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Abstract

The early sections of this paper present an analysis of a Markov decision model that is known as the

multi-armed bandit under the assumption that the utility function of the decision maker is either linear

or exponential. The analysis includes efficient proceduresfor computing the expected utility associated

with the use of a priority policy and for identifying a priority policy that is optimal. The methodology

in these sections is novel, building on the use of elementaryrow operations. In the later sections of this

paper, the analysis is adapted to accommodate constraints that link the bandits.

1 Introduction

The colorfully-namedmulti-armed bandit[10] is the following Markov decision problem: At epochs1, 2, . . . ,

a decision maker observes the current state of each of several Markov chains with rewards (bandits) and plays

one of them. The Markov chains that are not played remain in their current states. The Markov chain that

is played evolves for one transition according to its transition probabilities, earning an immediate reward

(possibly negative) that can depend upon its current state and on the state to which transition occurs. Hence-

forth, to distinguish the states of the individual Markov chains from those of the Markov decision problem,

the latter are called multi-states; each multi-state prescribes a state for each of the Markov chains.

A key result for the multi-armed bandit is that attention canbe restricted to a simple class of decision

procedures that are based on “labelings.” Alabeling is an assignment of a number to each state of each

bandit such that no two states have the same number (label), even if they are in different bandits. Apriority

rule is a policy that is determined by a labeling in this way; giveneach multi-state, the priority rule plays

the Markov chain whose current state has the lowest label. Ina seminal 1974 paper, Gittins and Jones [12]

(followed by [10]) demonstrated the optimality of a priority rule for a model whose objective is to maximize

expected discounted income with a per-period discount factor c having0 < c < 1. The (optimal) priorities

that they identified are based on a family of stopping times, one for each state of each chain. Given state

i of banditk, the decision maker is imagined to play banditk for any numberτ (τ ≥ 1) of consecutive

epochs, observing the state to which each transition occurs, and stopping whenever he or she wishes to do

so. The discounted present value of the (random) income stream that is received during epochs 1 throughτ

is denotedX(τ). The stopping timesτ for statei are used to assign that state anindexI(i) by

I(i) = max
τ

{

E[X(τ ]

1− E[cτ ]

}

. (1.1)
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It was demonstrated in [12, 10] that, given each multi-state, it is optimal to play any Markov chain (bandit)

whose current state has the largest index (lowest label).

Following [12, 10], the multi-armed bandit problem has stimulated research in control theory, eco-

nomics, probability, and operations research. A sampling of noteworthy papers includes Bergemann and

Välimäkim [2], Bertsimas and Niño-Mora [4], El Karoui and Karatzas [8], Katehakis and Veinott [15],

Schlag [17], Sonin [18], Tsisiklis [19], Variaya, Walrand and Buyukkoc [20], Weber [22], and Whittle [24],.

Books on the subject (that list many references) include Berry and Fristedt [3], Gittins [11], Gittins, Glaze-

brook and Weber [13]. The last and most recent of these books provides a status report on the multi-armed

bandit that is almost up-to-date.

An implication of the analysis in [12, 10] is that the largestof all of the indices equals the maximum over

all states of the ratior(i)/(1 − c), wherer(i) denotes the expectation of the reward that is earned if state

i’s bandit is played once while statei is observed and wherec is the discount factor. In 1994, Tsitsiklis [19]

observed that repeated play of a bandit while it is in the state i whose ratio is largest leads to a multi-armed

bandit with one fewer state and random transition times.

In 2007 Denardo, Park and Rothblum [6] considered a generalization of classic multi-armed bandit

model with the following new features:

• The utility function of the decision maker can be exponential, expressing sensitivity to risk.

• In the case of linear utility functions, the assumption thatrewards are discounted is replaced by the

introduction of stopping (which captures discounting).

The analysis of [6] focused on pair-wise comparisons It avoided the use of stopping times, which had been

a common feature of the prior analyses of multi-armed bandits. It relied on linear algebra, rather than on

probability theory. It avoided the need to deal, in the more general cases, with ratios that had zeros in their

denominators. It included efficient algorithms for computing indices and for identifying an optimal priority

rule.

Constraints that link the bandits (for the extension considered in [6]) are dealt with in Sections 7-8 of

the current paper. An optimal solution to the multi-armed bandit problem withW constraints is shown to be

an initial randomization overW +1 priority rules, each of which is the optimal solution to an unconstrained

bandit problem whose rewards are determined by a particularset of prices (multipliers) on the constraints.

A column generation algorithm is described for computing such an optimal solution. In each stage, the

coefficients of the column that enters the basis are found by the application of the policy evaluation procedure

of Section 4.

As concerns contributions to methodology, the analysis in the earlier sections of this paper rests on

elementary row operations. Row operations are used in sections 3-4 to present the first efficient algorithm

for computing the utility function gained when beginning ata given multi-state and using any given priority

rule (solving the optimality equation is inefficient as the number of multi-states can be enormous). Row

operations are also used in Section 5-6 to determine efficiently an optimal priority policy and to provide a

proof for its optimality. The approach in the current paper builds on that of [6], but simplifies the theoretical

development and the computation. In particular, the computation effort that the method requires matches the
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best existing bound for computing Gittins indices (obtained in [16], see [13, p.43] (in fact, the same bound

applies to the method developed in [6]).

2 The model

Let K be the number of Markov chains (bandits), and let them be numbered1 throughK. Markov chaink

has a finite setNk of states. No loss of generality occurs by assuming, as we do,that the states of distinct

Markov chains are disjoint. Thus, each statej identifies the Markov chainb(j) of which it is a member, i.e.,

j ∈ Nb(j). The set of all states of all bandits is given byN = N1 ∪ · · · ∪NK .

If bandit k is played while its state isi, this bandit experiences transition to statej with probability

p(i, j), and it experiencestermination of playwith probabilityp(i, 0) given by

p(i, 0) = 1−
∑

j∈Nk

p(i, j) ∀ i ∈ Nk, ∀ k ∈ {1, 2, . . . ,K} .

If bandit k is played when its state isi and if transition is to occur to statej, payoffx(i, j) is earned at the

start of the period; if termination is to occur instead, payoff x(i, 0) is earned at the start of the period. Each

of these “payoffs” can be positive, negative or zero.

Termination stops the play of allK bandits, not merely of the bandit that is being played. Termination

is modeled as transition to state0. No action is possible after transition to state0. For this reason, state0 is

excluded fromNk for eachk, and hence fromN .

Each multi-states is a set that contains, for eachk, exactly one state inNk. Whens is a multi-state, the

symbolsk denotes the state of banditk that is included ins, and the symbols\k is defined bys\k = s\{sk}.

Thus,s\k contains all the states ins other thansk. LetS denote the set of all multi-states. Given any multi-

states, one of the bandits must be played. Hence, for this model, astationary nonrandomized policyδ is

any map that for each multi-states ∈ S picks a banditδ(s) ∈ {1, 2, . . . ,K}. Let ∆ denote the set of all

stationary nonrandomized policies.

