its unique fixed point. Under Assumption 1.1, by Eq. (2.2)
and Prop. 2.1(ii), we have MQ∗ = J∗ and FJ∗,νQ

∗ = Q∗, so (J∗, Q∗) is a fixed point of Lν . Now
let (J̄ , Q̄) be any fixed point of Lν , i.e., J̄ = MQ̄ and Q̄ = FJ̄,νQ̄. Using the fact J̄ = MQ̄ and the
definition of the Bellman mapping F [cf. Eq. (2.4)], we obtain FJ̄,νQ̄ = FQ̄. So

Q̄ = FJ̄,νQ̄ = FQ̄,

implying that Q̄ is a fixed point of F . Since under Assumption 1.1 F has Q∗ as its unique fixed
point, Q̄ = Q∗. This in turn implies J̄ = MQ∗ = J∗ [cf. Eq. (2.2)]. Thus (J∗, Q∗) is the unique
fixed point of Lν .

Regarding the mappings L and L, as componentwise supremum and infimum of Lν(J,Q) over
ν, they inherit the following properties that are common to all mappings Lν : monotonicity and
nonexpansiveness with respect to ‖ · ‖∞, as well as having (J∗, Q∗) as their fixed point. It then
follows from Eq. (2.19) that L and L cannot have a fixed point other than (J∗, Q∗) [otherwise, some
mapping Lν would have a fixed point other than (J∗, Q∗)].

We now recall a simple convergence result about fixed point iterations involving a nonexpansive
mapping. The proof argument is standard and will also be used in the proof of Theorem 2.1 shortly.

Lemma 2.1. Let H be a monotone, nonexpansive (with respect to ‖ · ‖∞) operator on <d with a
unique fixed point x∗. Then limk→∞Hkx = x∗ for all x ∈ <d.

Proof. Let c > 0 and let e ∈ <d denote the vector of all ones. Consider yk = Hk(x∗ + ce).
Equivalently, y0 = x∗ + ce and yk = Hyk−1 for k ≥ 1. We show that {yk} converges monotonically
to x∗. Since H is monotone and nonexpansive,

x∗ = Hx∗ ≤ H(x∗ + ce) ≤ Hx∗ + ‖(x∗ + ce)− x∗‖∞ e = x∗ + ce,

i.e., x∗ ≤ y1 ≤ y0. From this and the monotonicity of Hk (implied by the monotonicity of H), we
have x∗ = Hkx∗ ≤ yk+1 ≤ yk. It follows that {yk} is monotonically nonincreasing and converges
to some ȳ ≥ x∗. Since H is continuous (as implied by the nonexpansiveness of H), the relation
yk = Hyk−1 for k ≥ 1 implies that ȳ = Hȳ, so ȳ = x∗ by the uniqueness of the fixed point of H.
Thus {yk} converges monotonically to x∗ from above.

Similarly, define zk = Hk(x∗ − ce), and by an argument symmetric to the above, {zk} converges
monotonically to x∗ from below. Now let c = ‖x − x∗‖∞ in the definition of yk and zk, and let
xk = Hkx. Then x∗ − ce ≤ x0 = x ≤ x∗ + ce, so by the monotonicity of Hk, zk ≤ xk ≤ yk for all k.
This implies that {xk} converges to x∗.

We can now prove Theorem 2.1 on the convergence of the deterministic versions of our algorithms.
Denote xk = (Jk, Qk). The algorithm (2.10)-(2.11) can be written equivalently as

xk+1(`) =

{(
Lνkxk

)
(`) if ` ∈ Sk ∪Rk,

xk(`) if ` 6∈ Sk ∪Rk.
(2.20)

Its convergence is the consequence of the general fact that any asynchronous iteration of this form
converges, if every component is updated infinitely often and if the mappings involved together with
their associated L,L mappings possess the properties listed in Prop. 2.2. The proof we give below

11

bears similarity to those in the literature for asynchronous distributed dynamic programming and
related algorithms (see e.g., Bertsekas [Ber82, Ber83]; see also [BT89, Tsi94, BT96]). We also note
that the convergence analysis of deterministic asynchronous versions of our algorithms with delays,
which we did not introduce, follows an essentially identical line.

Proof of Theorem 2.1. Let xk = (Jk, Qk) and x∗ = (J∗, Q∗), and consider the equivalent expres-
sion (2.20) of the algorithm (2.10)-(2.11). We want to show {xk} converges to x∗. To this end, let
c = ‖x0 − x∗‖∞ and define two sequences {yt}, {zt} by

yt = L
t
(x∗ + ce), zt = Lt(x∗ − ce), t ≥ 0,

where e ∈ <|S∪R| denotes the vector of all ones. By Prop. 2.2, L and L are monotone nonexpansive
mappings and have x∗ as their unique fixed point. Therefore, by Lemma 2.1 and its proof, {yt} and
{zt} converge to x∗ monotonically with

zt ≤ zt+1 ≤ x∗ ≤ yt+1 ≤ yt.

We show by induction that for all t ≥ 0, there exists a time kt such that

zt ≤ xk ≤ yt, ∀ k ≥ kt. (2.21)

This will imply the desired convergence of {xk} to x∗.

For t = 0, let k0 = 0. By induction on k we show z0 ≤ xk ≤ y0 for all k. The choice of c
ensures that x∗ − ce ≤ x0 ≤ x∗ + ce, so the inequality (2.21) holds trivially for k = 0. Now suppose
z0 ≤ xk ≤ y0 for some k. Consider each component of xk+1. For ` 6∈ Sk ∪ Rk, xk+1(`) = xk(`), so
z0(`) ≤ xk+1(`) ≤ y0(`) by the induction hypothesis. For ` ∈ Sk ∪Rk, xk+1(`) = (Lνkxk)(`). Using
the definition of L,L and their monotonicity property (Prop. 2.2), and using also the monotonicity
property of {yt} and of {zt}, we have

(Lνkxk)(`) ≤ (Lxk)(`) ≤ (Ly0)(`) = y1(`) ≤ y0(`), (2.22)

(Lνkxk)(`) ≥ (Lxk)(`) ≥ (Lz0)(`) = z1(`) ≥ z0(`), (2.23)

so z0(`) ≤ xk+1(`) ≤ y0(`) holds also for ` ∈ Sk ∪ Rk. This shows z0 ≤ xk+1 ≤ y0, completes the
induction on k, and proves the inequality (2.21) for t = 0.

We now use induction on t. Suppose the inequality (2.21) holds for some t. Consider each
` ∈ S∪R. By assumption, ` belongs to Sk∪Rk for infinitely many k, so there exists a time k(`) ≥ kt
such that ` ∈ Sk(`) ∪Rk(`). Then, similar to the derivation of Eq. (2.22), we have for k = k(`),

xk+1(`) = (Lνkxk)(`) ≤ (Lxk)(`) ≤ (Lyt)(`) = yt+1(`), (2.24)

where in the second inequality we also used the induction hypothesis that xk ≤ yt for all k ≥ kt.
We show by induction on k that xk+1(`) ≤ yt+1(`) for all k ≥ k(`). Indeed, suppose this is true
for some k̄ ≥ k(`). Then for k = k̄ + 1, if ` ∈ Sk ∪ Rk, the same reasoning leading to (2.24)
shows xk+1(`) ≤ yt+1(`), whereas if ` 6∈ Sk ∪ Rk, then xk+1(`) = xk(`) ≤ yt+1(`) by the induction
hypothesis. This establishes xk+1(`) ≤ yt+1(`) for all k ≥ k(`). By a similar, symmetric argument,
we have that for k = k(`),

xk+1(`) = (Lνkxk)(`) ≥ (Lxk)(`) ≥ (Lzt)(`) = zt+1(`),

and for all k ≥ k(`), xk+1(`) ≥ zt+1(`). Hence zt+1(`) ≤ xk+1(`) ≤ yt+1(`) for all k ≥ k(`). Letting
kt+1 = 1 + max`∈S∪R k(`), it follows that inequality (2.21) holds for t + 1 and the chosen kt+1.
This completes the induction on t and proves that the inequality (2.21) holds for all t. The proof is
complete.

12

Special SSP Models and Contraction Properties

We now consider the special class of SSP models where all policies are proper. For these models,
the various mappings associated with our algorithms also possess uniform sup-norm contraction
properties, which we now derive. These properties are stronger than those given in Prop. 2.2. They
will be useful in the convergence analysis and approximation-related error bounds. Qualitatively,
they also suggest that the algorithms can converge faster for this special class of SSP than for general
SSP which have improper policies.

To derive the uniform contraction properties, we note that when all policies in ΠSD are proper,
by [BT96, Prop. 2.2, p. 23-24], there exist a positive vector ξ ∈ <n and a positive scalar β < 1 such
that ∑

j∈S
pij(u) ξ(j) ≤ β ξ(i), ∀ (i, u) ∈ R. (2.25)

Let ξx denote the extension of ξ to the space of Q given by ξx(i, u) = ξ(i) for all (i, u) ∈ R, and let
‖ · ‖ξ and ‖ · ‖ξx denote the weighted sup-norm on <n and <|R| with weights ξ and ξx, respectively:

‖J‖ξ = max
i∈S

|J(i)|
ξ(i) , ‖Q‖ξx = max

(i,u)∈R
|Q(i,u)|
ξ(i) . (2.26)

Lemma 2.2. Assume that all policies in ΠSD are proper and let ν ∈ ΠSR. Then for any (J,Q), (Ĵ , Q̂),

‖FJ,νQ− FĴ,νQ̂‖ξx ≤ βmax
{
‖J − Ĵ‖ξ , ‖Q− Q̂‖ξx

}
(2.27)∥∥MQ−MQ̂

∥∥
ξ
≤ ‖Q− Q̂‖ξx , (2.28)

where ξ, ‖ · ‖ξ, ‖ · ‖ξx , and β ∈ (0, 1), are given by Eqs. (2.25)-(2.26) and independent of ν.

Proof. For all (i, u) ∈ R,∣∣(FJ,νQ)(i, u)− (FĴ,νQ̂)(i, u)
∣∣ ≤∑

j∈S
pij(u)

∑
v∈U(j)

ν(v | j)
∣∣min{J(j), Q(j, v)} −min{Ĵ(j), Q̂(j, v)}

∣∣
≤
∑
j∈S

pij(u)
∑

v∈U(j)

ν(v | j) max
{
|J(j)− Ĵ(j)| , |Q(j, v)− Q̂(j, v)|

}
,

(where we used the fact in Footnote 3 to obtain the second inequality). For all (j, v) ∈ R,

max
{
|J(j)− Ĵ(j)| , |Q(j, v)− Q̂(j, v)|

}
= ξ(j) max

{
|J(j)−Ĵ(j)|

ξ(j) , |Q(j,v)−Q̂(j,v)|
ξ(j)

}
≤ ξ(j) max

{
‖J − Ĵ‖ξ , ‖Q− Q̂‖ξx

}
.

Hence, for all (i, u) ∈ R,∣∣(FJ,νQ)(i, u)− (FĴ,νQ̂)(i, u)
∣∣ ≤ (∑

j∈S
pij(u)ξ(j)

)
max

{
‖J − Ĵ‖ξ , ‖Q− Q̂‖ξx

}
≤ β ξ(i) max

{
‖J − Ĵ‖ξ , ‖Q− Q̂‖ξx

}
,

where the last inequality follows from Eq. (2.25). This implies Eq. (2.27).

For all i ∈ S, since |minu∈U(i)Q(i, u) − minu∈U(i) Q̂(i, u)| ≤ maxu∈U(i) |Q(i, u) − Q̂(i, u)| [cf.
Footnote 3],

|minu∈U(i) Q(i,u)−minu∈U(i) Q̂(i,u)|
ξ(i) ≤ max

u∈U(i)

|Q(i,u)−Q̂(i,u)|
ξ(i) .

Taking maximum over i on both sides gives Eq. (2.28).

13

Using the preceding lemma, we can construct a weighted sup-norm with respect to which a
contraction property holds uniformly for all Lν . This will be useful in establishing the convergence
of our stochastic Q-learning algorithm for the special class of SSP models (Prop. 3.2).

