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1 Introduction

The nonparametric efficiency analysis methods, Data Envelopment Analysis (DEA) (Charnes

et al., 1978) and Free Disposal Hull (FDH) (Deprins et al., 1984) have become very popular

and widely applied to the evaluation of technical and allocative efficiency in a large vari-

ety of industries. Due to their nonparametric nature, no a priori parametric structure on

technology is imposed, only specific assumptions such as free disposability, convexity of the

attainable set (for DEA), scale restrictions and few assumptions required for specifying the

Data Generating Process (DGP). However, the methods give only point estimates for the

true efficiency scores which are unknown, since the true frontier is unknown. It turns out

that DEA measures efficiency relative to a nonparametric, maximum likelihood estimate of

the frontier, conditional on observed data resulting from an underlying DGP. The nonpara-

metric approach presents several limitations, namely the difficulty in carrying out statistical

inference, the curse of dimensionality specific to nonparametric estimators as well as the

influence of extreme values and outliers.1 Recent advanced robust nonparametric efficiency

measures, order-m frontiers (Cazals et al., 2002) and order-α quantile type frontiers (Daouia

and Simar, 2007), have overcome the main drawbacks of traditional nonparametric efficiency

estimators being useful and flexible for empirical works.2

Explaining inefficiency, by looking for external or environmental factors that may influ-

ence the production process, being responsible for differences in the performances of pro-

duction units, has gain an increasing attention in recent frontier analysis studies. These

exogenous variables with impact on the production process may be quality indicators, reg-

ulatory constraints, type of environment (competitive vs monopolistic), type of ownership

(private-public or domestic-foreign), environmental factors (conditions of the environment)

and so on.

In this paper, we review the main approaches that have been introduced in the literature

to include external factors in nonparametric models of production. The idea is to present

in a non-technical way the state of the art of the methodology based on a nonparametric

production model where the role of the environmental factors, denoted by Z, is explicitly

introduced in a non-restrictive way, as in Daraio and Simar (2005, 2007a,b). In particular,

Bădin et al. (2011) attempt to clarify the usefulness as well as the limitations of some

previous tools developed in the literature, suggesting also practical algorithms for statistical

inference and explaining how to implement them appropriately. Their purpose is to extend

the analysis and interpretation of conditional efficiency scores, focusing on the particular

role of efficiency scores relative to partial order frontiers (order-m frontiers and order-α

1See Simar and Wilson (2008) for a recent survey on statistical issues with nonparametric estimators of
frontiers.

2See Daraio and Simar (2007a) for more details and examples of empirical applications.
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quantile type frontiers). In this paper we develop further this approach and complement it

by proposing a procedure allowing to make local inference on the impact of Z on the process

and providing confidence intervals for the local impact of Z, by adapting to our framework

the sub-sampling approach of Simar and Wilson (2011a).

Finally, an empirical analysis on US mutual funds data shows the detailed results and

the potentials of the conditional nonparametric methodology over other existing methods,

including the very popular two-stage approach.

The paper is organized as follows. Section 2 makes an overview of most important studies

that attempt to explain inefficiency by incorporating external factors in the nonparametric

analysis. In Section 3 we revisit the concept of conditional efficiency scores and explain what

can be understood and deduced by comparing conditional and unconditional efficiencies.

Section 4 represents the core of the paper, being dedicated to the detailed but non-technical

presentation of the conditional approach, nonparametric estimates for the local effect of Z

on the production process, including a bootstrap based methodology to produce confidence

intervals for assessing the impact of Z. We illustrate our approach on a real data set from

the mutual funds industry in Section 5. The last section summarizes the main findings and

concludes the paper.

Throughout the paper we focus on output orientation (to save space), but all the results

and comments can be easily adapted to the input orientation case that is instead the approach

followed in the empirical illustration.

2 Explaining inefficiency: a brief review

of the literature

Two major approaches have been proposed by economic literature to analyze and compare

the performances of production units in terms of efficiency. The stochastic frontier approach

is parametric, requiring the a priori specification of a production model, which is very

restrictive and in many practical situations, because of potential misspecifications, may lead

to unreliable conclusions. The nonparametric literature on this topic has been focused on

three main approaches to explain efficiency differentials by including external, environmental

variables in the model: the one-stage approach, the two-stage approach (including the semi-

parametric bootstrap-based approach) and the conditional nonparametric approach. In this

section we focus on recent advances of nonparametric methodology for explaining efficiency,

emphasizing the advantages of the nonparametric conditional approach that is developed in

our paper.

The one-stage approach includes in the model the external factors either as freely dis-
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posable inputs or as undesired freely available outputs (Banker and Morey, 1986). The

external variables Z are involved in defining the attainable set, but without being active in

the optimization for the estimation of efficiency scores. One drawback of the method is that

the linear programs involved in defining the corresponding efficiency scores depend on the

returns to scale assumption made on the non-discretionary inputs or outputs. Moreover,

this approach requires some restrictive assumptions as free disposability and convexity of

the resulted, augmented, attainable set as well as prior specification of the favorable or un-

favorable role of the exogenous factors, since they may act either as free disposal inputs or

as undesired freely available outputs. All these assumptions are restrictive, since quite often

the analyst cannot foresee the possible influence of Z on the production process.

Another traditional approach is the so-called two-stage approach, where the nonparamet-

ric efficiency estimates obtained in a first stage are regressed in a second stage on covariates

interpreted as environmental variables (some recent applications include Avkiran and Row-

lands, 2008; Avkiran, 2009; Fukuyama and Weber, 2010; Paradi, Rouatt and Zhu, 2011.

See also Färe et al., 1994; Simar and Wilson, 2007 and 2008 and all the references therein;

DEA’s bibliographies by Cooper et al., 2000 and by Gattoufi et al., 2004). Most studies

using this approach employed in the second stage estimation either tobit regression or ordi-

nary least squares. Unfortunately, as Simar and Wilson (2007) note, none of these studies

have described the underlying DGP. In addition, DEA estimates are by construction biased

estimators of the true efficiency scores. Other more serious drawbacks are that the DEA

efficiency estimates are serially correlated and that the error term in the second stage is

correlated with the regressors, making standard approaches to inference invalid.

Simar and Wilson (2007) developed a semi-parametric bootstrap-based approach to over-

come the problems of the traditional two-stage approaches outlined above and also proposed

two bootstrap-based algorithms to obtain valid, accurate inference in this framework. Still,

the two-stage approach has two serious inconveniences. First, it relies on a separability con-

dition between the input-output space and the space of the external factors, assuming that

these factors have no influence on the attainable set, affecting only the probability of be-

ing more or less efficient, which may not hold in some situations. Second, the regression

in the second stage relies on strong parametric assumptions (e.g., linear model and trun-

cated normal error term). Recently, Park et al. (2008), suggested using a nonparametric

model for the second stage regression. Unfortunately, this two-stage approach also relies on

the separability condition between the input-output space and the space of external factors

that was mentioned above. We underline that neither Simar and Wilson (2007) nor Park

et al. (2008) advocated using the two-stage approach. The goal of Simar and Wilson was

to define a statistical model where a second-stage regression would be meaningful, and to

provide a methodology that would allow for valid inference in the second-stage regression. It
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should be clearly understood that these two-stage approaches have to be restricted to models

where the factors do not influence the shape of the production set. This is the “separabil-

ity” condition. One model where the two-stage approach is valid was proposed by Banker

and Natarajan (2008), but their model heavily depends on quite restrictive and unrealistic

assumptions on the production process, as described and commented in details in Simar and

Wilson (2011b).