2.1 Utility

The goal is to maximize expected utility. This will be accomplished with alinear utility functionu(x) = x,

with a risk-averse exponential utility functionu(x) = −e−λx whereλ is a positive constant that is known

as the coefficient of risk aversion and with arisk-seeking exponential utility functionu(x) = eλx whereλ is

a positive constant.

All three cases are described and analyzed using thelocal utility functionh(s, k, v) whose value equals

the expectation of the total utility that is earned in the (artificially-truncated) one-transition model if multi-

states is observed now, if banditk is selected now, and if utilityv(t) is earned if transition occurs to

multi-statet.
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2.2 Linear utility

In the case of linear utility, the local utility function is

h(s, k, v) = r(sk) +
∑

j∈Nk

q(sk, j)v(s\k ∪ {j}) , (2.1)

with datar(i) andq(i, j) that are specified by

r(i) = p(i, 0)x(i, 0) +
∑

j∈Nb(i)

p(i, j)x(i, j) ∀ i ∈ N , (2.2)

q(i, j) = p(i, j) , ∀ i, j ∈ Nk , ∀ k ∈ {1, 2, . . . ,K} . (2.3)

Interpretr(i) as the expectation of the reward that is earned immediately if bandit b(i) is played while its

state isi, and interpretq(i, j) as the probability that banditb(i) will experience transition to statej given

that it is played while its state isi. As noted earlier, playing banditb(i) while its state isi causes termination

(rather than transition to some statej in Nb(i)) with probability p(i, 0), which may be positive. The above

model captures the classic discounted model, which has transition probabilityp(i, j) and discount factorc

satisfying0 < c < 1, by replacingp(i, 0) andp(i, j) in (2.2)-(2.3) bycp(i, 0) andcp(i, j), respectively.

Incorporating the discount factor into the transition rates yields a fundamental advantage – it facilitates an

analysis that applies linear algebraic arguments instead of stopping times.

2.3 Exponential utility

With the risk-averse exponential utility functionu(x) = −e−λx, one hasu(x + y) = −e−λ(x+y) =

e−λxu(y), and the local utility function is given by (2.1) with datar(i) andq(i, j) that are specified, for

eachi ∈ N andj ∈ Nb(i), by

r(i) = −p(i, 0) e−λx(i,0) and q(i, j) = p(i, j) e−λx(i,j). (2.4)

With the risk-seeking exponential utility functionu(x) = eλx, the local utility function is given by (2.1)

with data

r(i) = p(i, 0) eλx(i,0) and q(i, j) = p(i, j) eλx(i,j). (2.5)

With all three utility functions,r(i) is called areward, andq(i, j) is called atransition rate. In the linear-

utility model, q(i, j) is a probability. In the risk-averse exponential-utility model,q(i, j) is the product of a

probability and a disutility.

Bandit k has an|Nk| × |Nk| matrix qk whoseijth entry equalsq(i, j) for each ordered pair(i, j) of

states inNk. In each case, the entries inqk are nonnegative. In the linear-utility case,qk is substochastic,

which is to say that its entries are nonnegative and the entries in each row sum to1 or less. In the risk-averse

exponential case, each statei has rewardr(i) ≤ 0. In the risk-seeking exponential case, each statei has

rewardr(i) ≥ 0.
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2.4 A hypothesis

A square matrixQ is transient if and only if each entry in the matrixQt approaches0 as t → ∞. A

hypothesis that is shared by all three utility functions is presented below as:

Hypothesis C. Expressions (2.6) and at least one of (2.7), (2.8) and (2.9) are satisfied.

qk is nonnegative and transient fork = 1, 2, . . . ,K . (2.6)

qk is substochastic fork = 1, 2, . . . ,K . (2.7)

r(i) ≤ 0 for i = 1, 2, . . . , |N | . (2.8)

r(i) ≥ 0 for i = 1, 2, . . . , |N | . (2.9)

In the case in which (2.6) and (2.7) hold is dubbedHypothesis RN(short for risk neutral). This case

includes the classic discounted model, which has transition probabilityp(i, j), discount factorc that satisfies

0 < c < 1 andq(i, j) = cp(i, j), so that each row of(qk)t sums toc, which guarantees thatqk is transient.

Hypothesis RN also encompasses linear-utility models in which ratios akin to (1.1) would have0’s in their

denominator. Hypothesis RN is relaxed in Section 10.

The case in which (2.6) and (2.8) hold is dubbedHypothesis RA(short for risk-averse). In this case, the

assumption thatqk is transient excludes a bandit whose repeated play would earn expected utility of−∞.

Hypothesis RA is also relaxed in Section 10.

The case in which (2.6) and (2.9) hold is dubbedHypothesis RS(short for risk-seeking). In it, the

assumption thatqk is transient rules out bandits whose repeated play would earn expected utility of+∞.

Hypothesis C supports nearly all of the results in this paper. An exception occurs in Sections 7-8, where

Hypothesis RN (and only it) is shown to accommodate constraints that link the bandits.

2.5 Transient matrices

A central role is played by matrices that are nonnegative andtransient. Relevant information about these

matrices is contained in Proposition 2.1, below. It employsthis nomenclature; vectorsx andy that have the

same number of entries satisfyx≫ y if and only if xj > yj for eachj.

Proposition 2.1. LetQ be a nonnegativen× n matrix. The following are equivalent:

(a) The matrixQ is transient.

(b) The matrix(I −Q) is invertible, and(I −Q)−1 = I +Q+Q2 + · · · .

(c) There exists ann× n vectorf ≫ 0 such that the equation(I −Q)x = f has a solutionx≫ 0.

(d) There exists ann× 1 vectory ≫ 0 such thaty ≫ Qy.

Proof. Demonstration that(a)⇒ (b)⇒ (c)⇒ (d)⇒ (a) is routine and is omitted.

Parts of the analysis that follows could be simplified in the linear-utility case because a substochastic

matrixqk is transient if and only if termination occurs with positiveprobability after at most|Nk| transitions.
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2.6 Inheritance

Hypothesis C is a property of the individual bandits. Its implications for the multi-armed bandit are investi-

gated next. Let us recall thatS denotes the set of all multi-states of the multi-armed bandit. Each stationary

nonrandomized policyπ has an|S| × |S| transition rate matrixQπ that is given, for each pairs andt of

multi-states, by

Qπ(s, t) =

{

q(sπ(s), j) if t = s\π(s) ∪ {j}

0 otherwise.
(2.10)

Each stationary nonrandomized policyπ also has an|S| × 1 reward vectorRπ that is defined for each state

s in S by

Rπ(s) = r(sπ(s)) . (2.11)

Proposition 2.2. . Consider any stationary nonrandomized policyπ. Condition (2.6) guarantees thatQπ is

nonnegative and transient.