Proposition 2.3. Assume that all policies in ΠSD are proper. Then there exist a weighted sup-norm
‖ · ‖ζ on the space of (J,Q) and a positive scalar β̄ < 1 such that for all ν ∈ ΠSR, the mappings Lν

given by Eq. (2.16) are contractions of modulus β̄ with respect to ‖ · ‖ζ ,∥∥Lν(J,Q)− Lν(Ĵ , Q̂)
∥∥
ζ
≤ β̄

∥∥(J,Q)− (Ĵ , Q̂)
∥∥
ζ
, ∀ (J,Q), (Ĵ , Q̂),

with the same fixed point (J∗, Q∗).

Proof. The proof is similar to that of Prop. 4.1 in [BY10b]. Let the weighted sup-norms ‖J‖ξ,
‖Q‖ξx , and the scalar β ∈ (0, 1) be as in Lemma 2.2. We define a weighted sup-norm ‖ · ‖ζ on the
space of (J,Q) by

‖(J,Q)‖ζ = max
{
‖J‖ξ , c‖Q‖ξx

}
, (2.29)

where c is any positive scalar with 1 < c < 1/β. Define β̄ = max{cβ, 1/c}. Then,

β < β̄ < 1, cβ ≤ β̄, β̄c ≥ 1.

(Take, for instance, c = 1/
√
β to have β̄ =

√
β.) Consider any ν ∈ ΠSR and any two pairs

(J,Q), (Ĵ , Q̂). By the definition of Lν [cf. Eq. (2.16)],

Lν(J,Q)− Lν(Ĵ , Q̂) =
(
MQ−MQ̂ , FJ,νQ− FĴ,νQ̂

)
.

Using Eq. (2.27) of Lemma 2.2 and the fact cβ ≤ β̄, β < β̄, we have

c ‖FJ,νQ− FĴ,νQ̂‖ξx ≤ max
{
cβ‖J − Ĵ‖ξ , cβ‖Q− Q̂‖ξx

}
≤ β̄‖(J,Q)− (Ĵ , Q̂)‖ζ ,

and using Eq. (2.28) of Lemma 2.2 and the fact β̄c ≥ 1, we have∥∥MQ−MQ̂
∥∥
ξ
≤ (β̄c)‖Q− Q̂‖ξx ≤ max

{
β̄‖J − Ĵ‖ξ , β̄c‖Q− Q̂‖ξx

}
≤ β̄‖(J,Q)− (Ĵ , Q̂)‖ζ .

From the preceding two relations, we obtain
∥∥Lν(J,Q)−Lν(Ĵ , Q̂)

∥∥
ζ
≤ β̄‖(J,Q)− (Ĵ , Q̂)‖ζ . Finally,

that (J∗, Q∗) is the fixed point of Lν is established in Prop. 2.2.

Let us mention two other uses of Lemma 2.2. First, it implies that the basic synchronous
algorithm (2.8)-(2.9) has in the worst case a geometric rate of convergence when all policies of the
SSP are proper. This is similar to the algorithm behavior in discounted MDP [BY10b]. Another use
of Lemma 2.2 will be in deriving error bounds for approximation algorithms for the special class of
SSP models in Section 4 (Prop. 4.1).

3 A New Asynchronous Stochastic Q-Learning Algorithm

The classical Q-learning algorithm of Watkins [Wat89] is a stochastic approximation-type of algo-
rithm. It replaces expected values in the formula of VI by sample values obtained with simulation
and thus does not require an explicit model of the MDP. In a simple version of the algorithm for SSP
problems (using simplified notation), at each iteration we select some state-control pairs (i, u), and
for each of them, we simulate a transition from state i with control u to obtain a random successor
state s ∈ So, and then update Qk(i, u) by

Qk+1(i, u) =
(
1− γiu,k

)
Qk(i, u) + γiu,k

(
ĝ(i, u, s) + min

v∈U(s)
Qk(s, v)

)
, (3.1)

14

where γiu,k ≥ 0 is a stepsize parameter and ĝ(i, u, s) is the transition cost. The relation with VI is
revealed when the above iteration is equivalently expressed as

Qk+1(i, u) =
(
1− γiu,k

)
Qk(i, u) + γiu,k(FQk)(i, u) + γiu,k ωiu,k,

where ωiu,k is a stochastic noise term with zero conditional mean, and F is the Bellman equation
mapping [cf. Eq. (2.5)]. The classical Q-learning algorithm, in a more complex form than the above,
is analyzed by Tsitsiklis [Tsi94] in the context of asynchronous stochastic approximation algorithms.
Its convergence for SSP under Assumption 1.1 and some mild algorithmic conditions is established
by the results of [Tsi94, YB11].

Our stochastic asynchronous Q-learning algorithm can also be viewed as a stochastic approxi-
mation algorithm. It is obtained, briefly speaking, by using simulated samples in place of expected
values in the deterministic asynchronous algorithm (2.10)-(2.11) or in its more general variants that
involve delays. In a simple version which parallels iteration (3.1), we update the cost vectors Jk for
some selected states as in iteration (2.11), whereas we update the Q-factors Qk for each selected
state-control pair (i, u) with the iteration

Qk+1(i, u) = (1− γiu,k)Qk(i, u) + γiu,k

(
ĝ(i, u, s) + min

{
Jk(s), Qk(s, v)

})
, (3.2)

where v ∈ U(s) is a control generated according to a randomized policy νk, and γiu,k and s are the
stepsize parameter and random successor state, respectively, as in the classical Q-learning iteration
(3.1). Iteration (3.2) is much simpler than (3.1): it does not involve minimization of Q-factors over
the full control set of the successor state, and instead, it compares just two quantities Jk(s) and
Qk(s, v). So if cost updates (2.11) are performed infrequently, the per-iteration overhead of our
algorithm is lower than that of the classical Q-learning algorithm, and the computational saving can
be considerable when the control sets are large.

In what follows, we introduce formally our stochastic asynchronous Q-learning algorithm for SSP,
and prove its convergence under Assumption 1.1 (Theorem 3.1). To make our results comparable
with those for the classical Q-learning algorithm, we will use the same asynchronous computational
model with communication delays as the one in [Tsi94] (see also [Bau78, BT89]), and we will intro-
duce this model shortly.

In this section, the termination state 0 appears explicitly in the stochastic algorithms due to
their simulation character, [as it did already in the iterations (3.1) and (3.2) above]. Following our
notational convention described in Section 2.1, we regard Jk and Qk both as vectors on <|S| and
<|R|, respectively, and as vectors on the embedded subspaces of <|So| and <|Ro|, respectively, with
Jk(0) = Qk(0, 0) = 0 for all k ≥ 0.

3.1 Algorithm

Like its deterministic asynchronous version, our stochastic asynchronous Q-learning algorithm gen-
erates a sequence

{
(Jk, Qk)

}
by updating a subset of Q-factors and/or costs at each iteration. It

involves many variables due to the presence of both simulation and asynchronous computation. To
facilitate the presentation, let us first introduce the notion of “communication delays” and the re-
lated notation in an asynchronous computing framework, using intuitive terms such as “processors”
and “distributed computation” (our interest, however, is in the mathematical model rather than the
physical computing system). Imagine that a computation task of an iterative nature is distributed
in a network of processors that operate asynchronously. Each processor updates the value of a par-
ticular component and processors exchange the results with each other. There are communication
delays, so a component update is based on possibly outdated information and involves values that
were calculated at earlier times. For our Q-learning algorithm, set in such a computation frame-
work, each ` ∈ S∪R is associated with a (imaginary) processor, which updates the `th component of

15

(J,Q). In its computation at iteration/time k, the processor ` uses the value of the `′th component
that was computed by the processor `′ at time τ ``′,k ≤ k, where `′ ∈ S ∪R. In other words, we may

regard the difference k − τ ``′,k as the communication delay between processors ` and `′, and regard
{Jτ`i,k(i) | i ∈ S} and {Qτ`iu,k(i, u) | (i, u) ∈ R} as the information available to the processor ` at

time k for performing its task.

We refer to the variables 0 ≤ τ ``′,k ≤ k, where `, `′ ∈ S ∪R, as “delayed times.” They are integer-
valued and need to satisfy certain mild, minimal conditions to be specified later. For notational
convenience, we also define the delayed times τ ``′,k for `′ = 0 and `′ = (0, 0), albeit arbitrarily.

We now describe a general form of our asynchronous Q-learning algorithm. For k ≥ 0, given
(Jτ , Qτ), τ ≤ k, the kth iteration of the algorithm is as follows:

• For each i ∈ S, let γi,k ≥ 0 be a stepsize parameter, and let

Jk+1(i) = (1− γi,k)Jk(i) + γi,k min
u∈U(i)

Qτ iiu,k(i, u). (3.3)

• For each (i, u) ∈ R, let γiu,k ≥ 0 be a stepsize parameter, let jiuk ∈ So be the successor state
of a random transition from state i using control u, generated according to the transition
probabilities {pij(u) | j ∈ So}, and let viuk be a random control generated according to νiuk (· |
jiuk), where νiuk ∈ ΠSR and its choice can possibly depend on jiuk . Then, let

Qk+1(i, u) = (1− γiu,k)Qk(i, u) + γiu,k

(
ĝ(i, u, s) + min

{
Jτ ius,k(s) , Qτ iusv,k(s, v)

})
, (3.4)

where we use the shorthand notation s = jiuk and v = viuk , and ĝ(i, u, s) is the cost of transition
from state i to jiuk with control u.

The variables in iteration (3.3)-(3.4) need to satisfy several conditions, without which the algorithm
as just described is, in fact, imprecise. We will specify these conditions shortly, after a few remarks.

In the above algorithm, the subset of cost/Q-factor components which are selected for an update
at time k, is implicitly specified by the positive stepsize parameters: the value of Jk+1(i) or Qk+1(i, u)
remains unchanged when γi,k = 0 or γiu,k = 0. The random transition cost, ĝ(i, u, jiuk), is treated as a
function of the transition and control. This is for notational simplicity; the case where the transition
cost depends on some additional random disturbance is covered by our subsequent analysis.

The algorithm (3.3)-(3.4) is stated in general terms, leaving open the choices of components to be
updated and the randomized policies to be employed in each Q-factor update. In applications, the
selection may be random, but it may also be deliberate to supplement other selection schemes that
suit the task at hand. For example, in a real-time learning setting without the help of simulators, the
components to be updated are naturally determined by the state that the learning agent is currently
in and the control that is being applied; that control can in turn be chosen based on the randomized
policies νiuk . (See [BY10b, Sections 4 and 5] for some examples in this vein.) The choice of the
randomized policies can be based on factors concerning optimality and exploration needs. To make
the algorithm resemble stochastic modified/optimistic PI, the cost updates (3.3) for selected states
are done infrequently, relative to the Q-factor updates (3.4), and the policies νiuk are chosen based
on the deterministic policies µk, which are maintained and updated at selected states together with
the cost updates (3.3) by

µk+1(i) ∈ arg min
u∈U(i)

Qk(i, u), if γi,k 6= 0; µk+1(i) = µk(i), otherwise.

The randomized policies νiuk can be a mixture of µk with some randomized policy for exploration,
for instance. This is similar to the deterministic asynchronous algorithm (2.12)-(2.14) mentioned in
Section 2.3.

16

With the notation for stepsizes and delayed times just described, a general form of the classical
Q-learning algorithm is given by

Qk+1(i, u) =
(
1− γiu,k

)
Qk(i, u) + γiu,k

(
ĝ(i, u, s) + min

v∈U(s)
Qτ iusv,k(s, v)

)
, (3.5)

where as in iteration (3.4), s is a shorthand for the random successor state jiuk of state i with control
u. Every iteration here involves minimization over the full control set. By contrast, the Q-factor
update (3.4) in our algorithm is computationally simpler, as we discussed earlier.

We now state the conditions on the algorithm (3.3)-(3.4) and the convergence theorem.

