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Abstract In this article we study cooperative multi-choice games with limited cooperation
possibilities, represented by an undirected forest on the player set. Players in the game can
cooperate if they are connected in the forest. We introduce a new (single-valued) solution concept
which is a generalization of the average tree solution defined and characterized by Herings et al.
[2008] for TU-games played on a forest. Our solution is characterized by component efficiency,
component fairness and independence on the greatest activity level. It belongs to the precore
of a restricted multi-choice game whenever the underlying multi-choice game is superadditive
and isotone. We also link our solution with the hierarchical outcomes (Demange, 2004) of some
particular TU-games played on trees. Finally, we propose two possible economic applications of
our average tree solution.

Keywords Average tree solution · Communication graph · (pre-)Core · Hierarchical outcomes
· Multi-choice games.

1 Introduction

In the classical cooperative game theory, it is assumed that each player has only two options
concerning cooperation, being either active or inactive, and that any coalition of players may
form. In order to model in a more accurate way real situations, several extensions of the classical
cooperative game in characteristic function form (TU-game) have been proposed. We consider
two of them in this article.

The first extension is the class of multi-choice games. Whereas in a TU-game each player is
either active or inactive, in a multi-choice context each player may have additional participation
opportunities in a finite set of activity levels. Several solutions for multi-choice games have been
defined: Hsiao and Raghavan [1993] generalized the Shapley value from TU-games to multi-
choice games in which all players have the same number of activity levels; van den Nouweland
et al. [1995] and Grabisch and Xie [2007] generalized the core, the dominance core and the
Weber set from TU-games to multi-choice games. Other Shapley-like values and their axiomatic
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characterizations can been found in Derks and Peters [1993], Klijn, Slikker and Zarzuelo [1999],
Calvo and Santos [2000], Hwang and Liao [2008] and Grabisch and Lange [2007].

The second extension is the class of TU-games with restricted cooperation. In many situa-
tions the collection of possible coalitions is restricted by some social, hierarchical, economical,
communicational or even technical structure. Examples are games with coalition structures
where players meet together in coalitions and form a priori unions (a partition of the player
set) or a coalition configuration. Another instance of TU-games with restricted cooperation are
graph games in which players can cooperate only if they can communicate through a path in
a communication graph. In games with permission structures, the relational structure is not a
communication graph but an authority. Here the idea is that the players are part of a hierarchi-
cal organization. This implies that they need permission from certain other players before they
are allowed to cooperate. For each class of these TU-games with restricted cooperation, the
Shapley value and the core have been generalized. We refer the reader to the Aumann-Drèze
value [1974] and the Owen value [1977] for games with a priori unions, to Albizuri, Aurrekoetxea
and Zarzuelo [2006] for an extension of the Owen value for games with coalition configurations,
to the Myerson value [1977] for graph games and to the permission value, due to Gilles et al.
[1992], for games with permission structures.

Recently, Albizuri [2009] combined multi-choice games and games with coalition structures
and proposed a solution that extends the Owen value [1977]. In this article, we pursue this
line of research by combining multi-choice games and graph games. We obtain a solution that
extends the average tree solution introduced by Herings et al. [2008] for forest games. Axiomatic
characterizations of the average tree solution for forest games can be found in Herings et al.
[2008], van den Brink [2009], Béal et al. [2010], Mishra and Talman [2010]. In order to obtain
an average tree solution for multi-choice forest games we proceed as follows. First, we introduce
three properties for a solution on this class of games: component efficiency, component fairness,
and independence on the greatest effort. The first two properties generalize the properties
introduced by Herings et al. [2008] from forest games to multi-choice forest games. Independence
on the greatest effort states that the payoff variation of a player who does not choose his greatest
activity level does not change if we increase the set of his or her activity levels. Combining
component efficiency and component fairness, we obtain a set of solutions which distribute to
each player choosing his greatest activity level the sum of two parts. One part distributes the
worth of the component equally among its members when each one chooses his or her greatest
activity level. The second part is determined link by link and can be viewed as a compensation
scheme between the two players incident to a link.

Adding independence on the greatest effort to component efficiency and component fairness,
we obtain a unique solution on the class of multi-choice forest games. Then, we give a closed
expression for this solution. In order to do so, we introduce a restricted multi-choice game and
hierarchical outcomes that generalize those introduced by Demange [2004] on spanning trees for
tree-games. It turns out that the average of these extended hierarchical outcomes over the set
of all possible spanning trees, called the average tree solution, satisfies component efficiency,
component fairness and independence on the greatest effort. We also provide a representation of
this average tree solution for multi-choice games in terms of an average of specific hierarchical
outcomes for tree-games constructed from the underlying multi-choice forest game. That is,
the average tree solution for the class of multi-choice forest games can be computed through
hierarchical outcomes of specific tree-games.

Our last result establishes that if the underlying multi-choice game is superadditive and
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isotone, then our average tree solution belongs to the precore of the restricted game. We give a
simple condition under which it belongs to the core of the restricted game. Finally our solution
is applied to measure a kind of average marginal productivity of each unit of input in a model of
production and to distribute the cartel’s profit generated by each unit in the price of each firm
in a cooperative version of Hotelling’s oligopoly on a tree with fixed locations.

This article is organized as follows: Section 2 is a preliminary section containing concepts
from multi-choice games and graph games, including the definition of the restricted game. In
Section 3, we define the three properties for (single-valued) solutions on the class of multi-choice
forest games and we initiate the axiomatic study. In Section 4, we give the expression of the
unique solution satisfying these three properties. In Section 5, we show the average tree solution
belongs to the pre-core of the restricted game provided that the underlying multi-choice games
is superadditive and isotone. In Section 6, we discuss the above-mentioned applications.

2 Preliminaries

Notations

We denote by |A| the cardinality of a finite set A. Given x ∈ R
n
+, ||x|| denotes the

Minkowski norm of order 1, i.e. ||x|| =
∑n

i=1 xi.