Proof. (adapted from [6]). By hypothesis, each banditk has a transition matrixqk that is nonnegative and

transient. ThatQπ is nonnegative is immediate from (2.10). Part (d) of Proposition 2.1 guarantees that each

banditk has a column vectorxk ≫ 0 such thatxk ≫ qkxk. Denote asy the |S| × 1 vector whose entry

ys for multi-states is given byys = x1s1x
2
s2
. . . xKsk . It is clear thaty ≫ 0. Consider any multi-states; set

k = π(s) and seti = sk. The nonzero entries in thesth row of Qπ correspond to the nonzero entries in the

ith row of qk, and the inequalityxk ≫ qkxk guaranteesys > [Qπy]s. This holds for each multi-states, so

part (d) of Proposition 2.1 guarantees thatQπ is transient.

That (2.6) is inherited by the multi-armed bandit is the gistof Proposition 2.2. That (2.7)–(2.9) are

inherited is evident from (2.10) and (2.11). Thus, the multi-armed bandit inherits the hypothesis that is

satisfied by the individual bandits.

2.7 A sequential decision process

A well-developed theory of sequential decision processes (c.f., Denardo [5] or Veinott [21]) can be applied

to the model whose local utility function is given by (2.1) with transition rates that satisfy (2.6). Proposition

2.2 shows that each stationary nonrandomized policyπ has a transition rate matrixQπ that is nonnegative

and transient, so Part (b) of Proposition 2.1 shows that(I − Qπ) is invertible. With the|S| × 1 vectorV π

defined by

V π = (I −Qπ)−1Rπ ∀π ∈ ∆ . (2.12)

Part (b) of Proposition 2.1 also justifies the interpretation of thesth entry inV π as the expected utility for

starting in states and using stationary nonrandomized policyπ until termination occurs. Premultiplying

(2.12) by(I −Qπ) produces the familiarpolicy evaluation equation,

V π = Rπ +QπV π. (2.13)

.
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With the |S| × 1 vectorF defined by

F (s) = max
{

V δ(s) : δ ∈ ∆
}

∀ s ∈ S , (2.14)

the numberF (s) equals the largest expected utility obtainable from any stationary nonrandomized policy,

given starting states. A policy π is said to beoptimal if V π = F . The restriction to stationary nonrandom-

ized policies is justified because Hypothesis C has been shown to suffice for such a policy to be optimal over

the class of all history-remembering policies, see [5] or [21]. Further, such a policy can be found by linear

programming, by policy improvement, or by successive approximation. None of these methods is practical

when the number|S| of multi-states is large, however.

3 Labeling and data revision

Let us recall that each banditk has a distinct setNk of states, thatN is the union of all states of all bandits,

that0 is a special state that is not inN , and that termination is modeled by transition to state0. A labeling

L is the assignment to eachj ∈ N ∪ {0} of a labelL(j) that is an integer between1 and |N | + 1, with

L(0) = |N |+1 and with no two states having the same label. Thus, each labeling L assigns a distinct label

to each state inN , and it assigns the highest label to state0.

A stationary nonrandomized policyπ for the multi-armed bandit is called apriority rule if it is deter-

mined by a labelingL like so:

π(s) = argmin{L(sk) : 1 ≤ k ≤ K} ∀ s ∈ S . (3.1)

The priority ruleπ in (3.1) is said to bekeyedto the labelingL. Given any multi-states, this priority rule

plays the banditk whose current statesk has the lowest label.

3.1 Revised rewards and transition rates

The notation is now simplified somewhat. For the remainder ofthis section, banditk hasn states (rather

than|Nk| states), and these states are numbered1 throughn. This bandit’s transition rates form then × n

matrix qk, and its rewards form then× 1 vectorrk.

Consider the statei in banditk that has

i = argmin{L(j) : j ∈ Nk} . (3.2)

Suppose a multi-states is observed that includes statei ∈ Nk and for which the priority ruleπ hasπ(s) = k.

The priority ruleπ will continue to call for banditk to be played until it experiences a transition to a state

other thani. This motivates the replacement of each transition rateq(j, p) and each rewardr(j) in banditk
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by q̄(j, p) andr̄(j), where:

q̄(i, p) = q(i, p)/[1 − q(i, i)] if p 6= i , (3.3)

q̄(j, p) = q(j, p) + q(j, i)q̄(i, p) if j 6= i andp 6= i , (3.4)

q̄(j, i) = 0 for eachj , (3.5)

r̄(i) = r(i)/[1 − q(i, i)] , (3.6)

r̄(j) = r(j) + q(j, i)r̄(i) if j 6= i . (3.7)

The selection ofi borrows from [19], but that reference does not suggest any scheme to update the data as

is done in (3.3)-(3.7).

Repeated play replaces the bandit’s transition rate matrixqk by the matrixq̄k whose entries are given

by (3.3)–(3.5), and it replaces the bandit’s reward vectorrk by the vectorr̄k whose entries are given by

(3.6)–(3.7). The revised transition matrix and reward vector are for a model in which transitions to statei

do not occur. It will soon be demonstrated thatq̄k andr̄k inherit the version of Hypothesis C that is satisfied

by qk andrk.

3.2 Elementary row operations

Equations (3.4), (3.5) and (3.7) describe a model in which the data of banditk has been revised so that

no transitions occur to the statei. This process can be iterated. The second execution of (3.2)occurs

with statei removed fromNk, and it selects the statēi in Nk whose label is second lowest. And so forth.

Algorithmically, the effect of repeated data revision is tobegin with then × (n + 1) matrix (tableau)

[(I − qk), rk] and to use elementary row operations to alter the entries in this tableau like so:

Triangularizer (for banditk in accord with labelingL).

1. Begin with the tableau[(I − qk), rk]. SetM = Nk. WhileM is nonempty, do Steps 2 and 3.

2. Find the statei ∈M whose labelL(i) is smallest. Setα = 1/[1 − qk(i, i)].

(a) Replace rowi of the tableau[(I − qk), rk] by itself times the constantα.

(b) For each statej ∈M \ {i}, replace rowj of this tableau by itself plus the constantq(j, i) times

(the updated) rowi; this update equatesqjt to 0 for t = i and for eacht in N \M .

3. ReplaceM byM \ {i}.

The first execution of Step 2 replaces the tableau[(I − qk), rk] by [(I − q̄k), r̄k] where the entries in the

n × 1 vector r̄k and in then × n matrix q̄k are specified by (3.3)–(3.7) withi as the state whose label is

lowest. The second execution of Step 2 replacesq̄k by the transition rate matrix̂qk for which transitions to

statei are not observed and in which transitions to the stateī whose label is second lowest are not observed,

except for transition fromi to ī. And so forth.

Proposition 3.1. Suppose that the data for banditk satisfy Hypothesis RN, RA, or RS. When the data

for bandit k are triangulated in accord with a labelingL, each iteration of Step 2 produces a tableau

[(I − q̄k), r̄k] that satisfies the same hypothesis.

8



Proof. By hypothesis,qk is nonnegative and transient. The initial execution of Step2 of the Triangularizer

replaces[(I − qk), rk] by [(I − q̄k), r̄k]. It does so by multiplying rowi by the positive numberα and then

replacing each rowj other thani by itself plus the nonnegative multipleq(j, i) times the updated row(i).