Algorithmic Conditions and Convergence Theorem

We regard all the variables in our Q-learning algorithm as random variables on a common probability
space (Ω,F ,P). In addition to those variables appearing in the iteration (3.3)-(3.4), there can
be auxiliary variables that the algorithm uses to determine, for instance, the values of delayed
times or stepsizes, including which components to update at each time k. Thus, to summarize
rigorously the dependence relation between the variables, it is convenient to introduce a family {Fk}
of increasing sub-σ-fields of F and to require the following information structure condition: (J0, Q0)
is F0-measurable, and

for every `, `′ ∈ S ∪R and k ≥ 0, γ`,k and τ ``′,k are Fk-measurable,

and for every (i, u) ∈ R and k ≥ 0, jiuk and viuk are Fk+1-measurable.

This condition means in practice that in iteration (3.3)-(3.4), the algorithm either chooses the
stepsizes γ`,k and the delayed times τ ``′,k before generating the random successor state jiuk and control

viuk , or it chooses the values of the former variables in a way that does not use the information of
jiuk , v

iu
k . We note that although this condition seems abstract, it can be satisfied naturally by the

algorithm.

In probabilistic terms, the way the successor states/controls are generated and used in the algo-
rithm is described more precisely by the following relations of the random variables: for all (i, u) ∈ R
and k ≥ 0,

P(jiuk = j | Fk) = pij(u), ∀ j ∈ So, (3.6)

E
[
ĝ(i, u, jiuk) | Fk

]
= g(i, u), E

[(
ĝ(i, u, jiuk)− g(i, u)

)2 | Fk] ≤ C, (3.7)

where C is some deterministic constant and the conditional expectation is over jiuk ; and

P(jiuk = j, viuk = v | Fk) = 0, ∀ v 6∈ U(j), j ∈ So, (3.8)

i.e., viuk is feasible control at the successor statejiuk .

There are other mild conditions on the algorithm. The totally asynchronous computation frame-
work has the following minimal requirement on the delayed times: with probability 1 (w.p.1),

lim
k→∞

τ ijv,k =∞, lim
k→∞

τ iujv,k =∞, ∀ i ∈ S, (i, u), (j, v) ∈ R. (3.9)

This is referred to in the literature as “continuous information renewal,” and it guarantees that
outdated information about the updates will eventually be purged from the computation. Another
condition is on the stepsize variables. Besides the requirement that w.p.1,

γ`,k ∈ [0, 1] eventually, ∀ ` ∈ S ∪R, (3.10)

17

as usual in stochastic approximation algorithms, the standard stepsize condition is required for the
Q-factor updates (3.4): w.p.1,∑

k≥0

γiu,k =∞,
∑
k≥0

γ2
iu,k <∞, ∀ (i, u) ∈ R. (3.11)

However, for the cost components involving “noiseless” updates (3.3), a weaker stepsize condition is
sufficient: w.p.1, ∑

k≥0

γi,k =∞, ∀ i ∈ S. (3.12)

These conditions imply that every cost/Q-factor component is updated infinitely often.

Our subsequent analysis of the Q-learning algorithm (3.3)-(3.4) assumes all the algorithmic con-
ditions given above. Let us collect them in one assumption:

Assumption 3.1 (Algorithmic conditions). The information structure condition holds, and w.p.1,
Eqs. (3.6)-(3.12) are satisfied.

We will establish the following convergence theorem in the rest of this section. (A separate
shorter proof for the special SSP models with all policies assumed proper will also be given.)

Theorem 3.1. Under Assumptions 1.1, 3.1, for any given initial (J0, Q0), the sequence
{

(Jk, Qk)
}

generated by the iteration (3.3)-(3.4) converges to (J∗, Q∗) w.p.1.

Note that the conditions of the theorem allow for a wide range of algorithmic parameters. So like
the convergence analysis of deterministic algorithms given in Section 2.4, our subsequent analysis
also has a worst-case character.

3.2 Preliminaries for Convergence Analysis

Before going into the main convergence proof, we discuss some preliminary facts. First, we show
that to prove Theorem 3.1, it is sufficient to prove a weaker version of it, Prop. 3.1 below, which
assumes in addition that the stepsizes are bounded by some constant, a condition that is technically
more convenient. Once this weaker version of the theorem is proved, we can apply the result to the
case of general stepsizes.

Proposition 3.1. Suppose Assumptions 1.1, 3.1 hold and in addition, for some (deterministic)
constant D,

γ`,k ≤ D w.p.1, ∀ ` ∈ S ∪R, ∀ k ≥ 0. (3.13)

Then, for any given initial (J0, Q0), the sequence
{

(Jk, Qk)
}

generated by the iteration (3.3)-(3.4)
converges to (J∗, Q∗) w.p.1.

Indeed, suppose that Prop. 3.1 has been proved. Then, the additional condition (3.13) can be
removed and the main convergence theorem, Theorem 3.1, will immediately follow as a consequence:

Proof of Theorem 3.1. For each positive integer m, let γ̃m`,k = min{γ`,k,m} for all ` ∈ S ∪ R and

k ≥ 0, and let
{

(J̃mk , Q̃
m
k)} be given by the recursions (3.3)-(3.4) with γ̃m`,k in place of γ`,k. In

particular, let J̃m0 = J0, Q̃
m
0 = Q0, and for k ≥ 0, let

J̃mk+1(i) =
(
1− γ̃mi,k

)
J̃mk (i) + γ̃mi,k min

u∈U(i)
Q̃mτ iiu,k

(i, u), ∀ i ∈ S,

Q̃mk+1(i, u) = (1− γ̃miu,k)Q̃mk (i, u) + γ̃miu,k

(
ĝ(i, u, s) + min

{
J̃mτ ius,k

(s) , Q̃mτ iusv,k
(s, v)

})
, ∀(i, u) ∈ R,

18

where s, v are shorthand notation for jiuk , v
iu
k , respectively, and the variables jiuk , v

iu
k and τ ``′,k, `, `

′ ∈
S ∪ R, are the same random variables that appear in the iteration (3.3)-(3.4). With the stepsizes
{γ̃m`,k} in place of {γ`,k}, condition (3.13) is now satisfied with D = m, and Assumption 3.1 is

also satisfied. So by Prop. 3.1,
{

(J̃mk , Q̃
m
k)} converges to (J∗, Q∗) w.p.1. Now let Ω′ be the set

of sample paths on which
{

(J̃mk , Q̃
m
k)} converges to (J∗, Q∗) for all m ≥ 1 and condition (3.10)

is satisfied by the stepsizes γ`,k. This set Ω′ has probability one. For each sample path in Ω′,
in view of condition (3.10), there exists some integer m such that γ`,k ≤ m for all ` and k, and
consequently, γ`,k = γ̃m`,k for all ` and k. This implies that on that sample path,

{
(Jk, Qk)

}
coincides

with
{

(J̃mk , Q̃
m
k)} and hence converges to (J∗, Q∗). Since Ω′ has probability one, this shows that{

(Jk, Qk)
}

converges to (J∗, Q∗) w.p.1.

Henceforth, we will assume the conditions of Prop. 3.1 and prove that proposition. (Viewed in
another way, what we will be doing is actually to prove for each m ≥ 1, the convergence of the
process {(J̃mk , Q̃mk)} defined in the above proof of Theorem 3.1, but we will simply use the notation
{(Jk, Qk)} for this process.)

To prepare for the convergence proof, we express the iteration (3.3)-(3.4) explicitly in terms of
the mappings Lν of Eq. (2.16), thereby casting it in a form amenable for stochastic approximation-
based analysis. To this end, we identify the particular mapping Lν or equivalently the randomized
policy ν that is associated with each Q-factor update in the algorithm. For each (i, u) ∈ R, we
define an Fk-measurable ΠSR-valued random variable ν̄iuk =

{
ν̄iuk (v | j) | v ∈ U(j), j ∈ S

}
, which is

the conditional distribution of viuk corresponding to the joint distribution P(jiuk = j, viuk = v | Fk)
of (jiuk , v

iu
k), i.e.,

P(jiuk = j, viuk = v | Fk) = pij(u) ν̄iuk (v | j), ∀ v ∈ U(j), j ∈ So; (3.14)

cf. Eqs. (3.6) and (3.8). [If (i, u) and j are such that pij(u) = 0, we have P(jiuk = j, viuk = v | Fk) = 0
for all v ∈ U(j), and we may define ν̄iuk (· | j) to be any distribution over U(j), for example, the
uniform distribution.] If in the Q-factor update (3.4), the algorithm chooses the randomized policy
νiuk before it generates the successor state jiuk , then the randomized policy ν̄iuk coincides with νiuk .

We associate Lν̄
iu
k with the Q-factor update (3.4) at (i, u) and iteration k.

To simplify notation, denote xk = (Jk, Qk), and for each ` ∈ S ∪R, let x
(`)
k =

(
J

(`)
k , Q

(`)
k

)
where

J
(`)
k and Q

(`)
k denote the vectors of costs and Q-factors respectively, with components

J
(`)
k (i) = Jτ`i,k(i), Q

(`)
k (i, u) = Qτ`iu,k(i, u), i ∈ So, (i, u) ∈ Ro.

(Note that J
(`)
k (0) = Q

(`)
k (0, 0) = 0.) In the terminology we used earlier, x

(`)
k may be viewed as the

information available to the processor ` at time k for updating the `th component. Denote by xk(`)
the `th component of xk, and by Lν` the `th component mapping of Lν .

Using the above definitions as well as the definition of Lν , the iteration (3.3)-(3.4) can be equiv-
alently and compactly written as

xk+1(`) = (1− γ`,k)xk(`) + γ`,kL
ν̄`k
` x

(`)
k + γ`,k ω`,k, ` ∈ S ∪R, (3.15)

where, if ` = (i, u) ∈ R and γ`,k > 0, ν̄`k is the randomized policy ν̄iuk defined above and ω`,k is a
noise term given by

ω`,k = ĝ(i, u, jiuk) + min
{
J

(`)
k (jiuk) , Q

(`)
k (jiuk , v

iu
k)
}
−
(
F
J

(`)
k ,ν̄`k

Q
(`)
k

)
(i, u); (3.16)

and if ` = i ∈ S, then ω`,k = 0 and ν̄`k is immaterial (we can let it be a fixed ν ∈ ΠSR, for

instance). It can be seen that because ν̄iuk is Fk-measurable, L
ν̄`k
` x

(`)
k is Fk-measurable and ω`,k is

Fk+1-measurable, for every k and `. This fact is important in the analysis.

19

Using the equivalent expression (3.15), we can analyze the convergence of our algorithm (3.3)-
(3.4) in the general framework given in [Tsi94] for asynchronous stochastic approximation algorithms
involving sup-norm contractions or monotone nonexpansive mappings. The analysis of [Tsi94] con-
cerns a single fixed point mapping, but with proper modifications, it can be applied in our context
where a set of mappings, {Lν | ν ∈ ΠSR}, is involved. We give a detailed account of the necessary
modifications in Appendix C (a reproduction of the proofs of [Tsi94] with modifications is also avail-
able [Yu11]). Here we explain why the analysis of [Tsi94] is applicable in our case, in order to set
the groundwork for our convergence proofs.

The technical conditions in [Tsi94] may be separated into two groups. One group (Assumptions
1-3 in [Tsi94]) consists of algorithmic conditions: conditions on the information structure, on the
delayed times, on the stepsizes, and on the variance of the noise terms ω`,k conditional on Fk.
Our algorithm (3.3)-(3.4) satisfies these conditions in [Tsi94] or some slightly different versions of
them which do not affect the validity of the analysis of [Tsi94]. In particular, for our algorithm,
the condition on the delayed times [cf. Eq. (3.9)] matches that in [Tsi94] (Assumption 1); the
information structure specified in Section 3 [together with the definition of ω`,k in Eq. (3.15)] implies
the corresponding condition in [Tsi94] (Assumption 2(a)-(c)). The stepsize conditions are slightly
different from those in [Tsi94] (Assumption 3), but do not prevent the analysis of [Tsi94] from going
through; detailed explanations are given in Appendix C. Finally, regarding the noise terms ω`,k in
Eq. (3.15), besides their being Fk+1-measurable by definition, it can be verified by a direct calculation
(see Appendix B) that they satisfy the conditions required in [Tsi94] (Assumption 2(d)-(e)), namely,
that for every ` ∈ S ∪R and k ≥ 0,

E
[
ω`,k | Fk

]
= 0, w.p.1,

and that there exist (deterministic) constants A and B such that for every ` ∈ S ∪R and k ≥ 0,

E
[
ω2
`,k | Fk

]
≤ A+B max

`′∈S∪R
max
τ≤k
|xτ (`′)|2, w.p.1.