Daraio et al. (2010) provide a test of the separability condition that is required for the

second stage regression to be meaningful, and also remark that if this condition is not met,

the first-stage estimates have no useful meaning. If the two-stage approach is validated by the

nonparametric test, one can indeed estimate in a first stage the efficiency scores of the units

with respect to the boundary of the unconditional attainable set in the inputs × outputs

space and then regress, in the second stage, the obtained efficiencies on the environmental

factors. Still, even if an appropriate model is used (Logit, Truncated Normal, Nonparametric

truncated regression,. . . ), the inference on the impact of Z on the efficiency measures has

to be carefully conducted, using adapted bootstrap techniques as suggested in Simar and

Wilson (2007 and 2011a).

The most general and appealing approach so far is the nonparametric conditional ap-

proach proposed by Daraio and Simar (2005) in which conditional efficiency measures are

defined and estimated nonparametrically. The approach extends the probabilistic formula-

tion of the production process proposed by Cazals et al. (2002) where the attainable set is

interpreted as the support of some probability measure defined on the input-output space.

The traditional Debreu–Farrell efficiency scores are defined in terms of a nonstandard con-

ditional survival function. The approach allows a natural extension of the model in the

presence of environmental factors, leading to conditional Debreu–Farrell efficiency measures.

The nonparametric estimators of conditional efficiency measures are further defined by a

plug-in rule, providing conditional FDH estimators as in Daraio and Simar (2005) or condi-

tional DEA estimators, as in Daraio and Simar (2007b). 3

In what concerns the asymptotic properties of the nonparametric conditional estimators,

Jeong et al. (2010) proved the asymptotic consistency and derived the limiting sampling dis-

tribution of the conditional efficiency estimators.4 It is important to note that consistency

3The conditional efficiency estimators are based on a nonstandard conditional survival function, therefore
smoothing procedures and the estimation of a bandwidth parameter are required. Bădin et al. (2010)
proposed an adaptive data-driven method for selecting the optimal bandwidth, by extending to frontier
framework some theoretical results obtained by Hall et al. (2004) and Li and Racine (2007, 2008). An
extension of this approach for selecting the optimal bandwidth, to the case where the external variables have
also discrete components, is presented in Bădin and Daraio (2011).

4These estimators keep similar properties as the FDH estimator but with an “effective” sample size
depending on the bandwidth parameter (see also Bădin et al., 2010 for details).
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is the minimal property that is required to an estimator; roughly speaking it means that

if the sample size increases, an estimator will converge to the true but unknown value it is

supposed to estimate. Related to the consistency is the important issue of the rate of con-

vergence of the consistent estimator that indicates the possibility of getting sensible results

with finite samples estimators. 5 Interestingly, the knowledge of the rates of convergence for

nonparametric and conditional efficiency estimators is very important also for applied re-

searchers because it warns on the existence of the ”curse of dimensionality” shared by many

nonparametric estimators, that means that if the dimension of the input-output space is

large, the estimators exhibit very low rates of convergence, and much larger quantity of data

is needed to obtain sensible results (i.e. to avoid large variances and very wide confidence

interval estimates).

Recently, Bădin et al. (2011) analyze further the conditional efficiency scores, showing

that the external factors can affect the attainable set of the production process and/or

may impact the distribution of the inefficiency scores. They extend the existing methods

to investigate on these interrelationships both from an individual and a global perspective.

Finally they propose a flexible regression of the conditional efficiencies on the explaining

factors which allows to estimate the “residuals” that may be interpreted as managerial

efficiency and allows the ranking of units even when facing heterogeneous conditions. In this

paper we will mainly focus on the latter and complement it with a statistical approach to

make inference on the local impact of Z.

3 Full frontiers, partial frontiers and conditional effi-

ciency measures

We begin by introducing the basic notation and by describing the DGP that characterizes

the production process.

Consider X ∈ Rp
+ the vector of inputs used to produce output vector Y ∈ Rq

+ and

denote by Z ∈ Z ⊂ Rr the vector of external or environmental factors that may impact the

production process. Define the marginal, attainable set by

Ψ = {(x, y)|x can produce y} (3.1)

and the conditional attainable set by

Ψz = {(x, y)|Z = z, x can produce y}, (3.2)

5See Daraio and Simar (2007a, pag.47 and ff.) for a detailed description, in a non formalized way, of the
main asymptotic properties of nonparametric and robust efficiency estimators.
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and note that we have

Ψ =
⋃
z∈Z

Ψz, (3.3)

and that by construction, for all z ∈ Z, Ψz ⊆ Ψ.

The literature on efficiency analysis proposes several ways for measuring the distance of

a firm operating at the level (x0, y0) to the efficient boundary of the attainable set. Since the

pioneering work of Debreu (1951), Farrell (1957) and Shephard (1970), radial distances have

been widely used, becoming probably the most popular tools in the efficiency literature. The

output-oriented measure of efficiency can be defined as follows:

λ(x0, y0) = sup{λ > 0|(x0, λy0) ∈ Ψ}. (3.4)

More recently, Cazals et al. (2002) proved that under the assumption of free disposability

of the inputs and of the outputs, this measure can be characterized by some appropriate

probability function, denoted by H(x, y), that represents the probability of dominating a

unit operating at level (x, y):

H(x, y) = Prob(X ≤ x, Y ≥ y), (3.5)

and that the output oriented technical efficiency measure admits also the following repre-

sentation:

λ(x0, y0) = sup{λ|H(x0, λy0) > 0}, (3.6)

the support of H(x, y) being the attainable set Ψ.

After the decomposition H(x, y) = P (Y ≥ y | X ≤ x)P (X ≤ x) = SY |X(y | x)FX(x),

the output-oriented technical efficiency for a fixed point (x0, y0) ∈ Ψ can be also defined in

terms of the support of the q-variate survival function SY |X(y0|x0) = Prob(Y ≥ y0|X ≤ x0),

which can be interpreted as the attainable set of output values Y for a producer using at

most the input level x0. Since the output measure of efficiency of a unit operating at the

level (x0, y0) is the maximal radial expansion of y0 that is attainable, it can be also defined

as

λ(x0, y0) = sup{λ | SY |X(λy0|x0) > 0}. (3.7)

In the presence of additional external factors Z, Cazals et al. (2002) and Daraio and

Simar (2005) consider the extended probabilistic model that generates the triple (X, Y, Z)

with the joint support denoted by P , focusing on the conditional distribution of (X, Y ) given

Z = z. This conditional distribution is defined by

H(x, y|z) = Prob(X ≤ x, Y ≥ y|Z = z), (3.8)

and it represents the probability, for a production unit operating at level (x, y), to be domi-

nated by units activating in the same environmental conditions z.
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In this conditional setting, the support of H(x, y|z) is Ψz defined above. It is easy to see

the following decomposition:

H(x, y|z) = Prob(Y ≥ y | X ≤ x, Z = z) Prob(X ≤ x|Z = z)

= SY |X,Z(y|x, z)FX|Z(x|z),

where SY |X,Z(y|x, z) = H(x, y|z)/H(x, 0|z). By analogy with the Farrell efficiency mea-

sure, for a unit facing environmental factors Z = z0, Daraio and Simar (2005) defined the

conditional Farrell output measure of efficiency as

λ(x0, y0|z0) = sup{λ > 0|(x0, λy0) ∈ Ψz0}
= sup{λ > 0|SY |X,Z(λy0|X ≤ x0, Z = z0) > 0}, (3.9)

Note that, for all (x0, y0, z0) ∈ P we have 1 ≤ λ(x0, y0|z0) ≤ λ(x0, y0), since for all z0 ∈ Z,

Ψz0 ⊆ Ψ.