Multi-choice games

Let N = {1, 2, . . . , n} be a fixed and finite set of players of size n ∈ N. In a multi-choice
(cooperative) game, each player i ∈ N has a finite number of activity levels at which he or she
can choose to play. The worth that the set of players N can obtain depends on the activity of
the cooperative players. We set Ai = {0, 1, . . . ,mi} as the finite set of activity levels of player
i ∈ N , where action 0 means that player i does not participate. Let AS be the product set
∏

i∈S Ai, S ⊆ N , S 6= ∅. Elements a of AN are called coalitions. We will use sometimes the
notation (aS, aN\S) ∈ AS × AN\S instead of a ∈ AN in order to insist on the activity levels
played by the sets of players S and N\S. Denote by S(a) the support of coalition a ∈ AN , i.e.
S(a) = {i ∈ N : ai > 0}. The set of coalitions AN endowed with the usual binary relation ≥
on R

n induced a (complete) lattice with greatest element m = (m1, . . . ,mn) and least element
0N = (0, 0, . . . , 0). For any two coalitions a and b of AN , a∨b and a∧b denote their least upper
bound and their greatest lower bound respectively. A characteristic function is a real-valued
function v : AN −→ R which assigns to every coalition a = (a1, . . . , an) ∈ AN the worth that
the players can obtain when each player i ∈ N plays at activity level ai ∈ Ai. By convention,
the worth v(0N) of the null coalition 0N is set to zero. A multi-choice game on N is given
by a pair (AN , v) where AN is the set of coalitions and v the characteristic function. In case
Ai = {0, 1} for each i ∈ N , (AN ,≥) is isomorphic to (2N ,⊇), where 2N stands for the set
consisting of all subsets of N , so that (AN , v) is a TU-game. Given a multi-choice game (AN , v)
and a coalition b ∈ AN , b 6= 0N , we write (Ab

N , v) the multi-choice subgame obtained from
(AN , v) by restricting v to the set Ab

N = {a ∈ AN : ai ≤ bi, i ∈ N}, a principal of AN .
A multi-choice game (AN , v) is isotone if a ≥ b implies v(a) ≥ v(b). It is super-

additive if for each pair of coalitions a and b of AN such that a ∧ b = 0N , it holds that
v(a ∨ b) ≥ v(a) + v(b). It is supermodular if for each pair of coalitions a and b of AN , it
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holds that v(a ∨ b) + v(a ∧ b) ≥ v(a) + v(b).

Communication graphs

In this article, we study multi-choice games with limited cooperation possibilities, represented
by an acyclic communication graph. A communication graph on the player set N is a pair
(N, L) where the player set N represents the nodes of the graph and L is a subset of N × N .
Each pair {i, j} ∈ L represents a communication link between player i and player j. In order to
save notations, we write ij instead of {i, j} to refer to a link. For each i ∈ N , the set Li denotes
the set of neighbors of i in (N, L), i.e the set of j ∈ N such that ij ∈ L. A finite sequence
of distinct players (i1, i2, . . . , ik) is a path in (N, L) if iqiq+1 ∈ L for each q ∈ {1, . . . , k − 1}.
A cycle in (N, L) is a finite sequence of players (i1, i2, . . . ik+1) such that i1 = ik+1, all players
i1, i2, . . . , ik are different elements of N and iqiq+1 ∈ L for each q ∈ {1, . . . , k}. In case k = 1,
the cycle (i1, i2) is called a loop. A communication graph (N, L) is acyclic if it does not contain
any cycle. For each subset of players C ⊆ N , the subset of links L(C) ⊆ L represents the set of
communication links between players in C, and the pair (C, L(C)) is the subgraph of (N, L)
induced by C. A subgraph (C, L(C)) of a graph (N, L) is connected if there exists at least one
path between any pair of distinct players in C. The subgraph (C, L(C)) is maximally connected
if it connected and for each i ∈ N\C the subgraph (C ∪ {i}, L(C ∪ {i})) of (N, L) is not
connected. If (C, L(C)) is a maximal connected subgraph of (N, L), C is a component of
(N, L). Denote by N/L the set of components of (N, L) and by C/L(C) the set of components
of the subgraph (C, L(C)) of (N, L) induced by C ⊆ N . Note that if (N, L) is acyclic, then
there is exactly one path between any pair of distinct players who belong to the same component.
An acyclic graph is called a forest. If the forest has exactly one component, it is called a tree.
Therefore, each component of a forest induces a tree. It follows from these remarks that the
class of acyclic graphs on N is closed under link deletion, i.e. if (N, L) is a forest or a tree, then
the graph (N, L\ij) for ij ∈ L is a forest on N .

An orientation of a graph (N, L) is a directed graph obtained from (N, L) by replacing
each link ij by either the directed link (i, j) or the directed link (j, i). Given a forest (N, L),
a rooted tree tCr on the subgraph (C, L(C)) is an orientation that arises from a component
C ∈ N/L by selecting player r ∈ C, called the root, and directing all links of L(C) away
from the root r. Because r belongs to exactly one component of (N, L), we will use the
notation tr instead of tCr when no confusion arises. Each agent r ∈ N is the root of exactly
one rooted tree tr. Note also that for any rooted tree tr on (N, L), any agent k ∈ C\{r},
there is exactly one directed link (j, k); agent j is the unique predecessor of k and k is
a successor of j in tr. Denote by sr(j) the possibly empty set of successors of player j
in tr. A player k is a subordinate of j in tr if there is a directed path from j to k, i.e.
if there is a sequence of distinct agents (i1, i2, . . . , ip) such that i1 = j, ip = k and for
each q ∈ {1, 2, . . . , p − 1}, iq+1 ∈ sr(iq). The set Sr(j) denotes the union of the set of all
subordinates of j in tr and {j}. So, we have sr(j) ⊆ Sr(j)\{j}. A rooted tree reflects the idea
that two players incident to a communication link do not have equal access or control to that link.

Multi-choice forest games

The combination of a multi-choice game and a communication graph on N results in a
multi-choice graph game given by a triple (AN , v, L), where AN is the set of coalitions, v the
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characteristic function and L the set of communication links of the graph (N, L). Let us denote
by CN the set of all multi-choice forest games (AN , v, L) on N and by C∗

N ⊆ CN the set
of multi-choice tree games (AN , v, L) on N . If (AN , v) is a TU-game, then we say the
combination of a TU-game and a communication graph results in a graph game.

In a multi-choice graph game (AN , v, L), the members of the support of coalition a ∈ AN

can cooperate and earn their worth v(a) if they can communicate through the links of the
communication graph (N, L), i.e if (S(a), L(S(a)) is a connected subgraph of (N, L). If S(a)
does not induce a connected subgraph, we follow Myerson [1977] and assume that players in
S(a) can only realize the sum of the worths of the components on the subgraph (S(a), L(S(a)).
This yields a restricted multi-choice game (AN , vL) define as:

∀a ∈ AN , vL(a) =
∑

C∈S(a)/L(S(a))

v(aC , 0N\C).

In case AN = {0, 1}n, the restricted multi-choice game (AN , vL) coincides with the restricted
game introduced by Myerson [1977] for graph games.