We mention that it is here that the additional condition (3.13) on stepsizes is used.

The other group of conditions in [Tsi94] (Assumptions 4-6) consists of conditions on the under-
lying fixed point mapping, such as contraction or nonexpansiveness, monotonicity and the existence
of a unique fixed point. Since our algorithm involves a set of mappings instead of a single one,
these conditions will be replaced by conditions on the associated set of mappings, which are the
properties of Lν stated by Prop. 2.2 or Prop. 2.3 for general or special SSP models, respectively.
Correspondingly, some modifications of its arguments are needed, in order to apply the analysis of
[Tsi94] to our case; but the changes required are nonessential and will be described in Appendix C.

We are now ready to proceed to convergence proofs, focusing on the main arguments.

3.3 Convergence Proofs

In this subsection we prove Prop. 3.1 on the convergence of our Q-learning algorithm (3.3)-(3.4). We
will give separate proofs for two SSP model classes: first for the special class of SSP where all policies
in ΠSD are proper, and then for the general class of SSP that satisfy Assumption 1.1. The analyses
for the two are based on different arguments. While the special SSP model is covered by the general
one, it allows for a simpler contraction-based convergence proof, similar to the one for discounted
problems given in [BY10b, Section 4.3]. For the general class of SSP, the analysis is based on the
monotonicity and nonexpansiveness of the mappings Lν , ν ∈ ΠSR with respect to the sup-norm (cf.
Prop. 2.2). We will use a convergence result of [Tsi94] on asynchronous stochastic approximation
methods involving such mappings, together with the results of [YB11] on the boundedness of the
classical Q-learning iterates for SSP under Assumption 1.1.

20

3.3.1 SSP Models with all Policies being Proper

When all policies in ΠSD are proper, by Prop. 2.3, the mappings {Lν | ν ∈ ΠSR} are contraction map-
pings with modulus β̄ < 1, with respect to a common weighted sup-norm, and with the same fixed
point (J∗, Q∗). Then, by combining Prop. 2.3 with [Tsi94, Theorems 1 and 3] (and its appropriate
modifications described in Appendix C), the convergence of

{
(Jk, Qk)

}
to (J∗, Q∗) follows.

Proposition 3.2. Suppose all policies in ΠSD are proper. Then, under Assumption 3.1 and condi-
tion (3.13), for any given initial (J0, Q0), the sequence

{
(Jk, Qk)

}
generated by the iteration (3.3)-

(3.4) converges to (J∗, Q∗) w.p.1.

Note that condition (3.13) can be removed in the same way as we did in the proof of Theorem 3.1,
without affecting the conclusion of the preceding proposition.

3.3.2 General SSP Models – Proof of Prop. 3.1

In this subsection, we prove Prop. 3.1. For SSP models satisfying Assumption 1.1, there may exist
an improper policy in ΠSD, and the uniform sup-norm contraction mapping argument used in the
preceding convergence proof for special SSP models does not apply. However, by Prop. 2.2, the
set of mappings {Lν | ν ∈ ΠSR}, as well as the mappings L and L associated with this set, are
monotone and nonexpansive with respect to the sup-norm, and have (J∗, Q∗) as the unique fixed
point. Combining Prop. 2.2 with the proof arguments of Theorem 2 in [Tsi94] for nonexpansive
mappings, and taking into account also the modifications to the latter proof described in Appendix C,
we have the following lemma.

Lemma 3.1. Suppose the conditions of Prop. 3.1 hold. Then, for any given initial (J0, Q0), the
sequence

{
(Jk, Qk)

}
generated by the iteration (3.3)-(3.4) converges to (J∗, Q∗) w.p.1 if

{
(Jk, Qk)

}
is bounded w.p.1.

In the rest of this section, we prove the boundedness of
{

(Jk, Qk)
}

required as a condition of

convergence in Lemma 3.1, thereby establishing Prop. 3.1. We will show first that
{

(Jk, Qk)
}

is
bounded above w.p.1, and then that it is bounded below w.p.1. The proof for the former will
use a contraction property associated with a proper policy, and the proof for the latter will use a
lower-boundedness result from [YB11] on the iterates of the classical Q-learning algorithm.

In both boundedness proofs, we will start with a certain process
{

(J̄k, Q̄k)
}

, which is easier to

work with. It is defined on the same probability space as
{

(Jk, Qk)
}

and defined by the recursions

(3.3)-(3.4), which define
{

(Jk, Qk)
}

, except that it uses different stepsizes and different initial value

J̄0. More specifically,
{

(J̄k, Q̄k)
}

is defined as follows. (By our convention J̄k(0) = Q̄k(0, 0) = 0 for
all k.)

Let Q̄0 = Q0 and
J̄0(i) = min

u∈U(i)
Q̄0(i, u), ∀ i ∈ S. (3.17)

For k ≥ 0, let (J̄k+1, Q̄k+1) be given by: for each i ∈ S,

J̄k+1(i) = (1− αi,k)J̄k(i) + αi,k min
u∈U(i)

Q̄τ iiu,k(i, u), (3.18)

and for each (i, u) ∈ R,

Q̄k+1(i, u) = (1− αiu,k)Q̄k(i, u) + αiu,k

(
ĝ(i, u, s) + min

{
J̄τ ius,k(s), Q̄τ iusv,k(s, v)

})
, (3.19)

21

where the stepsize α`,k, for ` = i or (i, u), in Eq. (3.18) or (3.19), is given by

α`,k =

{
γ`,k, if γ`,k ≤ 1,

0, if γ`,k > 1,

with γ`,k being the same stepsize variables that appear in the iteration (3.3)-(3.4). In the above, s
and v in Eq. (3.19) are shorthand for the successor state jiuk and control viuk , respectively; and the
variables jiuk , v

iu
k , and the delayed times τ ``′,k, `, `

′ ∈ S ∪R, are also the same random variables that
appear in the iteration (3.3)-(3.4).

Lemma 3.2. Under the stepsize condition (3.10), w.p.1, {(Jk, Qk)} is bounded if and only if
{(J̄k, Q̄k)} is bounded.

Proof. Consider any sample path from a set of probability 1 on which the stepsize condition (3.10)
holds. In view of the latter condition, there exists some time k̄ < ∞ such that the stepsizes
γ`,k ∈ [0, 1] for all k ≥ k̄ and ` ∈ S ∪ R. This implies that after time k̄, the stepsizes of {(J̄k, Q̄k)}
and {(Jk, Qk)} coincide: for every ` ∈ S ∪R, γ`,k = α`,k for all k ≥ k̄.

Let ∆ = maxτ≤k̄
∥∥(Jτ , Qτ)− (J̄τ , Q̄τ)

∥∥
∞. By the definition of ∆, we have for all k ≤ k̄,

(J̄k, Q̄k)−∆e ≤ (Jk, Qk) ≤ (J̄k, Q̄k) + ∆e, (3.20)

where e ∈ <|S∪R| denotes the vector with all components equal to one. We prove by induction
that the relation (3.20) holds also for all k ≥ k̄. Suppose that for some k ≥ k̄, it holds for all
τ with 0 ≤ τ ≤ k. Then, since α`,k = γ`,k ∈ [0, 1] for all ` ∈ S ∪ R, using the definition of
(Jk+1, Qk+1), (J̄k+1, Q̄k+1), and the induction hypothesis, we obtain that for all i ∈ S,

Jk+1(i) ≤ (1− γi,k)
(
J̄k(i) + ∆

)
+ γi,k min

u∈U(i)

(
Q̄τ iiu,k(i, u) + ∆

)
,

= J̄k+1(i) + ∆,

and for all (i, u) ∈ R,

Qk+1(i, u) ≤ (1− γiu,k)
(
Q̄k(i, u) + ∆

)
+ γiu,k

(
ĝ(i, u, s) + min

{
J̄τ ius,k(s) + ∆ , Q̄τ iusv,k(s, v) + ∆

})
,

= Q̄k+1(i, u) + ∆,

where s and v are shorthand jiuk , viuk , respectively. This proves (Jk+1, Qk+1) ≤ (J̄k+1, Q̄k+1)+∆e. A
symmetric argument yields (Jk+1, Qk+1) ≥ (J̄k+1, Q̄k+1)−∆e, and hence, by induction, Eq. (3.20)
holds for all k ≥ k̄. This implies that {(Jk, Qk)} is bounded if and only if {(J̄k, Q̄k)} is bounded.

Two properties of the process {(J̄k, Q̄k)} that we will exploit in the boundedness proofs below
are the form of its initial J̄0 given by Eq. (3.17), and the fact that its stepsizes satisfy

α`,k ∈ [0, 1], ∀ ` ∈ S ∪R, ∀ k ≥ 0. (3.21)

Note also that in view of their relation with γ`,k, the sequences {α`,k, k ≥ 0}, ` ∈ S ∪R, satisfy the
stepsize conditions, Eqs. (3.10)-(3.13).

In what follows, we refer to a sequence of iterates generated by the classical Q-learning algo-
rithm (3.5) as a sequence of ordinary Q-learning iterates. The convergence of classical Q-learning
under the SSP model assumption, Assumption 1.1, is analyzed by [Tsi94, YB11]; the required al-
gorithmic conditions are the same as stated in Assumption 3.1 for the respective variables. In our
proofs, we will exploit the use of the delayed times and purposely choose them to define certain
ordinary Q-learning iterates, which we will relate to the processes we want to bound.

22

Proposition 3.3. Under Assumptions 1.1(i), 3.1 and condition (3.13), for any given initial (J0, Q0),
the sequence

{
(Jk, Qk)

}
generated by the iteration (3.3)-(3.4) is bounded above w.p.1.

Proof. By Lemma 3.2, it is sufficient to show that the sequence
{

(J̄k, Q̄k)
}

is bounded above w.p.1.
In turn, it is sufficient to show that {Q̄k} is bounded above w.p.1 [since this clearly implies that the
same holds for {J̄k}, in view of Eq. (3.21)]. To this end, we introduce another process {Q̂k} with
the property that Q̂k ≥ Q̄k for all k ≥ 0, and we show that {Q̂k} is bounded above w.p.1.

First, for each (̄i, ū) and (i, u) ∈ R, define a new sequence of delayed times {τ̂ iu
īū,k

, k ≥ 0} such
that

τ̂ iuīū,k ∈ arg max
τ≤k

Q̄τ (̄i, ū). (3.22)

Note that τ̂ iu
īū,k

is Fk-measurable.

We now define {Q̂k}. (By our convention Q̂k(0, 0) = 0 for all k ≥ 0.) Let Q̂0 = Q̄0. Let µ be any
proper policy in ΠSD, which exists by Assumption 1.1(i), and let µ(i) denote the control applied by
the deterministic policy µ at state i. For each (i, u) ∈ R and k ≥ 0, define

Q̂k+1(i, u) = (1− αiu,k)Q̂k(i, u) + αiu,k

(
ĝ(i, u, s) + Q̂τ̂ iu

sµ(s),k
(s, µ(s))

)
, (3.23)

where s is a shorthand for jiuk , and jiuk , αiu,k are the same random variables that appear in Eq. (3.19),
which defines Q̄k+1.