The “separability” condition, first discussed in Simar and Wilson (2007), states that the

support of (X, Y ) is not dependent of Z. If the “separability” holds, we have Ψz = Ψ, for

all z ∈ Z and the support of (X, Y, Z) can be written as P = Ψ × Z (where × represents

the cartesian product).

The separability condition, hence, means that the external factors do not have an impact

on the frontier of the efficiency scores, but may influence only the distribution of the ineffi-

ciency scores of DMUs. This is really a strong assumption for many empirical applications

were indeed the external variables Z may affect both the frontier and/or the distribution of

the inefficiencies. For that reason, Daraio et al. (2010) provide a full nonparametric sta-

tistical procedure to test if the separability condition is empirically supported by the data

analysed, and consequently if the approaches that assume this condition are economically

meaningful. In particular, they provide a statistical procedure to test whether or not Ψz is

independent of z, estimating the mean integrated square difference between the boundaries

P and Ψ×Z. This suggests a test statistic whose sampling distribution is approximated by

the bootstrap.

We develop and complement in this paper the procedure initiated by Bădin et al. (2011)

for investigating the local impact of Z on the process.

Order-m frontiers and conditional order-m efficiency

An alternative partial frontier has been introduced by Cazals et al. (2002): the order-m

frontier. Roughly speaking, in the output orientation case, the idea is to take as benchmark

for evaluating firms, the expectation of the best practice among m peers drawn at random

in the population of firms using less resources than x0. Specifically, consider m i.i.d. random

7



variables Yi, i = 1, . . . , m generated according the survival SY |X(y|X ≤ x0) and we define

the random set Ψm(x0) = {(x′, y) ∈ Rp+q
+ |x′ ≤ x0, y ≤ Yi, i = 1, . . . , m}. Then, we can define

λ̃m(x0, y0) = sup{λ > 0|(x0, λy) ∈ Ψm(x0)}

= max
i=1,...,m

{
min

j=1,...,q

Y j
i

yj
0

}
.

This is the maximal output radial expansion (≤ of ≥ 1) for (x0, y0) to reach the FDH of

the random set of firms (x0, Yi), i = 1, . . . , m. Finally, the order-m output efficiency score is

given by the conditional expectation of λ̃m(x0, y0):

λm(x0, y0) = E
(
λ̃m(x0, y0)|X ≤ x0

)
. (3.10)

It is easy to see that if m → ∞, λm(x0, y0) → λ(x0, y0). See Daraio and Simar (2007a)

for details. Since the benchmark is against an average of the best among m peers, the

corresponding frontier (the set of points (x, y) where λm(x, y) = 1) is less extreme. For

instance if m = 1, the m-frontier represent an average production frontier among producers

using less resources than the current value x0, but of course, if a robust estimator of the

frontier is the target, we will use rather a large value of m.

It has been shown in Cazals et al. (2002) that if λm(x0, y0) exists, it can be computed

by the following univariate integral

λm(x0, y0) =

∫ ∞

0

[
1− (

1− SY |X(uy0|X ≤ x0)
)m]

du. (3.11)

When facing environmental conditions Z = z0, one can define the conditional order-m

measure by conditioning every random event to Z = z0. As described in Daraio and Simar

(2007a), this leads to the conditional order-m output efficiency measure:

λm(x0, y0|z0) =

∫ ∞

0

[
1− (

1− SY |X,Z(uy0|X ≤ x0, Z = z0)
)m]

du. (3.12)

Order-α quantile frontiers and conditional order-α efficiency

Daouia and Simar (2007) define for any α ∈ (0, 1] the order-α output efficiency score as

λα(x0, y0) = sup{λ > 0|SY |X(λy0|X ≤ x0) > 1− α}. (3.13)

The economic meaning of order-α and α measures of efficiency is very interesting being

based on the idea that there exists for each firm in the comparison set a quantile frontier

on which the firm is efficient. If λα(x0, y0) = 1, the point (x0, y0) belongs to the order-α

quantile frontier, meaning that only (1 − α) × 100% of the firms using less resources than

x0, dominate the unit (x0, y0). A value λα(x0, y0) > 1 indicates the proportional expansion
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in outputs needed to move the unit radially, so that the probability of being dominated by

units using less input than x0 is 1− α.

By conditioning on Z = z0, Daouia and Simar (2007) define the conditional order-α

output efficiency score of (x0, y0) by

λα(x0, y0|z0) = sup{λ > 0|SY |X,Z(λy0|X ≤ x0, Z = z0) > 1− α}. (3.14)

If α → 1, λα(x0, y0) → λ(x0, y0) and λα(x0, y0|z0) → λ(x0, y0|z0).

4 Advocating for the nonparametric conditional

methodology

Daraio and Simar (2005, 2007a) explain in details that the analysis of the ratios of con-

ditional to unconditional measures is informative in investigating the impact of Z on the

production process. Bădin et al. (2011) disentangling the impact of the external factors in

their components: impact on the frontier and/or impact on the distribution of the efficiency

scores, propose a flexible location scale model to regress the conditional efficiency score on

the external factors. This approach, that we will apply in the empirical section, allows to de-

fine the “residual” as the unexplained part of the conditional efficiency score. This “residual”

can be interpreted as “managerial efficiency” if Z is independent of the “residual”.

In this paper we complement the analysis proposed in Bădin et al. (2011) by suggesting

a procedure which allows to make local inference on the impact of the external factors on the

process and further provide confidence intervals for the local impact of the external factors.

The ratios of conditional to unconditional measures are defined as follows

R(x, y|z) =
λ(x, y|z)

λ(x, y)
, (4.15)

for all (x, y, z) ∈ P . If we consider a generic random observation (X,Y ) ∈ Ψz of a firm facing

environmental factors Z = z, we can define the random variable R(X, Y |Z = z) having the

following properties: for all z ∈ Z, R(X, Y |Z = z)
a.s.≤ 1, but if the separability condition

holds then for all z, R(X, Y |Z = z)
a.s.
= 1. A population parameter of particular interest will

be the conditional average of these ratio. For an arbitrary DGP P determining the joint

distribution of (X, Y, Z), let us define the mean and variance of R(X,Y |Z = z):

τ z(P ) = E(R(X, Y |Z = z))

σ2,z(P ) = V(R(X, Y |Z = z)). (4.16)

For any P , τ z(P ) ≤ 1 but if Ψz = Ψ, then τ z(P ) = 1 while if Ψz 6= Ψ, we have τ z(P ) < 1.

So, τ z(P ) will be our basic quantity of interest that allows to make a local analysis on the
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impact of Z on the production set when Z = z. We will provide nonparametric estimate

of τ z(P ) and their analysis as a function of z will help to understand how the impact of Z

on the attainable set may vary with z. We will also provide bootstrap confidence intervals

for τ z(P ) , for all z ∈ Z. By looking to the confidence intervals, we will be able to check if

locally, Z has a significant effect on the boundary of the attainable set.

When using partial order-m frontiers, we look to the ratios

Rm(x, y|z) =
λm(x, y|z)

λm(x, y)
, (4.17)

the parameter of interest being here

τ z
m(P ) = E(Rm(X, Y |Z = z)), (4.18)

where if m →∞, τ z
m(P ) → τ z(P ).

The parameter m will mainly capture the local effect of Z on the distribution of the

inefficiencies when the boundary is not changing (Ψz = Ψ), but when considered alone, it

does not allow capturing any shift of the boundary, unless m is large enough to provide a

robust estimator of the full frontier (see the next section for more details).