Solution concepts for multi-choice forest games

In multi-choice (forest) games, a payoff vector is defined for any player participating at any
level. Given (AN , v, L) ∈ CN , we introduce the set V consisting of all pairs (i, k) where i ∈ N
and k ∈ Ai. A payoff vector x is an element of R

V . Each coordinate xi,k ∈ R of x represents
the payoff variation to player i corresponding to an increase of activity from level k−1 to k, and
xi,0 = 0 for each i ∈ N . Therefore, if a player i works at level k ∈ Ai, then he or she obtains,
according to x, the amount

Xi,k =
k

∑

q=0

xi,q.

A single-valued solution on CN , also called an allocation rule, is a function f : CN −→ R
V

which assigns to each multi-choice forest game (AN , v, L) ∈ CN a payoff vector f(AN , v, L) ∈
R

V . As above, Fi,k(AN , v, L) denotes the accumulated payoffs of player i when he plays k ∈ Ai

in (AN , v, L). For convenience, F S(AN , v, L) denotes the sum of accumulated payoffs received
by the players in S ⊆ N when each one chooses its greatest activity level mi ∈ Ai, i ∈ S, i.e.

F S(AN , v, L) =
∑

i∈S

Fi,mi
(AN , v, L).

In a multi-choice forest games (AN , v, L) ∈ CN , a payoff vector x ∈ R
V is efficient if for it

holds that
∑

i∈N

Xi,mi
= vL(m).

A payoff vector x ∈ R
V is level-increased rational if for all i ∈ N and all k ∈ Ai, it holds

that
xi,k ≥ vL(kei) − vL((k − 1)ei),

where ei is the vector in R
n such that ei

j = 0 if j ∈ N\{i}, and ei
j = 1 if j = i. This means

that xi,k is at least the increase in worth that player i can obtain when he or she is the only
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one to participate and changes his or her activity from level k − 1 to k. A payoff vector is an
imputation if it is efficient and level-increased rational. A payoff vector is x acceptable if for
each coalition a ∈ AN , it holds that

∑

i∈N

Xi,ai
≥ vL(a).

The precore of (AN , v, L) ∈ CN , denoted by PK(AN , v, L), is the set of efficient and acceptable
payoff vectors. Note that PK(AN , v, L) is a convex set. The core of (AN , v, L) ∈ CN , denoted
by K(AN , v, L) ⊆ PK(AN , v, L), is the set of acceptable imputations.

3 Properties for allocation rules

In this section we introduce three properties for allocation rules on CN . The first one is
a generalization of the property of component efficiency from graph games to the class of
multi-choice forest games. Component efficiency for graph games is itself a generalization of
the property of efficiency from TU-games to graph games. It has been introduced by Myerson
[1977] in order to characterize, together with a property of fairness, the so-called Myerson value.

Component efficiency. An allocation rule f on CN is component efficient if for each
(AN , v, L) ∈ CN and for each component C of (N, L) it holds that

FC(AN , v, L) = v(mC , 0N\C).

This property means that the worth of coalition (mC , 0N\C) ∈ AC×AN\C , where only the players
of the component C participate and play their greatest activity level, is totally redistributed
among themselves. In case (N, L) is a tree, i.e. the only component is N , this property is similar
to the property of efficiency introduced by Hsiao and Rhagavan [1993] and others to characterize
several extensions of the Shapley value [1953] from TU-games to multi-choice games. In such a
special case, component efficiency becomes FN(AN , v, L) = v(m).

The second property is a generalization of the property of component fairness from forest
games to multi-choice forest games. Component fairness has been introduced by Herings et al.
[2008] for the class of forest games. It says that deleting a link between two players yields for
both resulting components the same average change in payoff, where the average is taken over
the players in the component. To extend this property to the class of multi-choice games, we
need the following definition. Given a forest (N, L) and a component C of (N, L), the subgraph
(C, L(C)) is a tree. Therefore, deleting a link ij ∈ L(C) generates a bipartition {Kij, Kji} of
C. The subset Kij of C is the element of the bipartition containing player i and Kji is the
element of the bipartition containing player j. It follows that Kij and Kji constitute the two
new components of the forest (N, L\ij). We say that the subsets Kij and Kji are the two
cones of the forest induced by the link ij ∈ L(C). It follows that each component of size |C|
possesses 2|C| − 2 cones.

Component fairness. An allocation rule f on CN satisfies component fairness if for each
(AN , v, L) ∈ CN and each link ij ∈ L, it holds that

FKij(AN , v, L) − FKij(AN , v, L\ij)

|Kij|
=

FKji(AN , v, L) − FKji(AN , v, L\ij)

|Kji|
.
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Component fairness for multi-choice forest games indicates that deleting a link between
two players yields for both resulting components Kij and Kji of the forest (N, L\ij) the same
average change in accumulated payoffs when each player chooses its greatest activity level,
where the average is taken over the players in the component. On the class of forest games,
Herings, et al. [2008] show that the combination of component efficiency and component
fairness generates a unique allocation rules. This uniqueness result is no longer true on
the class of multi-choice forest games since these two properties only concern accumulated
payoffs. We thus introduce a new property, called independence on the greatest activity
level, which states that the increase in payoff to player i corresponding to a change of ac-
tivity from level k−1 to k, where k 6= {0, mi}, does not depend on his greatest activity level mi.

Independence on the greatest activity level. An allocation rule f on CN satisfies inde-
pendence on the greatest activity level if for each (AN , v, L) ∈ CN such that there is i ∈ N with
mi ≥ 2, it holds that for each k ∈ {1, . . . ,mi − 1},

fi,k(AN , v, L) = fi,k

(

A
(mi−1,m

−i)
N , v, L

)

.

Remark: we could instead assume independence on the greater activity levels without
modifying the results obtained in this article.

We now describe the solutions satisfying different combinations of the above list of properties.
The first proposition states that if an allocation rule on the set of multi-choice forest games
satisfies component efficiency and component fairness, then the accumulated payoffs of the
members of a cone is the sum of two parts. One part is the worth of the coalition formed by the
players of this cone when they play their greatest activity level and the second part is a share
of a surplus generated by the deletion of the link when players of the component choose their
greatest activity level. This share is precisely the relative size of this cone. Reciprocally, if the
accumulated payoffs of the member of each cone is allocated as above, then the allocation rule
satisfies component efficiency and component fairness.