We show by induction that Q̂k ≥ Q̄k for all k ≥ 0. This holds for k = 0 by the definition of Q̂0.
Assuming it holds for all k′ ≤ k, we prove that it holds for k + 1. Consider any ī ∈ S and k̄ ≤ k.
Denote [k̄− 1]+ = max{0, k̄− 1}. By the definition of J̄0, . . . , J̄k [cf. Eqs. (3.17) and (3.18)] and the
fact that all stepsizes are in [0, 1] [cf. Eq. (3.21)], it can be seen that J̄k̄ (̄i) is a convex combination
of the terms

min
v̄∈U (̄i)

Q̄τ ī
īv̄,k′

(̄i, v̄), k′ ≤ [k̄ − 1]+,

and is therefore no greater than the maximal of these terms. Hence, for any ū ∈ U (̄i) and (i, u) ∈ R,

J̄k̄ (̄i) ≤ max
k′≤[k̄−1]+

min
v̄∈U (̄i)

Q̄τ ī
īv̄,k′

(̄i, v̄) ≤ max
k′≤[k̄−1]+

Q̄τ ī
īū,k′

(̄i, ū) ≤ max
k′≤k

Q̄k′ (̄i, ū) = Q̄τ̂ iu
īū,k

(̄i, ū),

where the last equality follows from the definition of τ̂ iu
īū,k

given by Eq. (3.22). The preceding

inequality implies by the induction hypothesis Q̄k′ ≤ Q̂k′ for all k′ ≤ k that

J̄k̄ (̄i) ≤ Q̂τ̂ iu
īū,k

(̄i, ū), ∀ k̄ ≤ k, (̄i, ū), (i, u) ∈ R.

This in turn implies the following relation for the term appearing in the definition of Q̄k+1(i, u) [cf.
Eq. (3.19)]:

min
{
J̄τ ius,k(s), Q̄τ iusv,k(s, v)

}
≤ J̄τ ius,k(s) ≤ Q̂τ̂ iu

sµ(s),k

(
s, µ(s)

)
, (3.24)

where s and v are shorthand notation for jiuk and viuk , respectively. Comparing the definitions of Q̄k+1

and Q̂k+1 [cf. Eqs. (3.19), (3.23)], using inequality (3.24) and the induction hypothesis Q̄k ≤ Q̂k,
and using also the fact αiu,k ∈ [0, 1], we then obtain Q̄k+1 ≤ Q̂k+1. By induction, this establishes

Q̂k ≥ Q̄k for all k ≥ 0.

Now {Q̂k} is a sequence of ordinary Q-learning iterates for the case of a SSP with a single proper
policy µ and involving the mapping Fµ, which is a weighted sup-norm contraction [cf. Eq. (2.6) and
the discussion immediately following it]. Such sequences are analyzed in [Tsi94], the results of which
can be applied here. In particular, under Assumption 3.1, in view of the fact that the stepsizes
α`,k satisfy conditions (3.10)-(3.13), {Q̂k} satisfies all but one algorithmic conditions required in
the analysis of [Tsi94] (with its extension regarding the stepsize condition; see Appendix C). The

23

condition {Q̂k} may violate is the one on the delayed times: for each (i, u) and (̄i, ū) ∈ R, the
sequence {τ̂ iu

īū,k
, k ≥ 0} should converge to infinity w.p.1. Indeed, it is possible that {τ̂ iu

īū,k
, k ≥ 0}

as defined by Eq. (3.22) is bounded. However, the unboundedness condition on the delayed times
is not needed for establishing the boundedness of the iterates, as the proof of Theorem 1 of [Tsi94]
shows (although this condition is needed in proving convergence). Therefore, we can apply the latter
theorem to obtain that {Q̂k} is bounded w.p.1. Since Q̂k ≥ Q̄k, this implies that {Q̄k} is bounded
above w.p.1. The proof is complete.

We now show that
{

(Jk, Qk)
}

is bounded below w.p.1. In the proof, we construct a sequence of
ordinary Q-learning iterates that lies below {Q̄k} (cf. Lemma 3.2), and we then use the result [YB11,
Prop. 3.3] on the boundedness of the ordinary Q-learning iterates for SSP problems to complete the
proof.

Proposition 3.4. Under the conditions of Prop. 3.1, for any given initial (J0, Q0), the sequence{
(Jk, Qk)

}
generated by the iteration (3.3)-(3.4) is bounded below w.p.1.

Proof. Similar to the proof of Prop. 3.3, by Lemma 3.2, it is sufficient to show that the sequence{
(J̄k, Q̄k)

}
is bounded below w.p.1. In turn, it is sufficient to show that {Q̄k} is bounded below

w.p.1 [since this clearly implies that the same holds for {J̄k}, in view of Eq. (3.21)]. To this end,
we introduce another process {Q̂k} with the property Q̂k ≤ Q̄k for all k ≥ 0, and we will show that
{Q̂k} is bounded below w.p.1.

First, for each (̄i, ū) and (i, u) ∈ R, define a new sequence of delayed times {τ̂ iu
īū,k

, k ≥ 0} such
that

τ̂ iuīū,k ∈ arg min
τ≤k

Q̄τ (̄i, ū). (3.25)

Note that τ̂ iu
īū,k

is Fk-measurable. We then define {Q̂k} as follows. [By our convention Q̂k(0, 0) = 0

for all k ≥ 0.] Let Q̂0 = Q̄0. For each (i, u) ∈ R and k ≥ 0, define

Q̂k+1(i, u) = (1− αiu,k)Q̂k(i, u) + αiu,k

(
ĝ(i, u, s) + min

v̄∈U(s)
Q̂τ̂ iusv̄,k(s, v̄)

)
, (3.26)

where s is a shorthand for jiuk ; and αiu,k and jiuk are the same random variables that appear in
Eq. (3.19), which defines Q̄k+1.

We show by induction that Q̂k ≤ Q̄k for all k ≥ 0. This holds for k = 0 by the definition of Q̂0.
Assuming it holds for all k′ ≤ k, we prove that it holds for k + 1. Consider any ī ∈ S and k̄ ≤ k.
Denote [k̄− 1]+ = max{0, k̄− 1}. As argued in the proof of Prop. 3.3, J̄k̄ (̄i) is a convex combination
of the terms

min
v̄∈U (̄i)

Q̄τ ī
īv̄,k′

(̄i, v̄), k′ ≤ [k̄ − 1]+,

so it is no less than the minimal of these terms. Therefore, for any ī ∈ S and k̄ ≤ k,

J̄k̄ (̄i) ≥ min
k′≤[k̄−1]+

min
v̄∈U (̄i)

Q̄τ ī
īv̄,k′

(̄i, v̄) ≥ min
v̄∈U (̄i)

min
k′≤k

Q̄k′ (̄i, v̄). (3.27)

We now compare the definitions of Q̄k+1 and Q̂k+1 [cf. Eqs. (3.19), (3.26)]. Using inequality (3.27)
and the induction hypothesis Q̄k′ ≥ Q̂k′ for all k′ ≤ k, we have that for each (i, u) ∈ R, the following
relation holds for the term appearing in the definition of Q̄k+1(i, u) [cf. Eq. (3.19)]:

min
{
J̄τ ius,k(s), Q̄τ iusv,k(s, v)

}
≥ min
v̄∈U(s)

min
k′≤k

Q̄k′(s, v̄) = min
v̄∈U(s)

Q̄τ̂ iusv̄,k(s, v̄) ≥ min
v̄∈U(s)

Q̂τ̂ iusv̄,k(s, v̄),

where s and v are shorthand notation for jiuk and viuk , respectively, and the equality relation follows
from the definition of τ̂ iusv̄,k [cf. Eq. (3.25)]. Combining the preceding inequality with the definition

24

of Q̄k+1, using the induction hypothesis Q̄k ≥ Q̂k and the fact αiu,k ∈ [0, 1], it follows that Q̄k+1 ≥
Q̂k+1. Hence, by induction, Q̂k ≤ Q̄k for all k ≥ 0.

Now {Q̂k} is a sequence of the ordinary Q-learning iterates for the SSP problem, whose model
satisfies Assumption 1.1. Similar to the proof of Prop. 3.3, under Assumption 3.1, the sequence {Q̂k}
meets all the conditions required in the convergence analysis of Q-learning iterates [Tsi94, YB11],
except that for each (̄i, ū), (i, u) ∈ R, the sequence of delayed times {τ̂ iu

īū,k
, k ≥ 0} defined by

Eq. (3.25) need not converge to infinity w.p.1. However, the unboundedness of the delayed times,
while being necessary for the convergence of the iterates, is not needed for the boundedness of the
iterates, an analysis of which under Assumption 1.1 is given by [YB11]. Applying [YB11, Prop. 3.3],
we obtain that {Q̂k} is bounded below w.p.1. Since Q̂k ≤ Q̄k, this implies that {Q̄k} is bounded
below w.p.1. The proof is complete.

Proposition 3.1 is now implied by Lemma 3.1 and Props. 3.3 and 3.4.

4 Function Approximation and Error Bound

To apply VI and PI in large-scale MDP problems, one approach is to combine these methods with
cost function approximation (see e.g., [BT96, SB98]). For our method, a direct way to incorporate
function approximation is based on the prototype algorithm (2.8)-(2.9) of Section 2.2. Recall that
the main idea of this algorithm is to solve a certain optimal stopping problem at the policy evaluation
phase and then update the stopping costs, to be used in defining the next optimal stopping problem,
at the policy improvement/cost minimization phase. By carrying out the computation of these two
steps approximately using function approximation, we obtain approximate versions of our method.

We may describe abstractly such an approximation algorithm as follows: at iteration k, given
(Jk, Qk), for a chosen policy νk ∈ ΠSR and integer mk ≥ 1, find (Jk+1, Qk+1) such that

Qk+1 ≈ FmkJk,νk
Qk, Jk+1 ≈MQk+1. (4.1)

From a slightly different viewpoint, we may also describe it as follows: for given (Jk, νk), find
(Jk+1, Qk+1) such that

Qk+1 ≈ FJk,νkQk+1, Jk+1 ≈MQk+1, (4.2)

i.e., Qk+1 is an approximation of the unique solution QJk,νk (cf. Prop. 2.1(i)) to the Bellman equa-
tion Q = FJk,νkQ for the optimal stopping problem defined by (Jk, νk). Similar to the prototype
algorithm (2.8)-(2.9), if we choose the randomized policies νk based on the policies that attain,
within some tolerance, the minima in MQk, and if mk is relatively large in (4.1), then the above
algorithms resemble approximate PI.

In what follows, we first describe an implementation of the abstract algorithm (4.2) with sim-
ulation, in which the optimal stopping problem at each iteration is approximately solved by using
a special Q-learning algorithm for optimal stopping problems, proposed by Tsitsiklis and Van Roy
[TV99]. We then derive an error bound for approximation algorithms of the above forms, under the
assumption that all policies in the SSP are proper policies. The discussion in this section is similar
to the one of our earlier work [BY10b, Sections 6 and 7] for discounted MDP; however, there are
some subtle technical differences in SSP problems, which we will address.

4.1 An Implementation with Simulation and Function Approximation

We consider implementing the abstract algorithm (4.2) with function approximation and with the
Q-learning algorithm of [TV99] as a subroutine to find approximate solutions of the optimal stopping
problems

Qk+1 ≈ FJk,νkQk+1. (4.3)

25

We approximate Q-factors using a linear approximation architecture and restrict {Qk} in a chosen
low-dimensional subspace H ⊂ <|R|, given by

H =
{
Q | Q(i, u) = φ(i, u)′r, ∀ (i, u) ∈ R; r ∈ <d

}
,

where φ(i, u) is a column vector of d “features” of the state-control pair (i, u), r is a column vector of
d weights, and ′ denotes transpose. To approximate the costs, we can use a nonlinear approximation
architecture, restricting {Jk} in some parametric family of functions. The approximation problem
of finding Jk+1 ≈ MQk+1, where Qk+1 is given, can be solved by optimization, which we will not
go into. We focus on the approximation problems (4.3) of the policy evaluation phases.

To simplify notation, consider for given J and ν ∈ ΠSR, the problem of approximately solving
the Bellman equation

Q = FJ,νQ

of the optimal stopping problem associated with (J, ν). The approximation approach of [TV99] is
to find the solution of a projected version of the Bellman equation,

Q = ΠFJ,νQ, (4.4)

where Π is the projection on H with respect to some weighted Euclidean norm ‖ · ‖w. Although
the Bellman equation has a unique solution due to the property of FJ,ν [see Prop. 2.1(i)] under our
SSP model Assumption 1.1, the projected equation (4.4) need not have a solution. To ensure that
it has a unique solution and that the Q-learning algorithm of [TV99] will converge in our context,
besides choosing the projection norm in a specific way as will be described below, we require that
the policy ν is a proper policy. This means that the policies {νk} in our approximation algorithm are
required to be proper policies, which can be satisfied easily by letting νk(u | i) > 0 for all (i, u) ∈ R.
Nevertheless, this condition is somewhat restrictive and one may be able to weaken it with further
research.