For the case of order-α partial frontier, we define

Rα(x, y|z) =
λα(x, y|z)

λα(x, y)
, (4.19)

and when considering a generic observation (X,Y ) ∈ Ψz of a firm facing environmental

factors Z = z, we obtain the random variable Rα(X, Y |Z = z). For any DGP P , we can

thus define the conditional expectation of this ratio:

τ z
α(P ) = E(Rα(X,Y |Z = z)), (4.20)

where as α → 1, τ z
α(P ) → τ z(P ).

4.1 Detecting the impact of external factors by analyzing

τ z(P ), τ z
m(P ) and τ z

α(P )

We will clarify in what follows what the expected ratio τ z(P ) measures and what kind of

information the partial ratios τ z
m(P ) and τ z

α(P ) carry out and add to the analysis.

While the conditional “full” parameter τ z(P ) brings information on potential differences

between the boundaries of Ψ and Ψz, it cannot capture potential shifts or changes in the

distribution of inefficiencies, since R(x, y|Z = z) ≤ 1 for a fixed point (x, y) only depends

on the relative position of the boundaries of Ψ and Ψz (in the radial direction given by y).
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This is true for all (x, y, z) ∈ P , so it is true for the random variable R(X, Y |Z = z) and

consequently for its expectation τ z(P ).

On the other hand, the information contained by the“partial” parameter τ z
α(P ) is multi-

ple.

Suppose the “separability” condition holds, which means Ψz = Ψ and τ z(P ) = 1 (the

support of (X, Y ) is not changed). If the distribution of inefficiencies is affected by Z, the

quantiles of SY |X,Z will be different from those of SY |X . In this case, for all (x, y) ∈ Ψz, the

ratios Rα(x, y|z) will be affected, hence τ z
α(P ) will capture the changes. The changes can go

in two directions: if the distribution of the inefficiency is more spread in the direction of less

efficient behavior for Z = z0, the expectation τ z0
α (P ) may be less than 1. On the contrary, if

Z = z0 provides a favorable environment to efficient behavior of the firms, the distribution

of Y will be more concentrated near the efficient boundary when Z = z0, and we might have

on the average τ z0
α (P ) > 1. This also explains why the global test of “separability” proposed

by Daraio et al. (2010) uses statistics based on the full measures and not on partial measures

of efficiency.

Suppose now that Ψz 6= Ψ, so there is a shift in the frontier, with τ z(P ) < 1. The shift

of the boundary will be transferred to the partial frontier, at least for large values of α,

but this effect can either be augmented or compensated by a simultaneous change in the

distribution of the inefficiencies. So, in the case of a shift of the boundary we could observe

Rα(x, y|z) less, equal or greater than 1. The shift of conditional partial frontier can be the

same as the shift of conditional full frontier with respect to the unconditional one, making

the interpretation much more difficult.

To conclude, when Ψz = Ψ, τ z
α(P ) is useful to identify the local impact of Z on the shape

of the distribution of the inefficiencies. But it does not allow to detect a local shift of the

boundary of the support of (X,Y ), unless α is very close to 1 and the partial frontier is

used as a robust estimator of the full frontier. In such cases, it will be useful to provide

the regression lines on z over a grid of values for α, say 0.99, 0.95, 0.90; . . . , 0.50. Similar

comments and interpretations may be given for the order-m partial parameters τ z
m(P ) where

the particular case m = 1 would provide a picture of the effect of z on the average frontier,

while the choice of large values of m would provide the same information as the full frontier

parameter τ z(P ).

4.2 Assessing the impact of Z through nonparametric regression

Denote by Sn = {(Xi, Yi, Zi)| i = 1, . . . , n} the sample of n iid observations on (X, Y, Z) gen-

erated in P according the DGP P . We do not have neither iid observations of R(Xi, Yi|Z =

z), nor iid observations R(Xi, Yi|Zi) = λ(Xi, Yi|Zi)/λ(Xi, Yi) because the true efficiencies are
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unknown. What we only have is the set of the n estimators (obtained from the sample Sn):

R̂(Xi, Yi|Zi) =
λ̂(Xi, Yi|Zi)

λ̂(Xi, Yi)
,

where the nonparametric estimators of the conditional and unconditional efficiency measures

can be easily obtained by plug-in rules. We will not detail here this aspect, since it has been

described carefully in Daraio and Simar (2005, 2007a), Simar and Wilson (2008), Bădin

et al. (2010). Moreover, to save place, we only present the full frontier case, where we

want to estimate τ z(P ) = E(R(X, Y |Z = z) by using basic tools from the nonparametric

econometrics literature (see e.g. Pagan and Ullah, 1999). We will simplify the presentation to

univariate continuous Z, but this can be done for any dimension r of Z.6 The nonparametric

partial frontier efficiency estimates can be obtained in a similar way and algorithms for

calculating them have been proposed by Cazals et al. (2002), Daouia and Simar (2007) and

Daraio and Simar (2005, 2007a). The advantage of the partial frontier estimates and the

related efficiency scores is that they are less influenced by extreme values and hence more

robust to outliers. Moreover, they have the same rate of convergence as the parametric

estimators, therefore they are not affected by the well known curse of dimensionality shared

by most nonparametric estimators including the DEA and FDH envelopment estimators.

So, in our setup here, we have a sample of n pairs
(
Zi, R̂(Xi, Yi|Zi)

)
, i = 1, . . . , n from

which we will estimate τ z(P ). Most of the nonparametric estimates of the regression function

(including Nadaraya-Watson, local linear, etc. . . ) can be written as

τ̂ z
n =

n∑
i=1

Wn(Zi, z, hz)R̂(Xi, Yi|Zi), (4.21)

with the weights Wn(Zi, z, hz) ≥ 0 summing up to one. This is a local average of the

R̂(Xi, Yi|Zi), the localization being tuned by the bandwidth hz. The Nadaraya-Watson

kernel weights are given by

Wn(Zi, z, hz) =
K

(
(Zi − z)/hz

)
∑n

i=1 K
(
(Zi − z)/hz

) .

Similar expression for Wn(Zi, z, hz) are available for local linear estimators (see Fan and

Gijbels, 1996).

As usual in nonparametric regression, bandwidth hz with appropriate size can be obtained

by least-squares crossvalidation criterion (see e.g. Li and Racine, 2007 for details).

6For more details on how to handle discrete variables in this framework, see Bădin and Daraio (2011).
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4.3 Interpreting the effect of Z

We discuss below the interpretation of the impact of Z in the spirit of Daraio and Simar

(2007a) for the output orientation case, followed by a numerical example which presents and

details the interpretation in the input-oriented case. We stress that this analysis is useful, but

it has to be carefully conducted to provide meaningful results because it allows capturing only

the marginal effects of Z on the frontier shifts, assuming that the effect does not change with

the level of the inputs. Note that in the particular case where the “separability” condition is

verified, the only potential remaining impact of the environmental factors on the production

process may be on the distribution of the efficiencies (as for traditional 2-stage approaches,

as noted in Simar and Wilson, 2007).

In an output oriented framework, a favorable Z means that the environmental variable

operates as a sort of an “extra” input freely available: for this reason the environment

may be considered as “favorable” to the production process. Consequently, the value of

λ̂(X,Y |Z) will be much smaller (greater efficiency) than λ̂(X,Y ) for small values of Z than

for large values of Z. This may be explained by the fact that firms with small values of Z

do not take advantage from the favorable environment, and when Z is taken into account,

their output efficiency scores increase, indicating a better performance. Hence the ratios

R̂(Xi, Yi|Zi) = λ̂(Xi, Yi|Zi)/λ̂(Xi, Yi) defined above will increase with Z, on average.