Proposition 3.1 An allocation rule f on CN satisfies component efficiency and component

fairness if and only if for each (AN , v, L) ∈ CN , each component C ∈ N/L, each link ij ∈ L(C),
the sum FKij(AN , v, L) of accumulated payoffs in Kij is equal to

v(mKij
, 0N\Kij

) +
|Kij|

|C|

(

v(mC , 0N\C) − v(mKij
, 0N\Kij

) − v(mKji
, 0N\Kji

)
)

(3.1)

Proof. Assume that f satisfies component efficiency and component fairness on CN . Pick any
multi-choice forest game (AN , v, L) ∈ CN , any component C of (N, L), and delete any link
ij ∈ L(C). By definition |C| = |Kij| + |Kji| and by component efficiency of f , we get:

FKij(AN , v, L\ij) = v(mKij
, 0N\Kij

) and FKji(AN , v, L\ij) = v(mKji
, 0N\Kji

) (3.2)

and
FKij(AN , v, L) + FKji(AN , v, L) = v(mC , 0N\C) (3.3)

Because |Kji| = |C| − |Kij|, component fairness can be rewritten as follows:

FKij(AN , v, L) − FKij(AN , v, L\ij) =
|Kij|

(

FKji(AN , v, L) − FKji(AN , v, L\ij))
)

|C| − |Kij|
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Using (3.2) and (3.3) we deduce that

FKij(AN , v, L) − v(mKij
, 0N\Kij

) =
|Kij|

(

v(mC , 0N\C) − FKij(AN , v, L) − v(mKji
, 0N\Kji

)
)

|C| − |Kij|
,

which is equivalent to write that FKij(AN , v, L) is equal to (3.1).
Reciprocally, assume that for each (AN , v, L) ∈ CN , each component C, each link ij ∈ L(C),

the accumulated payoffs FKij(AN , v, L) in Kij is equal to (3.1). To show: f satisfies component
efficiency and component fairness on CN . Pick any (AN , v, L) ∈ CN , any component C and any
link ij ∈ L(C). By (3.1), we have

FKij(AN , v, L) + FKji(AN , v, L) = FC(AN , v, L) = v(mC , 0N\C),

which proves that f satisfies component efficiency on CN .
Next, by component efficiency and by (3.1), the variation of accumulated payoffs

FKij(AN , v, L) − FKij(AN , v, L\ij) is equal to

|Kij|

|C|

(

v(mC , 0N\C) − v(mKij
, 0N\Kij

) − v(mKji
, 0N\Kji

)
)

.

In the same way, FKji(AN , v, L) − FKji(AN , v, L\ij) is equal to

|Kji|

|C|

(

v(mC , 0N\C) − v(mKij
, 0N\Kij

) − v(mKji
, 0N\Kji

)
)

.

It follows that

FKij(AN , v, L) − FKij(AN , v, L\ij)

|Kij|
=

FKji(AN , v, L) − FKji(AN , v, L\ij)

|Kji|
,

which proves that f satisfies component fairness on CN . �

The following proposition provides a geometric interpretation of the accumulated payoffs
received by each player when the allocation rule satisfies component efficiency and component
fairness.

Proposition 3.2 An allocation rule f on CN satisfies component efficiency and component

fairness if and only if for each (AN , v, L) ∈ CN , each component C ∈ N/L, the accumulated

payoffs F {i}(AN , v, L) of each i ∈ C is equal to

v(mC , 0N\C)

C
+

∑

j∈Li

det M
(AN ,v,L)
ij (3.4)

where det M
(AN ,v,L)
ij is the determinant of the 2 × 2 matrix M

(AN ,v,L)
ij defined as

M
(AN ,v,L)
ij =











v(mKij
, 0N\Kij

)
|Kij|
|C|

v(mKji
, 0N\Kji

)
|Kji|
|C|











.
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Before proceeding to the proof of Proposition 3.2, it is instructive to consider the following
interpretation of the allocation given by (3.4). First, the accumulated payoffs of each player is
the sum of two parts. The first part distributes the worth of the coalition (mC , 0N\C) associated
with the component C equally among its members and the second part is computed link by link.
Secondly, each determinant det M

(AN ,v,L)
ij , j ∈ Li, can be viewed as the oriented area of the

parallelogram with vertices at (0, 0), (v(mKij
, 0N\Kij

), v(mKji
, 0N\Kji

)), (|Kij|/|C|, |Kji|/|C|)
and (v(mKij

, 0N\Kji
) + |Kij|/|C|, v(mKji

, 0N\Kji
) + |Kji|/|C|). The oriented area is the same

as the usual area, except that it is negative when the vertices are listed in clockwise order. Note
also that the allocation process associated with a link ij has the zero-sum property: agent i
receives det M

(AN ,v,L)
ij and agent j receives exactly − det M

(AN ,v,L)
ij . In order to interpret this

situation, assume that the connected component C forms and that the members of C choose
their greatest activity level. Because L(C) is minimally connected all communication links are
necessary to coordinate the actions inside C. Suppose that the link ij ∈ L(C) is broken. How

should i and j be compensated? The determinant det M
(AN ,v,L)
ij offers a compensation scheme

between i and j whose geometric interpretation in the form of an orientated area is quite natural.

Proof. Pick any allocation rule f that satisfies component efficiency and component fairness on
CN . Pick any (AN , v, L) ∈ CN and consider any component C of (N, L) and i ∈ C. First note
that

⋃

j∈Li

Kji = C\{i} (3.5)

where the collection of cones Kji, j ∈ Li are pairwise disjoints. Therefore, by component
efficiency we have:

F {i}(AN , v, L) = v(mC , 0N\C) −
∑

j∈Li

FKji(AN , v, L) (3.6)

By Proposition 3.1, we know that FKji(AN , v, L), j ∈ Li, is equal to

v(mKji
, 0N\Kji

) +
|Kji|

|C|

(

v(mC , 0N\C) − v(mKji
, 0N\Kji

) − v(mKij
, 0N\Kij

)
)

or equivalently

|Kji|

|C|
v(mC , 0N\C) −

|Kji|

|C|
v(mKij

, 0N\Kij
) +

|Kij|

|C|
v(mKji

, 0N\Kji
).

Putting this expression in (3.6) and taking into account (3.5), we obtain that F {i}(AN , v, L) is
equal to

v(mC , 0N\C)

|C|
+

∑

j∈Li

(

|Kji|

|C|
v(mKij

, 0N\Kij
) −

|Kij|

|C|
v(mKji

, 0N\Kji
)

)

,

which is precisely (3.4).
Reciprocally, assume that for each (AN , v, L) ∈ CN and each i ∈ N , F {i}(AN , v, L) is given

by (3.4). Pick any j ∈ Li and the induced cone Kji. By (3.4), we have:

FKji(AN , v, L) =
|Kji|

|C|
v(mC , 0N\C) +

∑

k∈Kji

∑

q∈Lk

det M
(AN ,v,L)
kq (3.7)

9



For each pair ordered pair (k, q) ∈ Kji × Lk such that {q, k} ⊆ Kji, we have (q, k) ∈ Kji × Lq

and
det M

(AN ,v,L)
kq + det M

(AN ,v,L)
qk = 0.