We now describe the details of implementing the algorithm of [TV99] to solve Eq. (4.4) in our
context. This algorithm is a stochastic iterative algorithm, and it uses a trajectory of states of the
unstopped process of the optimal stopping problem. In our case, the trajectory is a sequence of state-
control pairs, {(it, ut) | t = 0, . . . , T}, generated under the policy ν and with regeneration at state 0,
where the length T is chosen sufficiently large for the accuracy requirements of the implementation.
More specifically, the transition from (it, ut) to (it+1, ut+1) occurs with probability{

pitit+1
(ut)ν(ut+1 | it+1), if it 6= 0,

σ(it+1, ut+1), if it = 0,

where σ can be any given probability distribution over the state-control space R such that σ(i, u) > 0
for all (i, u) ∈ R. The Markov chain {(it, ut)} regenerates according to σ whenever it reaches the state
(0, 0). Using a trajectory of state-control pairs generated as above and using positive diminishing
stepsizes {γt}, a sequence of weight vectors {r̄t} is calculated iteratively by

r̄t+1 = r̄t + γtφ(it, ut)
(
ĝ(it, ut, it+1) + min

{
J(it+1) , φ(it+1, ut+1)′r̄t

}
− φ(it, ut)

′r̄t

)
.

In the above, at state 0, φ(0, 0) = 0 and J(0) = 0 by definition, so in particular, when it = 0
and the Markov chain regenerates, we have r̄t+1 = r̄t. When applying the Q-learning algorithm of
[TV99] as above at iteration k of our approximation algorithm (4.2), the initial r̄0 can be naturally
chosen as the weight vector that defines Qk, and when the algorithm terminates with r̄T , we let
Qk+1(i, u) = φ(i, u)′r̄T for all (i, u) ∈ R.

The convergence of the sequence {r̄t, t ≥ 0} is established by [TV99] for discounted problems. It
can be similarly proved in the SSP context, assuming that ν is a proper policy. In particular, under

26

standard stepsize conditions, one can show that as t goes to infinity, the vector Q̃t with components
Q̃t(i, u) = φ(i, u)′r̄t converges to the unique solution of the projected Bellman equation (4.4), where
the weights defining the projection norm ‖ · ‖w in Π correspond to the steady-state probabilities of
the Markov chain {(it, ut)} given above. The argument for convergence is based on the fact that
ΠFJ,ν is a contraction mapping (with respect to some norm) – hence Eq. (4.4) has a unique solution,
and that the damped fixed point mapping (1−α)I+αΠFJ,ν with α ∈ (0, 1) is a contraction mapping
with respect to the weighted Euclidean norm ‖·‖w (this can be shown using the arguments in [BY09,
Example 5, Section 7]). Using this fact with some fixed α, the convergence of {Q̃t} can be analyzed
similar to [TV99].

We mention that the Q-learning algorithm of [TV99] has several variants, e.g., [CV06, YB07a,
YB07b]. They can also be used to solve the optimal stopping problems in our context, under the
same conditions as discussed above.

4.2 Error Bound

In this subsection, we consider the abstract approximation algorithm (4.1) and give a worst-case
performance bound for certain deterministic policies obtained with such an algorithm, in terms
of the approximation error the algorithm incurs at each iteration. Our result requires the strong
condition that all policies in ΠSD are proper, and uses the uniform sup-norm contraction property of
the mappings underlying the algorithm (Lemma 2.2). Our result applies to the case where mk = +∞
in each iteration of the algorithm (4.1), hence it applies also to approximation algorithms in the form
of (4.2), including the one of the preceding subsection. Our bound is qualitative, as it depends on
constants that are generally unknown.

To begin with, we define how approximation error will be measured. Recall that for SSP models
in which all policies are proper, we have defined the weighted sup-norms ‖J‖ξ and ‖Q‖ξx , which are
given by Eqs. (2.25)-(2.26), and with respect to which the uniform sup-norm contraction property
given by Lemma 2.2 is stated. We will use these norms to measure the error in cost/Q-factor
approximation. In particular, we characterize the worst-case per iteration error in the approximation
algorithm (4.1) as follows: for all k ≥ 0,∥∥Qk+1 − FmkJk,νk

Qk
∥∥
ξx
≤ δ, (4.5)

and
‖Jk+1 −MQk+1‖ξ ≤ ε,

which is equivalently written as∣∣∣Jk+1(i)− min
u∈U(i)

Qk+1(i, u)
∣∣∣ ≤ ε ξ(i), ∀ i ∈ S. (4.6)

The error terms δ and ε are in general unknown.

We consider the performance of the deterministic policies {µk}, where µk+1 satisfies

Qk+1

(
i, µk+1(i)

)
≤ min
u∈U(i)

Qk+1(i, u) + ε ξ(i), ∀ i ∈ S. (4.7)

These policies are associated with the approximate minimization in Eq. (4.6) for obtaining Jk+1 and
would be the policies of interest when the algorithm is terminated at iteration k + 1. We have the
following asymptotic result.

Proposition 4.1. Suppose that all policies in ΠSD are proper. Assume that for some δ, ε ≥ 0 and
each k ≥ 0, Eq. (4.5) holds for some positive integer mk ≥ 1, and Eqs. (4.6)-(4.7) also hold. Then
for any stationary policy µ that is a limit point of {µk}, we have

‖Jµ − J∗‖ξ ≤
2(δ + ε)

(1− β)2
,

27

where Jµ is the vector of total costs of µ, and β ∈ [0, 1) is given by Eq. (2.25).

We omit the proof for the reason that it is a nearly verbatim repetition of the corresponding
proof of [BY10b, Prop. 6.1] for the discounted case. In particular, the proof can be obtained from
the latter analysis by replacing the discount factor by β and by replacing the sup-norms on the
spaces of costs and Q-factors, which are used in the discounted case, by the weighted sup-norms
‖ · ‖ξ, ‖ · ‖ξx , respectively.

We mention that the bound of Prop. 4.1 is consistent with related bounds for approximate PI
[BT96, Prop. 6.2] as well as approximated modified PI (Thiery and Scherrer [TS10a, TS10b]) for
discounted MDP and SSP with all policies assumed proper. The latter is a restrictive condition. For
approximate PI, there is a similar bound under the general SSP model assumption [BT96, Prop. 6.3].
Appropriate extensions of our analysis to more general SSP models is a worthy subject for further
research.

5 Concluding Remarks

We have developed and analyzed new Q-learning algorithms for SSP problems, extending related
algorithms for discounted MDP, given in our earlier paper [BY10b]. We have established the conver-
gence of deterministic and stochastic implementations without cost function approximation under
the same conditions as those for the classical Q-learning algorithm. The challenge of the conver-
gence analysis is to deal with issues arising from the lack of a contraction property of the associated
mappings, as well as the natural asynchronism of simulation-based implementations.

The algorithms may be applied, with guaranteed convergence, without cost function approxi-
mation to small-scale problems or to large-scale problems through the use of aggregation (see e.g.,
[JJS94, JSJ95, Gor95, TV96, Ber11]). The algorithms may also be applied with cost function ap-
proximation to large-scale problems, and for this case, their performance has been quantified through
an error bound that we have obtained.

While we have not presented computational results with our Q-learning algorithms of Sections 2
and 3, we expect that they have similar qualitative behavior to their discounted counterparts, which
we have tested on several problems in [BY10b], including the counterexample of [WB93]. In particu-
lar, compared to modified PI algorithms that use linear equation-based policy evaluation, we expect
that our deterministic algorithms of Section 2 have a more reliable performance with theoretically
guaranteed convergence in an asynchronous computational environment. Compared to the classical
Q-learning algorithm, we expect that our stochastic algorithms of Section 3 require a comparable
number of iterations, but a faster computation time, since they perform a minimization over all
controls far less frequently.

Finally, we note that the general idea of [BY10b] and this paper about forming PI-like asyn-
chronous algorithms, is applicable to a host of dynamic programming problems, including minimax
control problems. This has been studied, in a deterministic setting, by the authors [BY10a].

Acknowledgements

We thank Prof. John Tsitsiklis for mentioning to us the technique to generalize the convergence
result of Prop. 3.1 to Theorem 3.1.

28

References

[Bau78] G. M. Baudet, Asynchronous iterative methods for multiprocessors, J. Assoc. Comput.
Mach. 25 (1978), 226–244.

[Ber82] D. P. Bertsekas, Distributed dynamic programming, IEEE Trans. Automat. Contr. 27
(1982), 610–616.

[Ber83] , Asynchronous distributed computation of fixed points, Math. Programming 27
(1983), 107–120.

[Ber07] , Dynamic programming and optimal control, third ed., vol. II, Athena Scientific,
Belmont, MA, 2007.

[Ber11] , Approximate dynamic programming, 2011, book chapter, on-line at:
http://web.mit.edu/dimitrib/www/dpchapter.html.

[BT89] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: Numerical meth-
ods, Prentice-Hall, Englewood Cliffs, NJ, 1989, republished by Athena Scientific, Belmont,
MA, 1997.

[BT91] , An analysis of stochastic shortest path problems, Math. Oper. Res. 16 (1991),
no. 3, 580–595.

[BT96] , Neuro-dynamic programming, Athena Scientific, Belmont, MA, 1996.

[BY09] D. P. Bertsekas and H. Yu, Projected equation methods for approximate solution of large
linear systems, J. Computational and Applied Mathematics 227 (2009), 27–50.

[BY10a] , Distributed asynchronous policy iteration in dynamic programming, Proc. The 48th
Allerton Conference on Communication, Control and Computing (Allerton, IL), September
2010, pp. 1368–1375.

[BY10b] , Q-learning and enhanced policy iteration in discounted dynamic programming,
LIDS Technical Report 2831, MIT, April 2010, to appear in Math. Oper. Res.

[CR12] P. G. Canbolat and U. G. Rothblum, (Approximate) iterated successive approximations
algorithm for sequential decision processes, Annals Oper. Res. (2012), forthcoming.

[CV06] D. S. Choi and B. Van Roy, A generalized Kalman filter for fixed point approximation and
efficient temporal-difference learning, Discrete Event Dynamic Systems 16 (2006), 207–239.

[Der70] C. Derman, Finite state Markovian decision processes, Academic Press, N.Y., 1970.

[EZ62] J. H. Eaton and L. A. Zadeh, Optimal pursuit strategies in discrete state probabilistic
systems, Trans. ASME Ser. D. J. Basic Eng. 84 (1962), 23–29.

[Fei92] E. A. Feinberg, Stationary strategies in Borel dynamic programming, Math. Oper. Res. 17
(1992), 392–397.

[Gor95] G. J. Gordon, Stable function approximation in dynamic programming, Proc. The 12th Int.
Conf. on Machine Learning (San Francisco, CA), 1995, pp. 261–268.

[JJS94] T. S. Jaakkola, M. I. Jordan, and S. P. Singh, On the convergence of stochastic iterative
dynamic programming algorithms, Neural Computation 6 (1994), 1185–1201.

29

[JSJ95] T. S. Jaakkola, S. P. Singh, and M. I. Jordan, Reinforcement learning algorithm for partially
observable Markov decision problems, Proc. Advances in Neural Information Processing
Systems, vol. 7, 1995, pp. 345–352.

[Put94] M. L. Puterman, Markov decision processes: Discrete stochastic dynamic programming,
John Wiley & Sons, New York, 1994.

[Rot79] U. G. Rothblum, Iterated successive approximation for sequential decision processes,
Stochastic Control and Optimization (J. W. B. van Overhagen and H. C. Tijms, eds.),
Vrije University, Amsterdam, 1979.