This guarantees̄qk ≥ 0. It further guarantees that̄rk ≤ 0 if rk ≤ 0 and that̄rk ≥ 0 if rk ≥ 0. In particular,

(2.8) and (2.9) are preserved.

Sinceqk is nonnegative and transient, Part (c) of Proposition 2.1 shows that there exists a vectorf ≫ 0

such that the equation(I − qk)x = f has a solutionx ≫ 0. Let us apply the Triangularizer to the tableau

[(I−qk), f ]. The initial execution of Step 2 replaces[(I−qk), f ] by [(I−q̄k), f̄ ]. Elementary row operations

preserve the solutions to equation systems, so the strictlypositive vectorx satisfies(I − q̄k)x = f̄ . Since

q̄k ≥ 0, part (c) of Proposition 2.1 also shows thatq̄k is transient, hence that (2.6) is preserved.

Finally, suppose thatqk satisfies (2.7). Withe as then × 1 vector of 1’s, note that(I − qk)e = g with

g ≥ 0. As noted above,(I − q̄k)e = ḡ with ḡ ≥ 0, which shows that (2.7) is preserved.

It has been demonstrated that Hypotheses RN, RA and RS are preserved by the first execution of Step 2

of the Triangularizer. Iterating this argument completes the proof.

The computational effort for executing the Triangularizeris determined in the next result.

Proposition 3.2. With n ≡ |Nk|, executing the Triangularizer on banditk entails 2
3 |n|

3 − 1
2 |n|

2 + 2
3 |n|

arithmetic operations.

Proof. The computation of the[1−qk(i, i)]’s is Step 1 requiresn subtractions. Next consider the execution

of Step 2 when|M | = m. As the entries in rowi indexed by the columns ofNk \M are zero and are not

changed in Substep 2(a) and as1−qk(i,i)
1−qk(i,i)

= 1, Substep 2(a) requiresm divisions (including the update or

rk(i)). Also, Substep 2(b) requires(m − 1)m additions and(m − 1)m multiplications. Thus, the total

number of arithmetic operation needed to execute both substeps ism + 2m(m − 1) = 2m2 − m. As
∑n

m=1 m
2 =

∑n
m=1 2

(

m
2

)

+
(

m
1

)

= 2
(

n+1
3

)

+
(

n+1
2

)

= 1
3n

3 + 1
2n

2 + 1
6n and

∑n
m=1 m = n2+n

2 , the total

number of arithmetic operations needed to execute the triangularizer isn+ 2[13n
3 + 1

2n
2 + 1

6n]−
n2+n

2 =
2
3n

3 − 1
2n

2 + 2
3n.

3.3 Illustration

The net effect of the Triangularizer is easiest to visualizewhen state 1 has the lowest label, state 2 has the

next lowest label, and so forth. In this case, the Triangularizer transforms the tableau[(I − qk), rk] into the

n× (n+ 1) tableau[(I − q̃k), r̃k] whose entries have the format,


















1 −q̃(1, 2) −q̃(1, 3) · · · −q̃(1, n) r̃(1)

0 1 −q̃(2, 3) · · · −q̃(2, n) r̃(2)

0 0 1 · · · −q̃(3, n) r̃(3)
...

...
...

. . .
...

...

0 0 0 · · · 1 r̃(n)



















, (3.8)

with 1’s on the principal diagonal and 0’s below that diagonal. With finalized data, each transition is to a

state having a larger label, and termination is guaranteed to occur aftern = |Nk| transitions.
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With linear utility—but not with exponential utility—the finalized data have simple interpretations:

Given that banditb(i) is in statei, the number̃r(i) equals the expectation of the income that will be earned

if bandit k is played until it experiences transition to a state whose label exceedsL(i), and q̃(i, j) is the

probability that this transition will occur to statej.

3.4 Finalized data

Here and henceforth, tildes are used to identify the rewardsand transition rates with which the Triangularizer

ends, as iñr(i), q̃(i, j), r̃k, andq̃k, and these data are said to befinalized. The data for statei reach their

finalized values when Step 2 is executed for statei. In other words, after Step 2 is executed for statei, no

further changes occur in theith row or column of the tableau[(I − qk), rk].

Letπ be the priority rule that is keyed to the labelingL. Equations (2.10) and (2.11) specify the|S|×|S|

matrixQπ and the|S| × 1 vectorRπ in terms of the original data. Their analogsQ̃π andR̃π using finalized

data are:

Q̃π(s, t) =

{

q̃(sπ(s), j) if t = s\π(s) ∪ {j}

0 otherwise
, (3.9)

R̃π(s) = r̃(sπ(s)) . (3.10)

It was demonstrated in Section 3 that Hypothesis C is inherited by the multi-armed bandit. Hence, with

V π(s) as the expected utility for starting in states and using priority ruleπ, the vectorV π is the unique

solution toV π = Rπ + QπV π. Proposition 3.1 shows that the model with finalized data also inherits

Hypothesis C, hence that its reward vectorṼ π is the unique solution to the policy evaluation equation

Ṽ π = R̃π + Q̃πṼ π . (3.11)

That finalizing the data preserves expected utility is the gist of:

Proposition 3.3. Suppose Hypothesis C is satisfied. Letπ be a priority rule that is keyed to a labelingL.

ThenṼ π = V π.

Proof. A sequence of elementary row operations akin to those in the Triangularizer transforms the tableau

[(I −Qπ), Rπ] into [(I − Q̃π), R̃π]. Elementary row operations preserve the set of solutions toan equation

system. Hence, sinceV π is the unique solution to(I − Qπ)V π = Rπ, it is the unique solution to(I −

Q̃π)vπ = R̃π.

The Triangularizer first appeared in [6], with an elaborate analysis. An antecedent to it appeared in

Kaspi and Mandelbaum [14], and a contemporaneous account can be found in Sonin [18]. That elementary

row operations simplify the analysis seems not to have been observed previously, however.

4 Policy evaluation

Throughout this section,̂s is any given multistate,L is any given labeling andπ is the priority rule that is

keyed toL. An algorithm that computes the expected utilityV π(ŝ) will be presented. Proposition 3.3 shows
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thatV π = Ṽ π for which reasonV π(ŝ) can - and will be - computed using finalized data. With finalized

data, for (any given) statei banditb(i) is played at most once while in statei and the finalized returñr(i) is

earned if that event occurs. The expected utilityṼ π(ŝ) is then a linear combination of the finalized rewards

say

V π(ŝ) =
∑

i

z(i)r̃(i) ; (4.1)

in the case of linear utility,z(i) is the probability that banditk is played when its state isi, with finalized

data.