The only ordered pair for which this relation is not true is the pair (j, i) ∈ Kji×Lj since i 6∈ Kji.
It follows that (3.7) reduces to

FKji(AN , v, L) =
|Kji|

|C|
v(mC , 0N\C) + det M

(AN ,v,L)
ji .

The right hand side of this equality can be rewritten as:

v(mKji
, 0N\Kji

) +
|Kji|

|C|

(

v(mC , 0N\C) − v(mKji
, 0N\Kji

) − v(mKij
, 0N\Kij

)
)

(3.8)

Since the equality between FKji(AN , v, L) and (3.8) is true for each component C and each
ij ∈ L(C), we conclude that f satisfies component efficiency and component fairness by an
application of Proposition 3.1. �

We now state the main result of this section, which indicates that there is a unique allocation
rule on the class of multi-choice forest games that satisfies component efficiency, component
fairness and independence on the greatest activity level. In order to complete the proof of
this result, it is useful to define for each k ≥ n, the subclass Ck

N of multi-choice forest games
(AN , v, L) ∈ CN such that n ≤ ||m|| ≤ k. Remark that Ck

N ⊆ Ck+1
N and that

CN =
⋃

k≥n

Ck
N .

Notice also that Propositions 3.1 and 3.2 can be applied on each Ck
N .

Proposition 3.3 On the class of multi-choice forest games CN , there is a unique allocation

rule that satisfies component efficiency, component fairness and independence on the greatest

activity level.

Proof. Choose any allocation rule f on CN that satisfies component efficiency, component
fairness and independence on the greatest activity level. The proof is by induction on ||m||.
Initial step: Pick any (AN , v, L) ∈ CN such that ||m|| = n. In such a case, v is the
characteristic function of the TU-game (N, v) and (AN , v, L) is the forest game (N, v, L). On
the class of forest games, only component efficiency and component fairness can be used. Note
also that component efficiency and component fairness reduce to the corresponding properties
introduced in Herings et al. [2008]. By Theorem 3.4 in Herings et al. [2008], there is a unique
allocation rule that satisfies component efficiency and component fairness on the class of forest
games.
Induction hypothesis: Assume that there is a unique allocation rule f that satisfies com-
ponent efficiency, component fairness and independence on the greatest activity level on Ck

N for
some k > n.
Induction step: Pick any (AN , v, L) ∈ Ck+1

N such that ||m|| = k + 1. Because k + 1 > n,
there necessarily exists a player with at least two activity levels. Set Q{i}(AN , v, L) equals to the
expression (3.4) found in Proposition 3.2. Next, for each ordered pair (i, k) ∈ N × Ai, define
fi,k(AN , v, L) as follows:
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1. If mi = 1, then fi,1(AN , v, L) = Q{i}(AN , v, L) ;

2. If mi > 1, then

(a) ∀k ∈ {1, 2, . . . ,mi − 1}, fi,k(AN , v, L) = fi,k(A
(mi−1,m

−i)
N , v, L);

(b) fi,mi
(AN , v, L) = Q{i}(AN , v, L) − F {i}(A

(mi−1,m
−i)

N , v, L).

By construction, for each i ∈ N , we have F {i}(AN , v, L) = Q{i}(AN , v, L). By the induction
hypothesis and Proposition 3.2, f satisfies component efficiency and component fairness on
Ck+1

N . By construction and by the induction hypothesis f satisfies also independence on the
greatest activity level. Therefore, we have shown that there is an allocation rule f that satisfies
component efficiency, component fairness and independence on the greatest activity level on
Ck+1

N . Next, assume that there is another allocation rule g that satisfies component efficiency,
component fairness and independence on the greatest activity level on the class Ck+1

N . Pick
any multi-choice forest games (AN , v, L) ∈ Ck+1

N . By Proposition 3.2, we obtain that for each
i ∈ N , F {i}(AN , v, L) = G{i}(AN , v, L). By the induction hypothesis and independence on the
greatest activity level, for each (i, k) ∈ N × Ai such that 1 ≤ k < mi we have

gi,k(AN , v, L) = gi,k(A
(mi−1,m

−i)
N , v, L) = fi,k(A

(mi−1,m
−i)

N , v, L) = fi,k(AN , v, L).

Because F {i}(AN , v, L) = G{i}(AN , v, L) for each i ∈ N , we necessarily have gi,mi
(AN , v, L) =

fi,mi
(AN , v, L) for each i ∈ N . Therefore, g(AN , v, L) = f(AN , v, L), which proves that f is

uniquely determined on Ck+1
N . �

4 The average tree solution

Having proved that component efficiency, component fairness and independence on the greatest
activity level uniquely determine an allocation rule on CN , we are now going to give a closed
expression for this solution.

Consider a multi-choice forest game (AN , v, L) ∈ CN , and a root tree tr on the subgraph
(C, L(C)) induced by the component C ∈ N/L. For each (i, k) ∈ V define the coalition
ar,(i,k) ∈ AN with respect to the root r as follows:

a
r,(i,k)
j =







k if j = i,
mj if j ∈ Sr(i)\{i},
0 otherwise.

The hierarchical outcome hr(AN , v, L) ∈ R
V with respect to r ∈ C is the payoff vector

defined as:

hr
i,k(AN , v, L) =

{

vL
(

ar,(i,k)
)

− vL
(

ar,(i,k−1)
)

if i ∈ C, k 6= 0,
0 otherwise.

The payoff hr
i,k(AN , v, L) to player i ∈ C choosing the activity level k 6= 0 is a marginal

contribution vector in the sense it is equal to the worth with respect to vL of the coalition whose
support contains the player i choosing the activity level k and all the subordinates of player i in
tr when each one chooses his greatest activity level minus the worth of the same coalition except
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that player i chooses the activity level k−1 instead of k. In case AN = {0, 1}n, i.e. (AN , v, L) is
a forest game, hr(AN , v, L) coincides with the hierarchical outcome defined by Demange [2004].
See also Khmelnitskaya [2010] and van den Brink [2009] for axiomatic characterizations of the
hierarchical outcome in forest games. Here is a difference with the class of forest games. If
k 6= 1, the support of ar,(i,k−1) is equal to the support of ar,(i,k) and so the coalition ar,(i,k) does
not split into several components. If k = 1, then i no longer belongs to the support of the
coalition ar,(i,0). This support is constituted by the groups of players Sr(j), j ∈ sr(i), and so

vL
(

ar,(i,0)
)

=
∑

j∈sr(i)

v
(

a
r,(i,0)
Sr(j) , 0N\Sr(j)

)

.