[SB98] R. S. Sutton and A. G. Barto, Reinforcement learning, MIT Press, Cambridge, MA, 1998.

[TS10a] C. Thiery and B. Scherrer, Least-squares λ policy iteration: Bias-variance trade-off in con-
trol problems, Proc. The 27th Int. Conf. Machine Learning (Haifa, Israel), 2010, pp. 1071–
1078.

[TS10b] , Performance bound for approximate optimistic policy iteration, Technical report,
INRIA, 2010.

[Tsi94] J. N. Tsitsiklis, Asynchronous stochastic approximation and Q-learning, Machine Learning
16 (1994), 185–202.

[TV96] J. N. Tsitsiklis and B. Van Roy, Feature-based methods for large-scale dynamic program-
ming, Machine Learning 22 (1996), 59–94.

[TV99] , Optimal stopping of Markov processes: Hilbert space theory, approximation algo-
rithms, and an application to pricing financial derivatives, IEEE Trans. Automat. Contr.
44 (1999), 1840–1851.

[Vei69] A. F. Jr. Veinott, Discrete dynamic programming with sensitive discount optimality criteria,
Ann. Math. Statist. 40 (1969), 1635–1660.

[Wat89] C. J. C. H. Watkins, Learning from delayed rewards, Ph.D. thesis, Cambridge University,
England, 1989.

[WB93] R. J. Williams and L. C. Baird, Analysis of some incremental variants of policy iteration:
First steps toward understanding actor-critic learning systems, Report NU-CCS-93-11, Col-
lege of Computer Science, Northeastern University, 1993.

[Whi83] P. Whittle, Optimization over time, vol. 2, Wiley, N.Y., 1983.

[YB07a] H. Yu and D. P. Bertsekas, A least squares Q-learning algorithm for optimal stopping
problems, LIDS Technical Report 2731, MIT, 2007.

[YB07b] , Q-learning algorithms for optimal stopping based on least squares, Proc. European
Control Conference (ECC) (Kos, Greece), 2007, pp. 2368–2375.

[YB11] , On boundedness of Q-learning iterates for stochastic shortest path problems, LIDS
Technical Report 2859, MIT, 2011, accepted by Math. Oper. Res.

[Yu11] H. Yu, Some proof details for asynchronous stochastic approximation algorithms, 2011,
on-line at: http://www.mit.edu/~janey yu/note asaproofs.pdf.

30

Appendices

A A Fixed Point Property of FJ,ν

The mapping FJ,ν defined by Eq. (2.7) is a monotone and nonexpansive mapping with respect to
the sup-norm, i.e.,

FJ,νQ ≤ FJ,νQ̂ if Q ≤ Q̂; ‖FJ,νQ− FJ,νQ̂‖∞ ≤ ‖Q− Q̂‖∞, ∀ Q, Q̂.

In this appendix we prove that FJ,ν has a unique fixed point, thereby establishing Prop. 2.1(i) in
view of Lemma 2.1. For convenience we repeat Prop. 2.1(i) below.

Proposition A.1. Under Assumption 1.1, for any J and ν ∈ ΠSR, the mapping FJ,ν given by
Eq. (2.7) has a unique fixed point QJ,ν , and limm→∞ FmJ,νQ = QJ,ν for any Q ∈ <|R|.

We start with two lemmas that will be used in the proof. The first lemma is about a relation
between the (long-run) average cost and the total cost of a stationary policy. (The total cost is as
defined in Section 1; for the definition of the average cost, see e.g., [Put94].) The second lemma is
about an implication of our SSP model assumption on the average cost of an improper policy.

Lemma A.1. Let σ be a stationary policy of a finite-space MDP. If the average cost of σ is non-
positive (strictly positive, respectively) for an initial state, then its total cost is less than (equal to,
respectively) +∞ for that initial state.

Proof. This follows from the inequalities of [Put94, Theorem 9.4.1(a), p. 472] applied to a single
policy σ.

Lemma A.2. Under Assumption 1.1, any improper policy in ΠSD has strictly positive average cost
on every recurrent class that it induces, other than the recurrent class {0}.

Proof. The proof is by contradiction. By definition, for a stationary policy to be called improper,
it must induce at least one recurrent class in S. Assume that the statement of the lemma were not
true. Let µ be an improper policy in ΠSD and C ⊂ S be a recurrent class that µ induces, such that
the average cost of µ on C is no greater than 0. Let µ̄ be a proper policy in ΠSD, which exists under
Assumption 1.1(i). Consider the policy µ̂ ∈ ΠSD which coincides with the improper policy µ on C
and with the proper policy µ̄ on the rest of the states. Then µ̂ is an improper policy and induces
two recurrent classes, C and {0}; the rest of the states are transient under µ̂. (If there were another
recurrent class C ′ under µ̂, then C ′ would also be a recurrent class under µ̄, which would contradict
the fact µ̄ is proper.) On C, the average cost of µ̂ equals that of µ, which is no greater than 0.
Hence, the average cost of µ̂ is no greater than 0 for all initial states in So. This, by Lemma A.1,
implies that the total cost of µ̂ is less than +∞ for all initial states. On the other hand, since µ̂ is
an improper policy in ΠSD, by Assumption 1.1(ii) it must incur infinite cost for some initial state,
a contradiction.

We now consider the equation
Q = FJ,νQ (A.1)

and show that it has a unique solution. As described in Section 2.2 (see also Footnote 2), FJ,ν is
associated with an optimal stopping problem defined by (J, ν), and Eq. (A.1) corresponds to the
Bellman equation for the Q-factors associated with the continuation action, for the optimal stopping

31

problem. In what follows, we view this problem equivalently as an SSP problem, to which we apply
the results of [BT91] on SSP to conclude that the Bellman equation (A.1) has a unique solution.

More specifically, as described in Section 2.2, in the optimal stopping problem associated with
FJ,ν , the unstopped process is the Markov chain on the state space Ro that has the same distribution
as the one induced by ν in the original SSP problem. We can assume without loss of generality that
whenever the stopping action is applied, the stopping cost is incurred and the system then transitions
to the absorbing, cost-free destination state (with its dummy control), (0, 0). The optimal stopping
problem can thus be viewed equivalently as an SSP problem with state space Ro and with two
controls, to continue and to stop, for each state in R [where at (i, u) ∈ R, the expected one-stage cost
of continuation is g(i, u) and the stopping cost is J(i)]. We refer to this SSP problem as the optimal
stopping/SSP problem. The total cost Bellman equation for the Q-factors of this SSP problem is a
system of equations in the Q-factors associated with the continuation action (cf. Footnote 2), and
it is the same as Eq. (A.1).

If we establish that the optimal stopping/SSP problem satisfies the SSP model Assumption 1.1,
then based on the results of [BT91], its Bellman equation (A.1) would have a unique solution, and
Prop. 2.1(i) would be proved. Now the optimal stopping/SSP problem satisfies Assumption 1.1(i),
that is, it has a proper policy in ΠSD, because to stop at every state is a proper policy. Hence, to prove
Prop. 2.1(i), it suffices to show that the optimal stopping/SSP problem satisfies Assumption 1.1(ii).

Lemma A.3. The optimal stopping/SSP problem satisfies Assumption 1.1(ii): every improper policy
in ΠSD incurs infinite cost for some initial state.

Proof. We use proof by contradiction. Assume that the optimal stopping/SSP problem has an
improper policy σ ∈ ΠSD whose total cost for all initial states is less than +∞. Then by Lemma A.1,
the average cost of σ is nonpositive for every initial state.

Recall that for a stationary policy to be called improper, it must induce a recurrent class on
the state space from which the desired, absorbing destination state is unreachable. Recall also that
in the optimal stopping/SSP problem, the unstopped process is the same Markov chain (on Ro)
induced by the policy ν in our original SSP problem. Therefore, the fact that σ is an improper
policy of the optimal stopping/SSP problem implies that

(i) ν is an improper policy of the original SSP problem; and

(ii) σ induces a recurrent class E ⊂ R, and (hence) σ does not take the stopping action on E.

From (ii) it follows that E must also be a recurrent class induced by ν in the original SSP, and the
Markov chain on E induced by ν is the same as the one induced by σ in the optimal stopping/SSP.
Therefore, on E, the average costs of σ and ν are equal. Denote this average cost by η. Since the
average cost of σ is nonpositive for all initial states as proved earlier, η ≤ 0.

From now on, we focus on the original SSP problem, its improper policy ν, and the recurrent
Markov chain on E induced by ν. Let ξ(x), x ∈ E denote the steady-state probabilities of the latter
Markov chain. Then, since η is the average cost of ν on E, we have

η =
∑
x∈E

ξ(x)g(x) ≤ 0, (A.2)

where g is the expected one-stage cost function. On the other hand, ν is a stationary randomized
policy defined by ν(u | i), (i, u) ∈ R. Let Uν(i) =

{
u ∈ U(i) | ν(u | i) > 0

}
for every state i ∈ S,

and let D ⊂ S be the projection of E on S (i.e., D = {i ∈ S | ∃u with (i, u) ∈ E}). Consider all
deterministic policies µ ∈ ΠSD (of the original SSP problem) such that µ(i) ∈ Uν(i) for all i ∈ D.
There are a finite number of such policies; denote them by µ1, . . . , µm. The definition of these
policies, together with the fact that E ⊂ R is recurrent under the stationary randomized policy ν,
have the following implications:

32

(a) E = ∪i∈D {(i, u) | u ∈ Uν(i)}.
(b) Under every policy µj , j = 1, . . . ,m, D is closed (with respect to the Markov chain induced

by µj on So).

(c) Every µj is an improper policy in ΠSD [since from any initial state in D, the state 0 is
unreachable in view of (b)].

(d) Restricted to the state and control subsets, D and Uν(i), i ∈ D, the original SSP problem is an
MDP with state space D and state-control space E; in this MDP, µ1, . . . , µm (restricted to D)
are all the deterministic stationary policies, and ν (restricted to D) is a randomized stationary
policy.

Let us consider the MDP with state space D mentioned in (d) above. Fix some ī ∈ D. For
j = 1, . . . ,m, let ξj(x), x ∈ E, denote the limiting average state-action frequencies of µj starting
from initial state ī. (See e.g., [Put94, Chap. 8.9.1] for the definition of these frequencies.) Note that
the limiting average state-action frequencies of ν starting from ī are ξ(x), x ∈ E. By [Put94, Theorem
8.9.3, p. 400], ξ lies in the convex hull of {ξ1, . . . , ξm}, so by Eq. (A.2), for some α1, . . . , αm ∈ [0, 1]
with

∑m
j=1 αj = 1, we have

η =

m∑
j=1

αj
∑
x∈E

ξj(x)g(x) ≤ 0.

Hence, there exists some j such that ∑
x∈E

ξj(x)g(x) ≤ 0. (A.3)

Since the left-hand side equals the average cost of the policy µj for initial state ī, Eq. (A.3) implies
that under µj , there exists a recurrent class C ⊂ D that is reachable from ī, such that the average
cost of µj on C is no greater than 0. But µj is an improper policy in ΠSD [see (c) above] and the
original SSP problem satisfies Assumption 1.1, so by Lemma A.2, the average cost of µj must be
strictly positive on C, a contradiction.

Hence, every improper policy in ΠSD of the optima stopping/SSP problem must incur infinite
cost for some initial state. The proof is complete.

We have now proved Prop. 2.1(i) (Prop. A.1).