A recursion will be used to compute thez(i)’s. Each step of this recursion updates entries in a set of

vectors, on per bandit. Forp = 1, . . . ,K, the vectoryp has|Np| entries, one per state, and is initialized by

yp(j) =

{

1 if j = ŝp

0 if j ∈ Np \ {ŝp}
. (4.2)

Successively, forn = 1, 2, . . . , |N |, this procedure selects the statei havingL(i) = n, setsk = b(i),

updatesyk by

yk(j) ← [yk(j) + yk(i)q̃(i, j)] if j ∈ Nk \ {i} , (4.3)

yk(i) ← 0 , (4.4)

and makes no change inyp for anyp 6= k. Equation (4.3) augments the transition rateyk(j) to statej by

the transition rateyk(i)q̃(i, j) to statei and then directly toj. Equation (4.4) reflects the fact that no statei

is revisited when finalized data are employed.

The analysis of this procedure is eased by defining, forn = 1, 2, . . . , |N |,

Pn = {s ∈ S : n > min{L(sk) : 1 ≤ k ≤ K} . (4.5)

Evidently,Pn contains those multi-states that include a state whose label is less thann.

Proposition 4.1. Suppose Hypothesis C is satisfied. Interrupt the execution of (4.3)–(4.4) just prior to

the iteration in which it selects the statei havingL(i) = n. At this moment, the quantityyp(j) equals the

aggregate transition rate with finalized data of banditp from statêsp to statej due to play at each multi-state

in Pn.

Proof. Whenn = 1, this result corresponds to the initial conditions. Suppose it holds forn ≥ 1. Expres-

sions (4.3) and (4.4) show that it holds forn+ 1.

Proposition 4.1 prepares for the analysis of the:

Evaluator (for starting multi-statês, labelingL and priority ruleπ that is keyed toL).

1. For each banditk, defineyk by (4.2). SetV = 0 andn = 1. Whilen ≤ |N |, do Steps 2 and 3.

11



2. Let i be the state whose labelL(i) equalsn, and setk = b(i). ReplaceV by

V + r̃(i)yk(i)
∏

p 6=k





∑

j∈Np

yp(j)



 . (4.6)

3. Execute (4.3) and then (4.4) for banditk. Then replacen by n+ 1.

The next result shows that the Evaluator determinesV π(ŝ).

Proposition 4.2. Suppose Hypothesis C is satisfied. The Evaluator terminateswith V = V π(ŝ).

Proof. For i ∈ N , setn = L(i) andk = b(i). The coefficientz(i) in (4.1) equals the aggregate transition

rate from multi-statês to the set of multi-statess that haven = min{L(sp) : 1 ≤ p ≤ K}. From Proposition

4.1, we obtainz(i) = yk(i)
∏

p 6=k

[

∑

j∈Np
yp(j)

]

, which completes the proof.

The computational effort for executing the Evaluator is determined in the next result.

Proposition 4.3. Withn ≡
∑K

k=1 |Nk|, executing the Evaluator entails
∑K

k=1
3
2 |Nk|

2 + 7
2n− 5 arithmetic

operations (beyond the effort required to apply the Triangularizer on each bandit).

Proof. Augment the evaluator by keeping a record ofwp =
∑

j∈Np
yp(j) for eachp and of w =

∏|K|
p=1

[

∑

j∈Np
yp(j)

]

. The initial value of each of these expressions is 1. Keepingrecord of these ex-

pression will facilitate the computation of the bracketed terms in (5.5) by a single division.

Consider the implementation of Step 2 wheni ∈ Nk is selected andm is the number of states inNk

whose label is lager thanL(i). In this case the execution of (5.5) is Step 2 requires one addition, 2 multipli-

cations and one division, totalling 4 arithmetic operations. Also, in step 3, (5.2) has to be implemented only

to them states inNk whose label is higher thanL(i), requiringm additions andm multiplications, totalling

2m arithmetic operations. Next,
∑

j∈Np
yp(j) has to be updated only forp = k and this update requires

m − 1 additions. Also, the update of
∏|K|

p=1

[

∑

j∈Np
yp(j)

]

requires the multiplication of the old value by

the ratio of the new and old values of
∑

j∈Nk
yk(j), requiring 2 arithmetic operations. The total number of

arithmetic operation applied to execute steps 2 and 3 over all statesi is then

K
∑

k=1

|Nk|−1
∑

m=1

(3m+ 5) =

K
∑

k=1

(3|Nk|+ 10)(|Nk| − 1)

2
=

K
∑

k=1

3

2
|Nk|

2 +
7

2
n− 5.

To our knowledge, the computation ofV π(ŝ) for a particular priority policyπ and particular starting state

ŝ is new. With a different function (4.2), the Evaluator and its work bound apply to any initial distribution

over the multi-states that is in product form (except that the initial values of thewp’s andw of the proof of

Theorem 5.2 will require n-1 additional arithmetic operations).
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5 Pairwise comparison and preference

In this section, pairwise comparison will be used to identify a state that is “best” amongst a group of states,

and the data for that state’s bandit will be revised accordingly. The amplificationa(i) of statei is now

defined by

a(i) =
∑

j∈Nb(i)

q(i, j) . (5.1)

Under Hypothesis RN, each amplification is1 or less. In the risk-averse and risk-seeking cases, some states

can have amplifications that exceed1, however.

Playing chainb(i) when its state isi earns rewardr(i) and multiplies future rewards by the factora(i).

Statei is now said to bepreferableto statej if

r(i) + a(i)r(j) > r(j) + a(j)r(i) . (5.2)

Suppose that statei is preferable to statej: if a multi-states is observed that includes statesi andj, playing

banditb(i) first andb(j) second is better than the other way around. The definition of preference is applied

even when statesi andj are in the same bandit, however.

It will soon be seen that preference is not transitive, but that it can be refined in a way that is transitive.

To this end, states will be grouped into “categories.” The rule by which a category is assigned to each state

varies with the hypothesis.

5.1 Categories under Hypothesis RN

Under Hypothesis RN, each statej hasa(j) ≤ 1, and each state is assigned a category by this rule:

• Category 1consists of each statej that hasa(j) = 1 andr(j) ≥ 0.

• Category 2consists of each statej that hasa(j) < 1.

• Category 3consists of each statej that hasa(j) = 1 andr(j) < 0.

It is easy to see that each statej in category 1 that hasr(j) > 0 is preferable to every state in category

2 and that each state in category 2 is preferable to every state in category 3. But no state in category 1 is

preferable to any state in category 3. For this reason, preference is not transitive. Statei is now said to be

weakly preferableto statej if the inequality,

r(i) + a(i)r(j) ≥ r(j) + a(j)r(i) , (5.3)

holds strictly or if this inequality holds as an equation andthe category ofi is at least as small as the category

of j. Under Hypothesis RN, each statei is assigned aratio ρ(i) by the following rule:

ρ(i) =











+∞ if statei is in category 1,

r(i)/[1 − a(i)] if statei is in category 2,

−∞ if statei is in category 3.