Herings, et al. [2008] extend Demange’s hierarchical outcome on forest games by considering
the average of the hierarchical outcomes, where the average is taken over the set of rooted trees
that we can create on each component of the forest. The authors show that the average of the
hierarchical outcomes, also called the average tree solution, is the unique solution that satisfies
component efficiency and component fairness. We propose an extension of this definition from
forest game to multi-choice forest games.

On the class of multi-choice forest games CN , the average tree solution AT assigns to any
(AN , v, L) ∈ CN the payoff vector AT(AN , v, L) ∈ R

V defined as follows: for each C ∈ N/L,
each (i, k) ∈ C × Ai,

ATi,k(AN , v, L) =
1

|C|

∑

r∈C

hr
i,k(AN , v, L),

i.e. player i choosing the activity level k receives the average of his marginal contributions over
the |C| rooted trees tr in (C, L(C)).

Proposition 4.1 On the class of multi-choice forest games CN , the average tree solution satisfies

component efficiency, component fairness and independence on the greatest activity level.

Proof. Pick any (AN , v, L) ∈ CN any component C ∈ N/L and any root r ∈ C. We have

Hr,C(AN , v, L) =
∑

i∈C

Hr
i,mi

(AN , v, L)

=
∑

i∈C

∑

k∈Ai

(

vL
(

ar,(i,k)
)

− vL
(

ar,(i,k−1)
)

)

=
∑

i∈C

(

vL
(

ar,(i,mi)
)

− vL
(

ar,(i,0)
)

)

=
∑

i∈C

(

v
(

ar,(i,mi)
)

−
∑

j∈sr(i)

v
(

a
r,(i,0)
Sr(j) , 0N\Sr(j)

)

)

=
∑

i∈C

(

v
(

mSr(i), 0N\Sr(i)

)

−
∑

j∈sr(i)

v
(

mSr(j), 0N\Sr(j)

)

)

=
∑

i∈C

(

vL
(

mSr(i), 0N\Sr(i)

)

− vL
(

mSr(i)\{i}, 0N\(Sr(i)\{i})

)

)

.
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Using an induction argument on the number of elements of Sr(j), one can easily check that for
each j ∈ N ,

∑

i∈Sr(j)

(

vL
(

mSr(i), 0N\Sr(i)

)

− vL
(

mSr(i)\{i}, 0N\(Sr(i)\{i})

)

)

= vL
(

mSr(j), 0N\Sr(j)

)

= v
(

mSr(j), 0N\Sr(j)

)

.

Because C = Sr(r), we get

Hr,C(AN , v, L) = v
(

mC , 0N\C

)

.

It follows that

ATC(AN , v, L) =
∑

i∈C

∑

k∈Ai

ATi,k(AN , v, L)

=
1

|C|

∑

r∈C

Hr,C(AN , v, L)

= v
(

mC , 0N\C

)

,

which proves that the average tree solution satisfies component efficiency.
To show component fairness, pick any link ij ∈ C and consider a root r ∈ Kji. By the

above argument, we have:

Hr,Kij(AN , v, L) = v(mKij
, 0N\Kji

).

Because Hr(AN , v, L) = v
(

mC , 0N\C

)

, we also have:

Hr,Kji(AN , v, L) = v
(

mC , 0N\C

)

− Hr,Kij(AN , v, L).

Taking the average over all possible roots, we get:

ATKij(AN , v, L) =
|Kji|v(mKij

, 0N\Kji
) + |Kij|

(

v
(

mC , 0N\C

)

− v(mKji
, 0N\Kji

)
)

|C|
.

On the other hand, by component efficiency of AT, it follows that

ATKij(AN , v, L\ij) = v
(

mKij
, 0N\Kij

)

and so

|Kji|

(

ATKij(AN , v, L) − ATKij(AN , v, L\ij)

)

is equal to

|Kji||Kij|

(

v
(

mC , 0N\C

)

− v(mKji
, 0N\Kji

) − v(mKij
, 0N\Kij

)

|C|
(4.1)

In the same way, it is easy to see that

|Kij|

(

ATKji(AN , v, L) − ATKji(AN , v, L\ij)

)

is equal to (4.1), which proves that AT satisfies component fairness. By definition of the
hierarchical outcome, it is immediate to verify that AT satisfies independence on the greatest
activity level. �
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Combining Proposition 3.3 and Proposition 4.1, we derive the following characterization.

Proposition 4.2 On the class of multi-choice forest games CN , the average tree solution is the

unique allocation rule which satisfies component efficiency, component fairness and independence

on the greatest activity level.

5 Core stability

For the sake of presentation, we assume in this section that the communication graph is a tree.
The discussion below can be adapted straightforwardly to the case where the communication
graph is a forest. We first show that the average tree solution of a multi-choice tree game
is stable in the sense that it belongs to its precore provided that the characteristic function is
isotone and superadditive. We thus have the following result.

Proposition 5.1 Suppose that (AN , v, L) ∈ C∗
N is isotone and superadditive. Then,

AT(AN , v, L) ∈ PK(AN , v, L). If furthermore for each root r ∈ N , each player i ∈ N and

each activity level k ∈ Ai, it holds that

vL
(

ar,(i,k)
)

− vL
(

ar,(i,k−1)
)

≥ vL(kei) − vL((k − 1)ei) (5.1)

then AT(AN , v, L) ∈ K(AN , v, L).

Proof. First pick any (AN , v, L) ∈ C∗
N such that v is isotone and superadditive and (N, L)

is a tree. Because the precore is a convex set, it suffices to verify that any hierarchical vec-
tor hr(AN , v, L), r ∈ N , belongs to PK(AN , v, L) in order to show that AT(AN , v, L) ∈
PK(AN , v, L). In order to do this, consider the set V of all ordered pairs (i, k) where i ∈ N
and k ∈ Ai, and for each nonempty T ∈ 2V define for each i ∈ N the set Ti as the section of
T at i, i.e.

Ti =
{

k ∈ Ai : (i, k) ∈ T
}

.