B Verifying Convergence Conditions on Noise

In Section 3.2, as the first step to analyze the convergence of the iterates xk = (Jk, Qk) generated
by our Q-learning algorithm (3.3)-(3.4), we expressed the iterates equivalently and compactly as

xk+1(`) = (1− γ`,k)xk(`) + γ`,kL
ν̄`k
` x

(`)
k + γ`,k ω`,k, ` ∈ S ∪R, (B.1)

where xk(`) denotes the `th component of xk, and if ` = (i, u) ∈ R and γ`,k > 0, then ν̄`k is the
randomized policy defined by Eq. (3.14) and ω`,k is a noise term given by

ω`,k = ĝ(i, u, jiuk) + min
{
J

(`)
k (jiuk) , Q

(`)
k (jiuk , v

iu
k)
}
−
(
F
J

(`)
k ,ν̄`k

Q
(`)
k

)
(i, u); (B.2)

whereas if ` = i ∈ S, then ω`,k = 0 (and ν̄`k is immaterial). [See Eqs. (3.15) and (3.16).] The
stochastic approximation-based convergence analysis we used requires the following conditions on
the conditional mean and variance of the noise terms ω`,k: (i) for every ` ∈ S ∪R and k ≥ 0,

E
[
ω`,k | Fk

]
= 0, w.p.1,

33

and (ii) there exist (deterministic) constants A and B such that for every ` ∈ S ∪R and k ≥ 0,

E
[
ω2
`,k | Fk

]
≤ A+B max

`′∈S∪R
max
τ≤k
|xτ (`′)|2, w.p.1.

They are certainly satisfied for ` ∈ S (since ω`,k = 0). We verify below that they are satisfied for
` ∈ R, under Assumption 3.1 and condition (3.13), which are the algorithmic conditions in Prop. 3.1.

First, we verify by induction on k that E
[
|Jk(i)|

]
< ∞ and E

[
|Qk(i, u)|

]
< ∞ for all i ∈ S,

(i, u) ∈ R, and k ≥ 0. Since the initial (J0, Q0) is given, this is certainly true for k = 0. Suppose
that for some k ≥ 0, this is true for all τ ≤ k. Then, by Eqs. (3.3)-(3.4) and condition (3.13) on
stepsizes, we have∣∣Jk+1(i)

∣∣ ≤ D∣∣Jk(i)
∣∣+D

∑
τ≤k

∑
u∈U(i)

∣∣Qτ (i, u)
∣∣, ∀ i ∈ S,

∣∣Qk+1(i, u)
∣∣ ≤ D∣∣Qk(i, u)

∣∣+D
∣∣ĝ(i, u, jiuk)

∣∣+D
∑
τ≤k

∑
`∈S∪R

∣∣xτ (`)
∣∣, ∀ (i, u) ∈ R,

where D is the constant in condition (3.13) and xτ (`) is the `th component of (Jτ , Qτ). In the
right-hand sides of these two equations are sums of a finite (constant) number of random variables,
each of which has finite expectation by the induction hypothesis and by condition (3.7). Therefore,
E
[
|Jk+1(i)|

]
<∞ and E

[
|Qk+1(i, u)|

]
<∞ for every i and (i, u), and by induction, the claim is true

for all k.

Consider any k ≥ 0 and ` = (i, u) ∈ R. We now verify the required conditions on the conditional
mean and variance of ω`,k. By the definitions of ν̄`k and mapping FJ,ν [cf. Eqs. (3.14) and (2.7)], we
have

g(i, u) + E
[
min

{
J

(`)
k (jiuk) , Q

(`)
k

(
jiuk , v

iu
k

)} ∣∣ Fk] =
(
F
J

(`)
k ,ν̄`k

Q
(`)
k

)
(i, u), (B.3)

where the conditional expectation is over (jiuk , v
iu
k). Here, we have also used the following fact: since∣∣∣min

{
J

(`)
k (jiuk) , Q

(`)
k

(
jiuk , v

iu
k

)}∣∣∣ ≤∑
τ≤k

∑
`′∈S∪R

∣∣xτ (`′)
∣∣

and all the random variables in the right-hand side have finite expectation as we proved earlier,
the random variable on the left-hand side has finite expectation and therefore, the conditional
expectation in Eq. (B.3) is well-defined. By Eqs. (B.2) and (B.3),

ω`,k = Z1 + Z2

where

Z1 = ĝ(i, u, jiuk)− g(i, u),

Z2 = min
{
J

(`)
k (jiuk) , Q

(`)
k

(
jiuk , v

iu
k

)}
− E

[
min

{
J

(`)
k (jiuk) , Q

(`)
k

(
jiuk , v

iu
k

)} ∣∣ Fk] .
By condition (3.7) E[Z1 | Fk] = 0, so E

[
ω`,k | Fk

]
= 0.

We now bound the conditional variance of ω`,k. (Because ω2
`,k is a nonnegative random variable,

E
[
ω2
`,k | Fk

]
is well-defined always.) By the definition of Z2, we have

|Z2| ≤ 2 max
`′∈S∪R

max
τ≤k

∣∣xτ (`′)
∣∣.

Hence,

ω2
`,k ≤ Z2

1 + Z2
2 + 2|Z1| |Z2|

≤
(
ĝ(i, u, jiuk)− g(i, u)

)2
+ 4 max

`′∈S∪R
max
τ≤k
|xτ (`′)|2 + 4

∣∣ĝ(i, u, jiuk)− g(i, u)
∣∣ · max
`′∈S∪R

max
τ≤k
|xτ (`′)| ,

34

and taking conditional expectation of both sides,

E
[
ω2
`,k | Fk

]
≤ E

[(
ĝ(i, u, jiuk)− g(i, u)

)2 | Fk]+ 4 max
`′∈S∪R

max
τ≤k
|xτ (`′)|2

+ 4 E
[∣∣ĝ(i, u, jiuk)− g(i, u)

∣∣ | Fk] · max
`′∈S∪R

max
τ≤k
|xτ (`′)| .

Combining this with condition (3.7), it follows that

E
[
ω2
`,k | Fk

]
≤ A+B max

`′∈S∪R
max
τ≤k

∣∣xτ (`′)
∣∣2,

for some (deterministic) constant A and B independent of k; since the set R is finite, A,B can be
chosen to be independent of `. This shows that the desired conditions hold.

C Modifications and Extensions of the Analysis of [Tsi94]

In Section 3.3, when proving Prop. 3.1 on the convergence of our stochastic Q-learning algorithm,
we applied the results of [Tsi94] with certain modifications and extensions to suit our problem
(cf. Section 3.2). We explain what the necessary changes are in this appendix; we suggest that it
be read side-by-side with the reference [Tsi94]. A reproduction of the latter with modifications is
available [Yu11], for readers who wish to verify all the proof details. Before we start, let us also
remark that the changes required do not alter the analysis of [Tsi94] in any essential way, nor are
they technically complicated.

Recall from Section 3.2 that under the conditions of Prop. 3.1, our algorithm can be written
equivalently as in Eq. (3.15),

xk+1(`) = (1− γ`,k)xk(`) + γ`,kL
ν̄`k
` x

(`)
k + γ`,k ω`,k, ` ∈ S ∪R,

(where for every ` and k, xk, γ`,k, L
ν̄`k
` x

(`)
k are Fk-measurable, and ω`,k is Fk+1-measurable and has

zero mean conditional on Fk). There are three differences between the form and conditions of our
algorithm and those of the stochastic approximation algorithm analyzed in [Tsi94]. Two of them are
related to the stepsize conditions, and the third is related to the use of multiple mappings (instead of
a single one) in our algorithm. We describe them one by one below, together with the modifications
in the analysis of [Tsi94] to accommodate them.

The stepsize condition in [Tsi94] for each component ` is slightly different than condition (3.11);
in addition to γ`,k ∈ [0, 1], it requires

∑
k≥0 γ`,k =∞,

∑
k≥0 γ

2
`,k < C w.p.1, for some deterministic

constant C, instead of C being ∞ [Tsi94, Assumption 3]. However, this difference only affects
one technical lemma, Lemma 1 in [Tsi94]. By strengthening that lemma so that its conclusions
hold under the weaker stepsize condition (3.11), (3.13), the rest of the analysis in [Tsi94] remains
essentially intact and all the conclusions in [Tsi94] hold under the weaker condition. The additional
analysis just mentioned for strengthening Lemma 1 of [Tsi94] can be found in [BT96, Prop. 4.1 and
Example 4.3, p. 141-143] (see also Cor. 4.1 and Section 4.3.6 therein).

Instead of the stepsize condition (3.11), our algorithm uses the different stepsize condition (3.10),
(3.12) for updating cost components J(i), under which the stepsize sequence {γi,k, k ≥ 0} can violate
the square-summable condition

∑
k≥0 γ

2
i,k < ∞. The reason the square-summable condition is not

needed for the cost updates is that these updates are “noiseless”: ωi,k is identically zero for all k [cf.
Eqs. (3.3) and (3.15)]. For proof details, we note that the conclusions of Lemmas 1 and 2 of [Tsi94]
are trivially true for a zero noise sequence. Since in [Tsi94] these two lemmas, which concern the
cumulative effects of noises, are the only places where the square-summable condition is used, the
analysis given in [Tsi94] goes through and the conclusions therein hold under our stepsize conditions
for those components with noiseless updates.

35

The results of [Tsi94] are stated for an algorithm of a form similar to (3.15) but with a single
mapping L, instead of multiple mappings Lν as in our algorithms. To apply the analysis of [Tsi94]
to the case of multiple mappings, we replace the condition on the single mapping L by appropriate
conditions on the set of mappings Lν , and we also need to make some modifications in the proofs of
[Tsi94]. We describe the details separately for the two cases: (i) all Lν are contraction mappings,
and (ii) all Lν are monotone nonexpansive mappings.

The first case where all Lν are contraction mappings is simpler to handle. In [Tsi94], the
boundedness and convergence of the iterates xk when the associated mapping L is a contraction, are
established by Theorems 1 and 3, respectively. The proofs of these theorems rely on the contraction
property through two inequalities [cf. Eqs. (8)-(9) in Assumptions 5 and 6 in [Tsi94]]:

‖Lx‖ζ ≤ β‖x‖ζ +D, ∀ x, (C.1)

for some constant D, and
‖Lx− x∗‖ζ ≤ β‖x− x∗‖ζ , ∀ x, (C.2)

where L is a contraction with respect to some weighted sup-norm ‖ · ‖ζ , with modulus β ∈ [0, 1)
and fixed point x∗. In our case, we place a uniform sup-norm contraction condition on the set
of mappings involved; this is the same property stated in Prop. 2.3 for the set

{
Lν | ν ∈ ΠSR

}
when all policies are proper in the SSP problem. Then, inequalities (C.1)-(C.2) are satisfied by
every mapping involved, and the proofs of Theorems 1 and 3 of [Tsi94] go through. (The details
of this analysis can also be found in [BT96, Sections 4.3.3, 4.3.6]. This reference does not concern
asynchronous algorithms with communication delays, but the analysis given there essentially applies
to such algorithms.)

The second case where all Lν are nonexpansive mappings involves more modifications. In [Tsi94],
the mapping L is required to be monotone and nonexpansive with respect to the sup-norm and to
have a unique fixed point x∗ (cf. Assumption 4 therein). In our case, we place this condition on all the
mappings Lν involved and require them to have the same fixed point x∗, and furthermore, we require
that the same is true for the two mappings L and L, which are defined by taking componentwise
supremum and infimum, respectively, of Lνx over ν. This is the same property stated in Prop. 2.2 for
the set

{
Lν | ν ∈ ΠSR

}
under our general SSP model assumption, Assumption 1.1. We then make

several modifications in the proofs of [Tsi94] as follows (where the equations and lemmas mentioned
refer to those appearing in [Tsi94]):

(i) Replace the mapping L (F in the notation of [Tsi94]) by L (L, respectively) in the definition
of a sequence of upper (lower, respectively) bounds given by Eq. (16) [Eq. (17), respectively].
Make the same changes in the statement of Lemma 4 and its proof, as well as in the proof of
Lemma 5.

(ii) For proving Lemmas 6-7, (which are about upper-bounding xk), change the mapping L (F in
the notation of [Tsi94]) in Eq. (21) to L; change the equality sign in the last line of the proof
of Lemma 6 to “≤”; and change the mapping L that appears after the proof of Lemma 6, to
L.

(iii) For proving the symmetric counterparts of Lemmas 6-7, (which are about lower-bounding xk),
repeat the changes described in (ii) with L in place of L and with “≥” in place of “=” in the
last line of the proof of Lemma 6.

With the above modifications, the proof for Theorem 2 in [Tsi94] applies to our case and shows that
Lemma 3.1 in our Section 3.3.2 holds.

36