(5.4)

It is easy to check that statei is weakly preferable to statej if and only if ρ(i) ≥ ρ(j). Evidently,

weak preference is transitive. A statei that is weakly preferable to all others can be found with|N | − 1

comparisons.
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5.2 Categories under Hypothesis RA

Under Hypothesis RA, a statej can havea(j) > 1, but each statej hasr(j) ≤ 0, and the states group

themselves into categories like so:

• Category 1consists of each statej that hasr(j) = 0 anda(j) ≤ 1.

• Category 2consists of each statej that hasr(j) < 0.

• Category 3consists of each statej that hasr(j) = 0 anda(i) > 1.

As before, statei is said to beweakly preferableto statej if (5.3) holds strictly or if (5.3) holds as an

equation and the category of statei is at least as small as the category of statej. Under Hypothesis RA, each

statei is assigned aratio ρ(i) by this rule:

ρ(i) =











+∞ if statei is in category 1,

[1− a(i)] /r(i) if statei is in category 2,

−∞ if statei is in category 3.

(5.5)

It is easy to check thati is weakly preferable to statej if and only if ρ(i) ≥ ρ(j).

5.3 Categories under Hypothesis RS

In the risk-seeking case, each statej hasr(j) ≥ 0, and the states group themselves into categories by this

rule:

• Category 1consists of each statej that hasr(i) = 0 anda(i) ≥ 1.

• Category 2consists of each statej that hasr(j) > 0.

• Category 3consists of each statej that hasr(j) = 0 anda(j) < 1.

Statei’s ratio is now defined by:

ρ(i) =











+∞ if statei is in category 1,

[a(i)− 1] /r(i) if statei is in category 2,

−∞ if statei is in category 3.

(5.6)

With this categorization, the definition of weak preferencedoes not change. Again, statei is weakly pre-

ferred to statej if and only if ρ(i) ≥ ρ(j).

5.4 Finding a weakly preferred state in a set

The characterization of “weakly preferred” under RN, RA andRS by comparingρ(·) shows that the relation

is transitive. Further, if ther(i)’s and the[1 − a(i)]’s for each statei in a setU are available, then (5.4),

(5.5) or (5.6), respectively, facilitate the identification of a weakly preferred state inU by applying at most

|U | divisions and|U | comparisons.

14



5.5 A key result

Proposition 5.1 (below) would seem to have a simple proof, atleast in the case of linear utility, but we are

not aware of one. The interested reader is referred to the proof of Theorem 5.2 in [6], which employs a

delicate interchange argument.

Proposition 5.1. Suppose Hypothesis C is satisfied, and consider any statei that is weakly preferred to all

others. It is optimal to play banditb(i) for every multi-states that includes statei.

5.6 Nomenclature

In the discussion to follow, the data for bandits 1 throughK will be triangularized in parallel, rather than

one after the other. At any stage in that computation:

• r(j) andq(j, p) denote thecurrentvalues of the data for statej,

• r̄(j) andq̄(j, p) denote values of the data after they have beenupdatedby the next execution of Step

2 of the Triangularizer,

• r̃(j) andq̃(j, p) denote the finalized values of the data.

The amplification for statej is denoteda(j), ā(j) andã(j) when it is given in terms of current, updated and

finalized data, respectively. The same is true of the ratio,ρ(j).

It is recalled the data for statei attain their finalized values when Step 2 is executed for state i. Proposi-

tion 5.2 (below) indicates how each execution of Step 2 of theTriangularizer affects the ratios.

Proposition 5.2. Suppose Hypothesis C is satisfied. WithM as any nonempty subset ofNk, suppose that

statei in banditk be weakly preferable to the other statesM with current values of the data for banditk.

Executing Step 2 of the Triangularizer for statei has these effects:

ρ(i) = ρ̃(i) , (5.7)

ρ(i) ≥ ρ̄(j) ≥ ρ(j) ∀ j ∈M \ {i} . (5.8)

Equation (5.7) states that finalizing the data for statei preserves its ratio. Expression (5.8) states that

updating the ratio for a statej other thani can improve its ratio, but not above that for statei. These

observations are insightful, but Proposition 5.2 is not used in this paper, and its proof is omitted. Proposition

5.2 facilitates the use of finalized data for each bandit, thereby enabling parallel computation.

6 Optimization

A labelingL is said to beoptimal if the priority ruleπ that is keyed toL hasV π = F , i.e.,π maximizes the

expected utility that can be obtained from each starting multi-state. Proposition 5.1 lays the groundwork for

a variety of algorithms that identify an optimal labeling. The Optimizer, which appears below, triangularizes

the bandits contemporaneously, rather than one after the other. Its first execution of Step 3 identifies the state
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i that is weakly preferable to all others with respect to the original data. Its first execution of Steps 3(a) and

3(b) update the data for banditb(i) in accord with repeated play while in statei and then remove statei.

The Optimizer then repeats Step 3 with updated data. This recursion stops as soon as all states in one bandit

have been removed

Optimizer

1. BeginC equal to the empty set. For each banditk, insert inC a statei ∈ Nk that is weakly preferable

to every other statej ∈ Nk with respect to the original data. Setn = 1. For each banditk, set

Mk = Nk.

2. Do Step 3 whileMk is nonempty for eachk.

3. Find a statei ∈ C that is weakly preferable to all other states inC with respect to current data. Set

k = b(i) and setL(i) = n. Then replacen by n+ 1.

(a) Use Step 2 of the Triangularizer to finalize the data for statei and to update the data for each

statej ∈Mk \ {i}.

(b) Remove statei fromC. Remove statei fromMk. If Mk is nonempty, insert inC a statej ∈Mk

that is weakly preferable to all other states inMk with respect to updated data.

The Optimizer stops as soon as all of the states in any bandit have been labeled, withn−1 as the highest

of the labels. The unlabeled states can be assigned the labels n through|N | in any way. It will not matter:

no bandit whose state is labeledn or higher will ever be played because it cannot have the lowest label.

The Optimizer applies the Triangularizer with respect to a labeling that is determined on line. At each

stage, the state that gets the next label is selected so that it is weakly preferred to all states that have not yet

been labeled, i.e., the states in∪Kk=1Mk.

Proposition 6.1. Suppose Hypothesis C is satisfied. The Optimizer constructsa labeling L that is optimal.

Proof. Let i be the state selected at the initial execution of Step 3. Weakpreference is transitive, so

Proposition 5.1 shows that it is optimal to play banditb(i) at each multi-state that includes statei. Setting

L(i) = 1 is optimal.

Step 3(a) equates to0 the transition probabilitỹq(j, i) for each statej in b(i), and, for each statej in

bandit b(i), it updates the reward̃r(j), the transition probabilities̃q(j, p) for eachp 6= i to account for

repeated play while in statei.

Step 3(b) removes statei from banditb(i). What remains is a multi-armed bandit with one fewer state.

Proposition 3.1 implies that the same version of HypothesisC is satisfied by the bandit with one fewer state.

Since weak preference is transitive, the statei that is selected at the second iteration of Step 3 is weakly

preferable to all others in the model with revised data and one fewer state. Proposition 5.1 can be applied a

second time, and statei can be assigned the labelL(j) = 2. Iterating this argument completes the proof.