Next, define bT
i ∈ Ai as follows. If Ti = ∅ set bT

i = 0; if Ti 6= ∅ set bT
i as the largest integer k

in Ti such that for each l ∈ {1, . . . , k}, (i, l) ∈ Ti. Construct the TU-game w : 2V −→ R such
that for each nonempty coalition T ∈ 2V , w(T ) = v(bT ). Note that the map T 7−→ bT is onto,
i.e. for each a ∈ AN , there is T ∈ 2V such that a = bT . Pick any pair of disjoint coalitions S
and T in 2V . Obviously, bT ∧ bS = 0N so that

v(bT ∨ bS) ≥ v(bT ) + v(bS) = w(T ) + w(S) (5.2)

by superadditivity of v and definition of w. On the other hand, we have bT∪S ≥ bT and bT∪S ≥ bS

so that bT∪S ≥ bT ∨ bS. Because v is isotone, we get

w(T ∪ S) = v(bT∪S) ≥ v(bT ∨ bS) (5.3)

The combination of (5.2) and (5.3) shows that (V, w) is a superadditive TU-game. Next, pick
any root r in (N, L) and construct the forest game (V, w, Lr) where Lr is defined as follows:
for each i ∈ N , create the oriented links (i, k)(i, k − 1) for k ∈ Ai\{0}. Furthermore, for
each i ∈ N and each j ∈ sr(i), create the oriented link (i, 0)(j, mj). Now let us focus on
the rooted spanning tree of (V, Lr) obtained when the root is (r,mr). See Example 5.2 below
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for an illustration. The hierarchical vector h(r,mr)(V, w, Lr) of (V, w, Lr) assigns to each player
(i, k) ∈ V the payoff

h
(r,mr)
(i,k) (V, w, Lr) = wLr(

S(r,mr)(i, k)
)

− wLr(

S(r,mr)(i, k)\{(i, k)}
)

.

Demange [2004] has shown that this hierarchical vector h(r,mr)(V, w, Lr) is an extreme point of
the core of the restricted TU-game (V, wLr

) when the underlying TU-game (V, w) is superaddi-
tive, i.e.

∑

(i,k)∈V

h
(r,mr)
(i,k) (V, w, Lr) = wLr

(V ) and ∀T ∈ 2V ,
∑

(i,k)∈T

h
(r,mr)
(i,k) (V, w, Lr) ≥ wLr

(T ).

By construction h(r,mr)(V, w, Lr) coincides with hr(AN , v, L). To see this, pick any (i, k) ∈ V
and consider the connected coalition S(r,mr)(i, k) ∈ 2V formed by the subordinates of player (i, k)
in the rooted spanning tree t(r,mr) of (V, Lr) and by player (i, k). The profile bS(r,mr)(i,k) coincides
with the profile ar,(i,k) in (AN , v, L) when the spanning tree of (N, L) is rooted at r. Therefore,
w(S(r,mr)(i, k)) = v(ar,(i,k)) and by construction of (V, Lr) and t(r,mr), we get wLr

(bS(r,mr)(i,k)) =
vL(ar,(i,k)). This shows that h(r,mr)(V, w, Lr) = hr(AN , v, L) and we conclude that hr(AN , v, L)
belongs to the precore of (AN , v, L) since the map T 7−→ bN is onto. If, furthermore, condition
(5.1) is satisfied, then the hierarchical vector hr(AN , v, L) is an imputation and so it belongs to
the core of (AN , v, L). �

Example 5.2

Let N = {1, 2, 3, 4} be the player set and let (N, L) be the tree given by L = {12, 23, 24}.
The sets of activity levels of players are the following: A1 = A2 = {0, 1, 2}, A3 = {0, 1} and
A4 = {0, 1, 2, 3}. Consider player 1 as the root, which induces the rooted spanning tree t1. The
extended tree of (N, Lr) and the rooted spanning tree t(1,2) is depicted below.
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3 4

2

1

3 4

2

1

(4, 0)

(4, 1)

(4, 2)

(4, 3)

(2, 0)

(2, 1)

(3, 0)

(3, 1)

(2, 2)

(1, 0)

(1, 1)

(1, 2)

Tree (N, L)

Rooted spanning tree t1 Rooted spanning tree t(1,2)

The proof of Proposition 5.1 reveals that the average tree solution for multi-choice tree games
(AN , v, L) can be expressed as the average of hierarchical vectors of the tree games (V, w, Lr),
r ∈ N , where the associated spanning tree of each (V, Lr) is rooted at (r,mr). Note that we can
not assert that the average tree solution for (AN , v, L) is an average tree solution constructed
from a given TU-game (V, w) and a fixed tree. The reason is that for each root r of (N, L), we
have to construct a new Lr and so a new root spanning tree t(r,mr). To illustrate this aspect,
consider again Example 5.2 and choose 2 as the root of the tree (N, L). The tree (V, L2) and
the corresponding rooted spanning tree t(2,2) are drawn on the same figure, and we see that
(V, L2) is different from (V, L1).

Proposition 5.3 For each multi-choice tree game (N, AN , L) ∈ C∗
N , the average tree solution

assigns to each pair (i, k) ∈ N × Ai the payoff

ATi,k(N, AN , L) =
1

n

∑

r∈N

h
(r,mr)
i,k (V, w, Lr),

where the TU-game (V, w) and the trees (V, Lr), r ∈ N , are defined in the proof of Proposition

5.1.
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(4, 0)

(4, 1)

(4, 2)

(4, 3)

(2, 0)

(1, 2)

(3, 0)

(3, 1)

(1, 1)

(1, 0)

(2, 1)(2, 2)

Rooted spanning tree t2 Rooted spanning tree t(2,2)

6 Applications

Many economic situations can be modeled as multi-choice graph games. In this section, we
consider two applications. This first one concerns the problem of coordination of different
production activities in a industry and the second one is a cooperative model of price formation.

Coordination of economic activities

A finite set of firms N = {1, 2, . . . , n} are engaged in carrying out n distinct inputs. Each
firm is specialized in the production of exactly one input and each input is produced by exactly one
firm. The combination of all inputs is a necessary and sufficient condition in order to complete
production of the output. The production level depends on the quantity of inputs used by the
cooperating firms. More precisely, the set of quantities of input available for each firm i ∈ N
is the finite set Ai = {0, 1, . . . ,mi}. The characteristic function v : AN −→ R is a Leontief
technology given by the supermodular function

v(a) = min
i∈N

ai.

Supermodularity implies increasing differences on AN [see Topkis, 1998, Theorem 2.6.1], i.e. for
all distinct firms i ∈ N and j ∈ N , for all ai ≥ bi and aj ≥ bj, and for all a−ij ∈ AN\{i,j}, it
holds that

v(ai, aj, a−ij) − v(bi, aj, a−ij) ≥ v(ai, bj, a−ij) − v(bi, bj, a−ij),

which means that the additional production resulting from the availability of any additional
unit of input of firm i is increasing with the quantity of input of firm j, all other things being
equal. This property reflects the complementarities between the different activities of the process
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of production in the sense that the set of inputs are different phases of this process. The
dependencies among this set of inputs are represented by a tree (N, L), where a link represents the
“technological externalities” between two inputs that are closely complementary. Technological
externalities refer to the benefits of economic interactions which take place through nonmarket
mechanisms, such as bilateral communication between firms. The combination of inputs is
undertaken sequentially. A rooted spanning tree describes the positions of the inputs in this
order, with the convention that the root is the last input undertaken. Denote by m the worth
v(m) of the grand coalition m. For each pair (i, k) ∈ N × Ai, we have

hr
i,k(AN , v, L) =

{

1 if r = i and k ≤ m,
0 otherwise.