On the contrary, an unfavorable Z, means that the environmental variable acts as a

“compulsory” or unavoidable output to be produced as a result of the “negative” environ-

mental condition. In a certain sense, Z penalizes the production of the outputs of inter-

est. In this situation, λ̂(X,Y |Z) will be much smaller than λ̂(X,Y ) for large values of Z.

Units with higher level of Z are more affected by the environment when compared to firms

with a low level of Z. For this reason, their efficiency scores taking Z into account are

much higher than their unconditional efficiency scores. As a result, the regression line of

R̂(Xi, Yi|Zi) = λ̂(Xi, Yi|Zi)/λ̂(Xi, Yi) over Z will be decreasing.

Mutatis mutandis, same interpretation is available in the input oriented case, with similar

conclusions to detect the influence of Z on efficiency. In this case, the influence of Z goes in

the opposite direction: an increasing regression corresponds to unfavorable environmental

factor and a decreasing regression indicates an favorable factor. The following example will

better clarify all these interpretations.

4.3.1 A Toy example

Let us consider the most simple case of a univariate frontier, where one input is used to

produce a unit output (Yi ≡ 1). Suppose there is an external factor Z that has no effect on

the production process for Z ≤ 5, but with an unfavorable effect on X when Z > 5. We
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simulated n = 100 observations according to this scenario, generating the inputs by:

Xi = 51.51I(Zi <= 5) + Z1.5
i 1I(Zi > 5) + Ui,

where Zi ∼ U(1, 10), Ui ∼ Expo(µ = 3). The data and the nonparametric regression is

represented in the figure below.

Since we are in an input-oriented framework, when the smoothed nonparametric regres-

sion is increasing, we conclude that Z is detrimental (unfavorable) to efficiency. Therefore,

for Z > 5, the external variable acts like an “extra” undesired output to be produced asking

for the use of more inputs in production activity and hence Z > 5 has a “negative” effect

on the production process. In such cases, the conditional efficiency θ̂(X, Y |Z), computed

taking Z into account, will become much larger than the unconditional efficiency θ̂(X, Y ),

while the value of Z is increasing. This is due to the fact that for firms with a high level of

Z, the efficiency score without taking into account Z is much smaller than the one computed

taking into account Z; in this last case, the effect of Z allows the efficiency score going up.

Consequently, the ratios θ̂(Xi, Yi|Zi)/θ̂(Xi, Yi) will also increase, on average, with Z.

When Y is independent of Z, or (even less restrictive) when the shape of the boundaries of

P in the sections Y = y (in the (X, Z) space) do not change with the level y, the conditional

frontiers will be “parallel” for different levels of Y , so that the ratios θ̂(Xi, Yi|Zi)/θ̂(Xi, Yi)

will have the same shape when considered as a functions of z for all values of Y . This is

the case when Z acts as an undesired output for all the values of Y . In the spirit of Simar

and Wilson (2007), this corresponds to an assumption of “partial” separability implicitly

assumed in Daraio and Simar (2005, 2007a). We point out that in our example this “partial”

separability holds, since Z and Y are independent, the output Y being constant.
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Figure 1: Effect of Z on the ratios θ̂(Xi, Yi|Zi)/θ̂(Xi, Yi).
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4.4 Confidence intervals for the regression

For building confidence intervals for τ z(P ) by using the bootstrap, we cannot use the stan-

dard algorithms as in Härdle and Bowman (1988) or Härdle and Marron (1991), because

the R(Xi, Yi|Zi) are not directly observed and the available pairs (Zi, R̂(Xi, Yi|Zi)) are not

independent. In addition bootstrapping on the pairs (Zi, R̂(Xi, Yi|Zi)) would neglect all the

noise introduced by estimating R(Xi, Yi|Zi) by R̂(Xi, Yi|Zi).
7

The original independent data are the (Xi, Yi, Zi), i = 1, . . . , n. So we will use, as in Simar

and Wilson (2011a), the m out of n bootstrap on the triple (Xi, Yi, Zi) to approximate the

sampling distribution of
(
τ̂ z
n − τ z(P )

)
.

We will consider a bootstrap sample of m observations drawn without replacement from

the sample Sn = {(Xi, Yi, Zi)| i = 1, . . . , n}. Since the original sample was an iid random

sample of size n generated by some DGP, this subsample, denoted by Sm, can be considered as

a random iid sample of size m drawn from the same DGP. We will consider m = m(n) →∞
as n →∞ with m/n → 0. For a given m, we construct the Nm subsets S∗m,b, b = 1, . . . , Nm,

of size m drawn without replacement from Sn.8 The sampling distribution of
(
τ̂ z
m − τ z(P )

)

is then approximated by

Ĝm,n(w) =
1

Nm

Nm∑

b=1

1I
(
τ̂ ∗,zm,b − τ z

n ≤ w
)
, (4.22)

where τ̂ ∗,zm,b is the version of τ̂ z
m applied to the sample S∗m,b. The quantiles of Ĝm,n(w) are

given by

q∗m;α = inf{w|Ĝm,n(w) ≤ α}. (4.23)

The bootstrap (1− α)× 100% confidence interval for τ z(P ) is thus given by

τ z(P ) ∈ [
τ̂ z
n − (m/n)2/(r+4)q∗m;1−α/2, τ̂

z
n − (m/n)2/(r+4)q∗m;α/2

]
. (4.24)

A formal proof of the consistency of this m out of n bootstrap has still to be derived, but it

would be in the lines of Theorem 2.1 in Politis et al.(2001). The only remaining question is

how to select m in practice. For the empirical application presented in the following section,

we follow the data driven method described in Simar and Wilson (2011a).

A detailed description of the bootstrap algorithm is reported in Appendix A.

7It should be noticed that we are not interested in the individual random variables R(Xi, Yi|Zi)), but
rather in the expectation τz(P ), given that Z = z, and to analyze this as a function of z. Individual
confidence interval for a particular fixed point of interest for R(x0, y0|z0) could be obtained by standard
bootstrap techniques as described in Kneip et al. (2008, 2011) or in Simar and Wilson (2011a).

8The number of subsets Nm can be a huge number: Nm =

(
n

m

)
. In practice, of course, we do not

compute all these subsets, but we would just take a random selection of B such subsamples, where B should
not be too small.

15



5 An application of nonparametric conditional

methodology to Mutual Funds data

5.1 Data and variables

We analyse the Aggressive-Growth (AG) category of US Mutual Funds data collected by

Morningstar, updated at May 2002.

According to Morningstar, Aggressive Growth(AG) are funds that seek rapid growth of

capital and that may invest in emerging market growth companies without specifying a market

capitalization range. They often invest in small or emerging growth companies.

We concentrate our analysis on 129 AG funds previously analysed in Daraio and Simar

(2006) and in Bădin et al. (2010).

Following previous studies (e.g. Murthi et al., 1997, Daraio and Simar, 2006) we apply

an input oriented framework, considering as output the Total Return, and as inputs: Risk,

Expense Ratio, and Turnover Ratio.

In addition, we consider as external-environmental variables Market Risks (Z1) and Fund

Size (Z2).

Total Return is the annual return at May 2002, expressed in percentage terms. Since

most of returns were negative for the analyzed period, we add 100 to their amounts. We

notice also that this transformation does not affect the efficiency analysis that we carry out

in an input oriented framework using total return as output.

Risk is the standard deviation of Return, it depicts how widely the returns varied over

a certain period of time. It offers a probable range within which a fund’s realized return is

likely to deviate from its expected return.