The computational effort for executing the Optimizer is determined in the next result.
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Proposition 6.2. Withn ≡
∑K

k=1 |Nk|, the Optimizer can be executed with12
∑K

k=1 |Nk|
2 + n

2 arithmetic

operations and12
∑K

k=1 |Nk|
2 + n(K − 1

2) +
(

K
2

)

comparisons plus the effort required to execute the Tri-

nangularizer on each bandit).

Proof. Augment the optimizer by recording a ranking of the elementsof C in decreasing weakly prefer-

able order and corresponding ratios of those states inC that are in category 2. The initial ranking can be

accomplished with
(

K
2

)

comparisons whereas the ratios of the states in category 2 that enterC in Step 1 are

computed when the those states are selected to enterC.

When statei ∈ Nk gets a label,Mk changes and the Triangularizer updates the data of its states,

including ther(j)’s and [1 − a(j)]’s. At each stage, finding a weakly preferred state inMk can be ac-

complished with at most|Mk| divisions (determining ratios for states in category 2) andat most|Mk| − 1

comparisons. Updating the ranked listC replaces the old state fromb(i) by i, requires at mostK − 1

comparisons. So, the effort for executing the Optimizer, beyond the effort required to execute the Trinan-

gularizer on each bandit, is bounded by
∑K

k=1

∑|Nk|
m=1m = 1

2

∑K
k=1 |Nk|

2 + n
2 arithmetic operations and

∑K
k=1

∑|Nk|
m=1(K − 1 +m− 1) +

(

K
2

)

= 1
2

∑K
k=1 |Nk|

2 + n(K − 1
2) +

(

K
2

)

comparisons.

Proposition 6.1, 3.1, 4.3 and 6.2 show that an optimal priority rule and its expected utilityF (s) for a

particular starting states can be computed with32
∑

k |Nk|
3 + O(N2) = O(N3) arithmetic operations and

O(N2) comparisons. These last two bounds match the best existing bound for computing Gittins indices

(obtained in [16], see [13, p.43]).

This section is closed with the mention of an alternative to the Optimizer. This alternative has two

steps: First, optimize within each individual bandit. Second, use finalized data for each bandit and pair-wise

comparison to rank the states1 through|N | by weak preference. Proposition 5.2 shows that the priority

rule that is keyed to this ranking (labeling) is optimal. This procedure also requires work proportional to
∑

k |Nk|
3.

7 Optimization with Constraints

For the case of a linear utility function that satisfies Hypothesis RN, the multi-armed bandit is now general-

ized to include a finite numberW of constraints, each on a particular type of reward. Including the objective,

there are nowW + 1 types of reward, which are numbered0 throughW . The objective measurestype-0

reward and thewth constraint places a lower boundCw on the expectedtype-wreward.

The initial multi-states is given, and the object is to maximize the expectation of thetype-0 reward

subject to constraints that, for eachw, keep the expectation of the type-w reward is at least as large asCw.

The main thrust of this section is to use column generation toconstruct an optimal solution to the constrained

problem that is an initial randomization overW + 1 priority rules. At the end of the section, the approach

taken here is compared with a more classic one.

It is known (c.f., Feinberg and Rothblum [9]) that an optimalpolicy can be found among the initial ran-

domizations over stationary deterministic policies. Thislets the multi-armed bandit problem with constraints

be formulated as:
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Program 1. Maximize
∑

δ α
δV δ

0 (s), subject to the constraints
∑

δ α
δ = 1,

∑

δ α
δV δ

w(s) ≥ Cw for w = 1, 2, . . . ,W ,

αδ ≥ 0 for all δ,

where it is understood that the sum is taken over all stationary deterministic policiesδ and whereV δ
w(s)

denotes the expectation of the type-w utility that is earned if one starts at multi-states and uses policyδ.

Program 1 has onlyW +1 constraints, but it can have a gigantic number of decision variables (one for each

stationary deterministic policyδ and one for each slack variable), and its data include the type-w reward

V δ
w(s) for eachw and each policyδ.

Program 2, below, is in the same format as Program 1. Program 2has one decision variable for each

priority ruleπ, rather than for each policyδ.

Program 2. Maximize
∑

π α
πV π

0 (s), subject to the constraints

y0 :
∑

π α
π = 1,

−yw :
∑

π α
πV π

w (s) ≥ Cw for w = 1, . . . ,W ,

απ ≥ 0 for all π.

There are fewer priority rules than polices, but the number of priority rules can still be enormous. Mul-

tipliers have been assigned to the constraints of Program 2.These multipliers will be used in column

generation.

7.1 Preview

Although Program 2 has fewer columns than does Program 1, computing the data it requires would still be

onerous. Much of this computation can be avoided by couplingthe simplex method with column generation.

To indicate how, we suppose that a feasible basis for Program2 has been found. This feasible basis consists

of W + 1 columns (the constraint matrix has full rank). It prescribes value of the basic variables and of the

multipliersy0 and−y1, . . . ,−yW . These multipliers are used to define rewards in an unconstrained bandit

problem whose optimal solution (found by the Optimizer) identifies a priority ruleλ whose corresponding

column has reduced cost (marginal profit)cλ that is the largest. Ifcλ equals zero, the current basis is

optimal. Alternatively, ifcλ is positive, the Evaluator is used to compute the coefficients V λ
0 , . . . , V λ

W . A

simplex pivot is then executed, and the process is repeated.

7.2 Feasibility

Each column of Program 2 is a column of Program 1. Thus, if Program 2 is feasible, Program 1 must also

be feasible. The converse is established in:

Proposition 7.1. Suppose Hypothesis RN is satisfied. If Program 1 is feasible,Program 2 is also feasible.
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Proof. We will prove the contrapositive. Suppose that Program 2 is not feasible. An application of Farkas’

lemma (equivalently of the duality theorem of linear programming) shows that there exist numbersy0 and

y1 throughyw such that

y0 −

W
∑

w=1

ywV
π
w (s) ≥ 0 for all π , (7.1)

yw ≥ 0 for w = 1, . . . ,W , (7.2)

y0 −
W
∑

w=1

ywCw < 0 . (7.3)

The numbersy1 throughyW will be used as weights for the rewardsr1(i) throughrW (i). Consider

an unconstrained multi-armed bandit in which the rewardR(i) for playing banditb(i) while its state isi is

given byR(i) = y1r1(i) + · · · + yW rW (i). Expression (7.1) states that with rewardR(i) for each statei,

no priority ruleπ has aggregate reward that exceedsy0. Proposition 5.1 shows that a priority rule is optimal.

Thus,

y0 −
W
∑

w=1

ywV
δ
w(s) ≥ 0 for all δ . (7.4)

whereδ ranges over all stationary deterministic policies. A solution exists to (7.2)–(7.4), so a second appli-

cation of Farkas’ lemma shows that no solution exists to the constraints of Program 1.