Because each firm is exactly the root of one spanning tree among the set of n spanning trees,
the average tree solution assigns to the k-th unit of input i the following payoff:

ATi,k(AN , v, L) =











1

n
if k ≤ m,

0 otherwise.

It follows that when a firm i chooses to put mi units of inputs in the process of production, the
average marginal contribution of the firm to the m units of output is

mi
∑

k=0

ATi,k(AN , v, L) =
m

n
.

Not all units of inputs are rewarded since adding extra units of input does not always increase the
quantity of output. To see this, recall that when the grand coalition form, the quantity produced
is v(m) = m = v(m, . . . ,m), which means that the process of production consumes at least
m units of each input. One possible interpretation is that the average tree solution measures
the average marginal contribution of each of these first m units to the production of m units of
output. The marginal contribution of each of these units of input is equal to 1 when the input
is the last to enter in the process of production, and zero otherwise. Since each input enters
exactly once in the last position, its average marginal contribution is 1/n.

Derks and Peters [1993] propose a multi-choice Shapley value. One can readily check that
this Shapley value of the multi-choice game (AN , v) coincides with the average tree solution of
(AN , v, L) in this cooperative model of production. This implies that the average tree solution
does not depend on the communication tree. The reason is that there is no substitutability
among inputs. In the next application, we provide a model of spatial price formation in which
the location of a firm on the tree is crucial.

Cooperation in a Hotelling model

Consider a city with a population distributed among a network of roads, represented by a
tree of order n ∈ N. Each firm i ∈ N = {1, 2, . . . , n} is located at a node of the tree, denoted
by (N, L). For simplicity, the length of each link is equal to one, and assimilated to the line
segment [0, 1], and firms sell a homogeneous product at zero cost. There is a continuum of
consumers (of unit mass) distributed on each link with unit density. Each firm i ∈ N chooses
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a unique price pi ∈ Ai = {0, 1, . . . ,mi} for the roads ij ∈ Li, where the activity level pi = 0
means that firm i does not participate on its markets. On each road ij ∈ L, each consumer
buys exactly one unit of the product from the firm (i or j) that charges the lowest full price,
i.e. the price fixed by the firm plus the linear transportation cost to that firm. This model is a
natural extension of the Hotelling [1929] model with fixed locations from a linear city to a city
shaped as a tree. For each road ij ∈ L, it is known that if the two firms participate, the market
share of firm i is

(pj − pi + t)

2t
,

while firm j’s market share is

1 −
(pj − pi + t)

2t
=

(pi − pj + t)

2t
,

where t is the unit transportation cost. We assume t > maxi∈N mi so as to ensure that the
market shares are always positive. If a unique firm participates on the market associated to road
ij ∈ L, then its market share is 1. It follows that Ri(0, pj) = 0 and Rj(0, pj) = pj. The total
revenues of firms i and j when they both participate are given by

Ri(pi, pj) = pi
(pj − pi + t)

2t
and Rj(pi, pj) = pj

(pi − pj + t)

2t
.

Define v : AN −→ R as

v(p) =
∑

ij∈L

(

Ri(pi, pj) + Rj(pi, pj)

)

.

Consider the market associated with any road ij ∈ L. When firm i reduces its price pi of one
unit, we can distinguish three types of variation of the firms’ revenues on this market. If pi > 1
and pj > 1, then straightforward calculations show that

Ri(pi, pj) − Ri(pi − 1, pj) =
pj − 2pi + 1 + t

2t

and
Rj(pi, pj) − Rj(pi − 1, pj) =

pj

2t
.

If pi = 1 and pj ≥ 1, then we have

Ri(1, pj) − Ri(0, pj) =
pj − 1 + t

2t
and Rj(1, pj) − Rj(0, pj) = −pj

pj − 1 + t

2t

Finally, if pi ≥ 1 and pj = 0 we get

Ri(pi, 0) − Ri(pi − 1, 0) = 1 and Rj(pi, 0) − Rj(pi − 1, 0) = 0.

In order to compute the average tree solution, pick any root r ∈ N . For each i ∈ N\{r} and
each pi ∈ Ai\{0, 1}, we have

hr
i,pi

(AN , v, L) = 1 +
∑

j∈sr(i)

(2mj − 2pi + 1 + t)

2t
,
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and for each pr ∈ Ar\{0, 1}, we have

hr
r,pr

(AN , v, L) =
∑

j∈sr(r)

(2mj − 2pr + 1 + t)

2t
.

In addition, for each i ∈ N\{r}, if pi = 1 we have,

hr
i,1(AN , v, L) = 1 +

∑

j∈sr(i)

(1 − mj)
(mj − 1 + t)

2t
.

and

hr
r,1(AN , v, L) =

∑

j∈sr(r)

(1 − mj)
(mj − 1 + t)

2t
.

When firm i decides to not participate instead of charging a unit price on the market associated
with road ij, the other firm j can behave as a monopoly on this market. The total revenues of
both firms on the market will be greater whenever mj > 1 if firm i decides to not participate.
The above two expressions highlights this feature. We conclude that the average tree solution
assigns to every firm i the following payoff variations. If pi > 1,

ATi,pi
(AN , v, L) =

1

n

(

n − 1 +
∑

r∈N

∑

j∈sr(i)

(2mj − 2pi + 1 + t)

2t

)

=
n − 1

n
+

∑

j∈Li

|Kij|

2tn
(2mj − 2pi + 1 + t)

=
n − 1

n
+

∑

j∈Li

|Kij|

n

(

mj − pi

t
+

1 + t

2t

)

,

and

ATi,1(AN , v, L) =
1

n

(

n − 1 +
∑

r∈N

∑

j∈sr(i)

(1 − mj)
(mj − 1 + t)

2t

)

=
n − 1

n
+

∑

j∈Li

|Kij|

n
(1 − mj)

(mj − 1 + t)

2t
.

Each payoff variation ATi,pi
(AN , v, L) measures the share of the total profit generated along the

roads of the city which can be attributed to the pi-th unit of the price mi charged by firm i.
In the absence of transportation cost, the model resumes to a cooperative version of a spatial

Bertrand game. On each road ij, the market share of firm i is 1 if pi < pj, 1/2 if pi = pj and 0
if pi > pj. In such a model, the average tree solution assigns to every firm i choosing price pi,
the payoff variation

ATi,pi
(AN , v, L) =

∑

j∈Li:1≤pi≤mj

|Kij|

n
.
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