Expense Ratio is the percentage of fund assets paid for operating expenses and man-

agement fees, including administrative fees and all other asset-based costs incurred by the

fund.

Turnover ratio is a measure of the fund’s trading activity. It gives an indication of trading

activity: funds with higher turnover, implying more trading activity, incur greater brokerage

fees for affecting the trades.

Market risks reflects the percentage of a fund’s movements that can be explained by

movements in its benchmark index. It is calculated on a monthly basis, based on a least-

squares regression of the funds returns on the returns of the fund’s benchmark index.

Fund size is measured by the Net Asset Value in million of US dollars.

Hence, we end up with a model of mutual funds performance which has one output (Total

Return), three inputs (Risk, Expense Ratio, Turnover ratio) and two environmental factors

(Market Risks and Fund Size).
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We report in the following only the results for the partial frontier measures of order−α

but we notice that the same analysis can be carried out on partial frontier measures of

order−m that would provide very similar results, that we do not report to save space.

5.2 Impact of market risks on mutual funds performance

We start the empirical analysis by investigating on the role of Market Risks (Z1), as external

factor, on the performance of AG mutual funds. Before applying the conditional nonpara-

metric methodology we tested the separability condition (Daraio et al. 2010) that is assumed

by traditional two-stage approaches, to see if with our dataset, the two-stage approach is

meaningful9. We found indeed that the separability condition does not hold in our case,

when we consider as environmental factor Market Risks. This means that the application

of the two-stage approach with our data would provide meaningless results, because the

separability condition, violated by our data, assumes that the external factor does not have

an impact on the boundary of the production set, but it affects only the distribution of inef-

ficiencies of firms; in our case here, the external factor has an impact also on the boundary

of the production set and for that reason the estimation in the fist step of the unconditional

efficiency score without taking into account also the external factor Z would provide results

with no economic meaning.

5.2.1 Local analysis of the ratios

We first explore the effect of Z1 on the production process, by looking at Figure 2 which

shows the ratios as function of Y and Z1. We are in an input oriented framework; according

to the methodology proposed by Bădin et al. (2011) the full frontier ratios R̂I(Xi, Yi, |Zi)

are useful to investigate on the local effect of Z1 on the shift of the frontier, and the partial

frontiers ratios R̂I,α(Xi, Yi, |Zi) with α = 0.95 are useful to check if some extreme points may

hide some effect of Z1, and finally, the partial frontiers ratios R̂I,α(Xi, Yi, |Zi) with α = 0.5

are interesting to investigate on the effect of Z1 on the middle of the distribution of the

inefficiencies10.

To complement and better analyze the three-dimensional graphs of Figure 2 reported on

the left, we provide on the right of each three-dimensional graph the two marginal views i.e.

the view of the ratios as a function of Y and Z1 respectively. By inspecting the full frontier

9We follow the approach described in Daraio et al. (2010) and refer the reader to their paper for the full
details. With our data we obtained an optimal subsample size of 82, an observed Test statistics (based on
FDH and conditional FDH efficiency measures) of 133856.53, whilst the 95% quantile for the Test statistics
is 114208.12, hence we rejected the null hypothesis of separability condition with a p-value = 0.0005.

10For more details on the complementarity between full frontier ratios and partial frontier ratios, see the
Appendix B of Bădin et al. (2011).
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ratios (top panel) it is not clear if Y plays any role on the frontier levels, and looking at

the picture for the α = 0.95 quantile (middle panel) it confirms that Y seems to have no

clear role. The picture with α = 0.95 can be viewed as a robust version of the picture above

for the full frontier. Concerning the impact of Z1, it appears from the three graphs that

Market Risks has a slightly negative (unfavorable) effect (decreasing pattern of the ratios)

on the frontier levels. When α = 0.5 (bottom panel) this effect is also visible and has a

similar shape as for α = 0.95. This indicates that the effect of Z1 on the production process

is mainly on the shift of the frontier and not on the distribution of the inefficiencies. This

short descriptive analysis confirms that the separability condition seems unrealistic for Z1.

Finally, it should be noted that there is no visible effect of Y and so, no interaction between

the effect of Z1 on the frontier with Y . This legitimates the marginal analysis of the next

section.
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Figure 2: Effect of Y and Z1 (Market Risks) on the ratios R̂I(X,i , Yi, |Zi) (top panel) and

R̂I,α(X,i , Yi, |Zi) (middle panel α = 0.95 and bottom panel α = 0.5).
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5.2.2 Confidence intervals on the impact

In this section we apply the methodology introduced in Section 4 to investigate on the local

impact of the external factor, and to build confidence intervals on the detected impact. The

approach is meaningful, since, as pointed above, there is no interaction with the output value

Y .

Figure 3 left panel, provides the confidence intervals for full frontier measures and con-

firms the positive effect of Z1, we recall decreasing trend in an input oriented framework

means a positive impact, it is like the external factor acts as a freely available input in

the production process, and this analysis indicates that the slight positive effect depicted

in Bădin et al. (2010) is confirmed for all values of Market Risks, because the confidence

intervals are largely above one, over the full range of Z1.

Figure 3 right panel, based on partial frontier measures, provides quite interesting in-

formation that complement the ones provided from the left panel: the reported curves are

roughly parallel indicating that the effect of Z1 is mainly on the frontier and not on the

changes of the distribution of the inefficiency conditional to Z1. Clearly a traditional 2-stage

approach here would miss the picture, since the first stage estimator are meaningless and

the effect is not on the distribution but on the frontier levels. It has to be noted that the

99% curve is very similar and near to the full frontier curve: hence there are not spurious

effect of some extreme points for the latter.
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Figure 3: Marginal effect of Z1 (Market Risks) on the production process. Left panel,

full frontier τ̂ z
n with 95% confidence intervals for τ z(P ). Right panel, τ̂ z

α,n for α =

(0.5, 0.75, 0.90, 0.95, 0.99, 1), the last one (full frontier case) in solid line. Here n = 129

and the circles are the estimated data points (Zi, R̂(Zi)).
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5.2.3 Second stage analysis on the conditional efficiency scores

We apply the nonparametric regression model proposed by Bădin et al. (2011), to regress,

in a flexible way, the conditional efficiency scores against the external factor Z1. We only

remind here that the model suggested by Bădin et al. is the following nonparametric model

θ(X,Y | z) = µ(z) + σ(z)ε,

where µ(z) characterizes the average behavior of the conditional efficiency as a function of

z, and σ(z) allows some heteroskedasticity. The variable ε is supposed to be independent

of Z and so, can be interpreted as a whitened version of the conditional efficiency where

the influence of Z has been eliminated from θ(X, Y | z). This ε has been called “pure”

or “managerial” inefficiency allowing to compare the performance of units facing different

operating conditions described by Z.

Figure 4, top panel, shows the results for the full-frontier conditional efficiencies as a

function of Z1 (the analysis was done on the logs, but the picture in original units is very

similar). There is no definite clear effect of Z on the average conditional scores. Slightly

decreasing or even u-shape effect, due to some very few data points in the center of the range

of Z (increasing logically the local standard deviation σ(z)). The behavior of the estimator

on the right of the top panel of the figure, is due to some edge effect (very few data near the

maximal value of Z). What is of real interest here is the values of ε̂i, because here we can

compare all the units between themselves, the main influence of Z having been eliminated.

The histogram of the managerial efficiencies is reported in the middle panel of Figure 4.

Note that the effect of Z1 on the conditional efficiency scores has been nicely whitened: the

Pearson linear correlation between Zi and ε̂i is -0.0665, and the Spearman rank correlation

is 0.1251. Hence, the ranking of the mutual funds according to ε̂ is cleaned from the effect

of the Market Risks. It is worth to note that the resulting correlation between the two

rankings is 0.3918. The scatter plot reported in the bottom panel of Figure 4 does not show

any particular structure confirming that there is almost no more clear relationship between

Z1 and ε.

The histogram is a very useful tool because it provides a global picture of the overall

distribution of managerial inefficiencies in the market, but also allows to identify some units

that are particularly inefficient. These are the units having values of ε̂i in the left tail of the

histogram, which are very inefficient compared to the others, even after eliminating the effect

of the external factor, here the Market Risks Z1. In a more general management problem,

units like these ones should deserve special attention to understand what are the generating

processes of their inefficiency.
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5.3 Impact of size on mutual funds performance

In this section we analyse the role of Size (Z2) on the performance of mutual funds. As done

for Z1 we tested empirically the separability condition when Z = Z2. Applying Daraio et al

(2010) we selected an optimal sub-sample size of 110. The observed Test statistics (based on

FDH and conditional FDH efficiency measures) is 16078.90, whilst the 95% quantile for the

Test statistics is 16906.57 hence the observed value is lower than the critical value; indeed

we do not reject the separability condition with a p−value of 0.2175.

5.3.1 Local analysis of the ratios

We did the same univariate analysis (done for the variable Z1) to investigate the marginal

effect of the variable Z2 which represents the Size of the funds, expressed by their net asset

value. Figure 5 displays the results.11 To save space, we will summarize our main findings

and let to the reader the careful inspection of the full detailed pictures. The main message

from the top and middle panel of Figure 5, is that the size Z2 has no effect on the frontier

level. However, the bottom panel of the figure bring another information: here there is some

favorable effect on the median level frontier: so the support of X given Y ≥ y (we are in an

input orientation) does not depend on the size Z2, but the probability of being far from the

frontier (being less efficient) is decreasing for larger funds. Note also that the effect of Y in

all these pictures is not visible, so that there is no interaction between the effect of Z2 and

Y .

11We first remark that a few large funds are isolated at the right of each picture (there are 9 observations
with a value of Z2 > 1000, whereas most of the data are concentrated with values much smaller. These huge
funds certainly influence the general shape of the picture.
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Figure 5: Effect of Y and Z2 (Size) on the ratios R̂I(X,i , Yi, |Zi) (top panel) and

R̂I,α(X,i , Yi, |Zi) (middle panel α = 0.95 and bottom panel α = 0.5).
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5.3.2 Confidence intervals on the impact

Figure 6 shows the impact of Size (Z2) on the performance of mutual funds. By looking at

the left panel of Figure 6 we see that the confidence intervals (dotted lines) are above one

but with the lower bound flat and not far from one. by construction, all the ratios are bigger

than one for the full frontier ratios, so this lower bound cannot be smaller. Hence, the left

panel of Figure 6 confirms the non-significance of the effect of Z2 on the shift of the frontier.

We see that the confidence intervals are larger when Z2 which is typically due to the small

number of data points for large values of Z2 (see the footnote 11 above).

On the contrary, when we look at the robust partial analysis (based on order−α measures)

in the right panel of Figure 6 the results are quite different: taking into account the curve for

an α = 0.99 (from the top of the Figure, it is the first dotted line) that can be interpreted as a

robust estimator of the full frontier case, we see indeed that we do not have a significant effect

on the shape of the frontier. This is a case where extreme data points may mask the real

effect of the external factor (for other examples and a discussion on these issues, Daraio and

Simar, 2007a). It is interesting the inspection of the curves that correspond to an analysis

for a decreasing sequence of α’s. In particular, for α = 0.5, , that characterizes the middle

of the distribution of the conditional efficiency, we see a decreasing regression that implies

a favorable effect of Size, in particular when Z2 is above a certain threshold. Hence, in this

case, a traditional two stage approach would be justified since the separability condition

holds empirically, would provide the same message. The advantage of our approach is that

our analysis is completely nonparametric and it does not require any a priori assumption.
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Figure 6: Marginal effect of Z2 (Size) on the production process. Left panel, full

frontier τ̂ z
n with 95% confidence intervals for τ z(P ). Right panel, τ̂ z

α,n for α =

(0.5, 0.75, 0.90, 0.95, 0.99, 1), the last one (full frontier case) in solid line. Here n = 129

and the circles are the estimated data points (Zi, R̂(Zi)).
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5.3.3 Second stage analysis on the conditional efficiency scores

It has to be noted that this analysis is flawed by the presence of the very few large mutual

funds with high value of Z2. In particular, these few points influence the selection of the

bandwidths for estimating µ(z) and σ(z). A more refined analysis would require to redo the

analysis without these extreme data points. But still we do the exercise with the full data

set to show what happens.

We see that the estimators of the two functions, in Figure 7 are almost flat. When such is

the case, it is easy to understand that ε̂i are nothing else than a standardized version (mean

Zero and standard deviation one) of the conditional measures θ̂(xi, yi | zi): there is no effect

of Z2 on the average behavior of the conditional scores.

Still, the information brought by the ε̂i remains correct and the interpretation of the

histogram made above is still valid. Of course, as pointed above, the 9 highest funds may

hide part of the story. For instance, we see in the middle and bottom panels of Figure 7,

that these 9 funds have all a large value of ε̂i, falling all of them amongst the most efficient

one, in terms of ε. This is mainly due to the fact that they do not have other funds with

the same value of Z2 against which they can be benchmarked.
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5.4 Joint impact of Market Risks and Size

In this section we summarize the analysis carried out on the conjoint impact of Market Risks

and Size on the performance of AG mutual funds. Figure 8, left panel, reports this joint effect

considering a partial frontier with an α = 0.99 that is a robust estimator of the full frontier,

necessary in this case due to some extremes detected in the marginal analysis described

above. The marginal effects of Z1 (Market Risks) and Z2 (Size) are illustrated in Figure 8

right panel; they roughly confirm the marginal analysis conducted in the previous section.

The surface graph reported in Figure 8 left panel shows that there are some interactions

between the effect of Z1 and Z2; however we should be very careful on the conclusions

because we are analysing a production process in a six dimensional space (one output, three

inputs and two external factors) by using a sample with 129 points.12 The exercise here is

only illustrative to show how we can handle bivariate Z.

Table 1 reports the confidence intervals for the full ratios τ̂ z
n and for the robust estimators

of the full ratios τ̂ z
α,n, with a value of α = 0.99 at selected grid points of (z1, z2). By inspecting

Table 1 we notice that all values are clearly above one, confirming that in this conjoint

analysis the separability is not satisfied. Moreover, it emerges that the confidence intervals

are quite wide, confirming the fact that we are in a multidimensional space and we analyse

these complex relations with a sample based on 129 observations; the lack of information is

then warned by the wide confidence intervals: this is also an important information provided

by the analysis of the conditional nonparametric methodology applied and developed in this

paper.

12We remind here also the caveat done above, about the lack of more data points with high values of the
Size Z2.
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Figure 8: Joint effect of (Z1, Z2) on the production process. We use here τ̂ z
α,n for α = 0.99.

Here n = 129 and the circles are the estimated data points (Zi, R̂α(Zi)).

z1 z2 τ̂ z
n low up τ̂ z

α,n low up

39.0000 21.5000 1.5977 1.5151 1.9222 1.5430 1.4423 1.9001

39.0000 80.5000 1.5962 1.5152 1.9262 1.5229 1.4105 1.8638

39.0000 240.9250 1.5916 1.5107 1.9333 1.4718 1.3169 1.7747

46.0000 21.5000 1.6419 1.5769 2.0024 1.5954 1.5146 1.9962

46.0000 80.5000 1.6410 1.5742 2.0078 1.5820 1.4946 1.9718

46.0000 240.9250 1.6358 1.5702 2.0066 1.5452 1.4260 1.9049

53.2500 21.5000 1.7168 1.6714 2.1201 1.6586 1.5665 2.1090

53.2500 80.5000 1.7229 1.6581 2.1911 1.6599 1.5734 2.1415

53.2500 240.9250 1.7331 1.6762 2.2048 1.6583 1.5520 2.0890

Table 1: Point estimates and 95% confidence intervals for τ z(P ) and τ z
α(P ), with α = 0.99

at selected grid points (z1, z2).

6 Conclusions

The main scope of the paper was to present, in an accessible, explanatory manner, the

state of the art of the methodologies proposed in the literature to explain inefficiency in

a nonparametric production framework. By doing a review of the existing literature we
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outline and highlight the benefits of the nonparametric conditional approach for detecting

and analyzing the various types of impact that external factors may have on the performances

of economic producers in terms of efficiency. In this paper we develop and complement

the approach initiated by Bădin et al. (2011) for analyzing the local impact of Z on the

production process by proposing a statistical approach to make inference on the level of the

impact of external factors. Our approach is based on up-to-date bootstrap algorithms. We

provide practical information on how to implement the bootstrap and show its general and

wide usefulness for empirical applications by illustrating its functioning on a real dataset on

US Aggressive Growth mutual funds data.

From the analysis carried out on the mutual funds, and not relying on the hypothesis of

the separability, we have learned that:

• Market Risks has a positive effect on the performance of the funds.

• Size (Z2) does not have an impact on the level of the efficient frontier, but may have

a favorable effect on the distribution of the inefficiencies for large values of the Size;

however, this result to be confirmed require more data with high values of Z2.

• The conjoint impact of Market Risks and Size confirms the results of the marginal

impacts reported in the previous points.

• For the conjoint analysis we have also computed in correspondence of the 3 quartiles of

Z1 and Z2 confidence intervals for τ z(P ) and τ z
α(P ). These results, reported in Table 1

confirms the results reported above. Moreover, the wide confidence intervals estimated

point out to the lack of information that we have in estimating a multidimensional

space (at 6th dimensions) with only 129 observations.

Finally, it is useful to highlight that the conditional nonparametric and robust method-

ology offers a much more detailed analysis compared to the traditional two-stage approach,

giving the opportunity to measure (capture) also local effects, related to different behaviors

of the external factor on the entire distribution. In particular, it allows to disentangle the

role of the effect of environmental variables on the shape of the efficient frontier and on the

distribution of the inefficiencies.

A Appendix: The bootstrap algorithm

The bootstrap algorithm can be described by the following steps:

[1 ] Based on the sample Sn = {(Xi, Yi, Zi)| i = 1, . . . , n} compute the n efficiency

scores λ̂(Xi, Yi) and the conditional efficiency scores λ̂(Xi, Yi|Zi). For the conditional
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efficiency scores, compute the optimal bandwidth hn,i, attached to the ith observation,

via the LSCV procedure proposed in Bădin et al. (2010). Compute the n ratios

R̂(Xi, Yi|Zi).

[2 ] Select a fixed grid of values for Z, say {z1, . . . , zk} to evaluate the regression. We

compute the nonparametric regression by one of the methods described in (4.21): this

provides τ̂
zj
n for j = 1, . . . , k. The bandwidth hz

n is selected by least-squares crossvali-

dation.

[3 ] For a given value of m < n and a large B (e.g. B = 2000), repeat steps [3.1] to [3.3]

for b = 1, . . . , B.

[3.1 ] Draw a random sample S∗m,b = {(X∗,b
i , Y ∗,b

i , Z∗,b
i )| i = 1, . . . , m} without re-

placement from Sn. By doing so, we keep also the value of the bandwidth h∗,bn,i

computed at step [1] attached to the corresponding selected data (X∗,b
i , Y ∗,b

i , Z∗,b
i ).

[3.2 ] Compute the m ratios R̂∗,b(X∗,b
i , Y ∗,b

i |Z∗,b
i ), i = 1, . . . , m by the same techniques

as in [1]. Note that here we have to rescale the corresponding bandwidths h∗,bn,i

at the appropriate size, so we use the bandwidths h∗,bm,i = (n/m)1/(r+4)h∗,bn,i for

computing the conditional scores in the bootstrap sample S∗m,b.

[3.3 ] By the same nonparametric method as in [2], estimate the regressions τ̂
∗,b,zj
m

at the fixed points zj, for j = 1, . . . , k. One can use here the same bandwidth

computed in [2], but rescaled to the appropriate size.13 So we use here hz
m =

(n/m)1/(r+4)hz
n and obtain τ̂

∗,b,zj
m for j = 1, . . . , k.

[4 ] For each j = 1, . . . , k, compute (q
∗,zj

m;α/2, q
∗,zj

m;1−α/2), the α/2 and 1 − α/2 quantiles of

the B bootstrapped values of τ̂
∗,b,zj
m − τ̂

zj
n . This provides the k confidence intervals of

τ zj(P ) at each fixed zj:

τ zj(P ) ∈
[
τ̂ zj
n − (m/n)2/(r+4)q

∗,zj

m;1−α/2, τ̂
zj
n − (m/n)2/(r+4)q

∗,zj

m;α/2

]
. (1.1)

The selection of m is done as follows. We redo the steps [3] to [4] over a grid of L values of

m, say, m1 < m2 < . . . < mL and we obtain for each m`, the k resulting confidence intervals

(1.1).14 Then we compute the volatility of the quantity of interest seen as a function of m.

Here the two bounds of the confidence intervals (1.1) are of the quantities of interest, Politis

13Here we could recompute the bandwidth hz
m by crossvalidation, but at a computational cost. By doing

what is suggested in [3.3], the desired theoretical order of the bandwidth is achieved.
14The choice of this grid is really open and depends on the computational burden: we should cover a

wide spectrum of values for m. Simar and Wilson (2011a) and Daraio et al. (2010) suggest, for instance, to
choose the 49 subsamples sizes m ∈ {[n/50], 2[n/50], . . . , 49[n/50]}, where [a] denotes the integer parts of a.
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et al. (2002) suggest in this case to take czj(m) = (1/2)[lowzj
m + up

zj
m], where the notation is

implicit. The volatility is measured by the “moving” standard deviation of 3 adjacent values

of czj(m) centered at the current value of m`, ` = 2, . . . , L − 1. As explained in Politis et

al. (2002), a reasonable value for mzj should correspond to the value that minimizes this

volatility. Intensive Monte-Carlo experiments in Simar and Wilson (2011a) and Daraio et al.

(2010), in similar setups of nonparametric frontier estimation, indicate that this procedure

provides very good results in terms of coverage, size of tests, power of tests, etc.

A simpler alternative is to select a common value of m for the different values of zj. Is

possible for instance to select the m equal to the average of all the mz. One could also use

the same approach as above, but then, the volatility would be measured on an average value

c(m) = (1/k)
∑

j czj(m). This approach could provide a more stable behavior of c(m) as a

function of m.
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[6] Bădin, L., Daraio, C. and L. Simar (2010), Optimal Bandwidth Selection for Conditional

Efficiency Measures: a Data-driven Approach, European Journal of Operational Research,

201, 2, 633–640.
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