Thus, Program 1 is feasible if and only if Program 2 is feasible. Phase I of the simplex method will be

soon used to determine whether Program 2 is feasible and, if so, to construct a feasible basis with which to

initiate Phase II of the simplex method. For the moment, it isassumed that a feasible basis for Program 2

has been found.

7.3 Phase II

The constraint matrix for Program 2 includes a column for each of theW slack variables. These columns

are linearly independent of each other, and they are linearly independent of the other columns. Thus, the

rank of its constraint matrix equals the numberW + 1 of its rows, and each basis for Program 2 consists of

exactlyW + 1 columns. Let us consider an iteration of Phase II. At hand at the start of this iteration is a

feasible basis, its basic solution and its multipliers. This information includes:

• The data (column) for each of theW + 1 basic variables.

• The basic solution (theαπ ’s) for this basis.

• The multipliersy0 andy1 throughyW for this basis.

The multipliersy1 throughyW are nonnegative, and each priority ruleλ has reduced cost̄cλ that is given by

c̄λ = V λ
0 (s) +

W
∑

w=1

ywV
λ
w (s)− y0 .
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Computation of the reduced cost of each nonbasic priority rule λ would be an onerous task, but it is not

necessary. To determine whether or not the current basis is optimal and, if not, to find a priority rule has the

largest (most positive) reduced cost, one can solve theunconstrainedmulti-armed bandit problem with the

rewardR(i) for playing banditb(i) when its state isi given by

R(i) = r0(i) +
W
∑

w=1

ywrw(i) . (7.5)

With these rewards, the Optimizer in Section 7 computes a priority rule π that is optimal. Also, the

Evaluator in Section 5 computes the expected returnV π(s) for starting in multi-states and using this priority

rule. If V π(s) ≤ y0, no nonbasic variable has a positive reduced cost, so the current basis is optimal.

If V π(s) > y0, the column for priority ruleπ enters the basis. To computeV π
w (s) for eachw, use the

Triangularizer and Evaluator for priority ruleπ. In this computation, the finalized rewards vary withw but

the yk(j)’s do not. To complete an iteration of Phase II, execute a feasible pivot with απ as the entering

variable.

7.4 Phase II recap

Each feasible basis and its basic solution prescribe an initial randomization (with weightαπ assigned to

priority ruleπ) over(W +1− p) priority rules, wherep equals the number of slack variables that are basic.

The multipliers for the current basis determine the data of an unconstrained bandit problem, and the

procedure in prior sections computes its optimal priority rule π and its expected return,V π(s). If V π(s)

does not exceedy0, the current basis is optimal. IfV π(s) exceedsy0, the Evaluator is used to compute the

coefficientsV π
0 throughV π

W of the entering variable. A simplex pivot is then executed.

The pivot itself requires work proportional to(W +1)3. Identifying the entering variable and its column

of coefficients entails work proportional to(W +2)[
∑

k |Nk|
3]. Only a few iterations may be needed to find

a good basis, or an optimal basis, but that is not guaranteed.

7.5 Phase I

It remains to determine whether or not Program 2 is feasible and, if it is feasible, to construct a feasible

basis with which to initiate Phase II. These tasks will be accomplished by “bringing in” the constraints of

Program 2, one at a time. Starting withn = 1, thenth iteration of Phase I is initialized with a randomization

overn− 1 priority rules that satisfy the firstn− 1 constraints. Thenth iteration maximizes type-n reward,

using the Phase II column generation scheme described above. If the type-n income can be made as large

asCn, a basis has been found with which to initiate then + 1st iteration. If not, no feasible solution exists

to Program 2.

7.6 The classic formulation

An optimal policy for a discounted Markov decision problem with W constraints can be found among the

stationary randomized policies (c.f., Altman [1, page 102]). This can be accomplished by a linear program
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whose constraint matrix has one column per state-action pair, one row per state, and one row per constraint.

The multi-armed bandit hasJ =
∏K

k=1 |Nk|multi-states andK actions per multi-state. Its constraint matrix

hasW + J rows andK × J columns. The classic formulation has fewer columns than does Program 2, but

it has many more rows.

The classic formulation can also be attacked by column generation, but doing so would be unattractive

because the formulation would have more columns and many more rows than the one we propose.

7.7 A roadblock

With a linear utility function, multiple types of reward canbe handled by column generation and by the

classic method. Both methods utilize the fact that each transition rateq(i, j) is independent of the reward

type.

Let us consider what occurs when multiple types of rewards are introduced in the model with exponential

utility. Note from (2.4) and (2.5) that the payoffx(i, j) appears in the formula for the transition rateq(i, j).

Having multiple types of income causes the transition rateq(i, j) to vary with the reward type. Consequently,

our column generation method (and the classical one) can be applied only when the type-w payoffxw(i, j)

is independent ofw, for instance, this is the case when income is earned only at termination.

8 Structural properties

In the prior section, it was demonstrated that an optimal policy for a constrained bandit problem can be

found among the initial randomization overW +1 priority rules. In the current section, the structure of this

optimal policy is probed.

A transient Markov decision problem (MDP) withW constraints has an optimal solution that is an initial

randomization overW + 1 deterministic policiesδ1 throughδW+1 each of which differs from the next at

precisely one state of the MDP; see Feinberg and Rothblum [9]. When this MDP is a multi-armed bandit,

these deterministic policies need not be priority rules, however.

Two labelings are now said to beadjacent if they are identical except that they exchange the states

having labelsk andk+1 for exactly one value ofk. The aforementioned property raises the question: Does

Program 2 have an optimal solution that is an initial randomization over priority rules that are keyed to a

sequence ofW + 1 labelings with the property that each labeling is adjacent to the next? This question will

be answered in the affirmative in the case of one constraint and in the negative in the case of more than one

constraint.

8.1 Adjacency with one constraint

Let us consider a multi-armed bandit with one constraint. Wehave seen that an optimal basis for Program 2

prescribes a randomization over at most two priority rules.If its basic solution for this basis setsαj = 1 for

anyj, only priority rule is used, and adjacency is trivial.

Let us denote asV p
0 andV p

1 as the type-0 and type-1 utility for columnp. The case that requires analysis

is that in which the optimal basis for Program 2 consists of columnsj andk whose priority rules are keyed
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to different labelings. For this to occur, the slack variable for the inequality constraint in Program 2 must

not be basic, so this optimal basis assigns the columnsj andk nonnegative valuesαj andαk that satisfy

αjV
j
1 + αkV

k
1 = C1 and αj + αk = 1 . (8.1)

The optimal basis for Program 2 assigns to its constraints values of the multipliersy0 and−y1 for which

columnsj andk have0 as their reduced costs. In other words,

0 = V j
0 + y1V

j
1 − y0 and 0 = V k

0 + y1V
k
1 − y0 . (8.2)

If V j
1 = V k

1 , equation (8.1) guarantees that both columns haveC1 as their type-1 utility, and equation (8.2)

shows that both columns have the same type-0 utility, in which case it is optimal to play either column with

probability 1, and a deterministic priority rule is optimal.

It remains to analyze the case in whichC1 lies strictly betweenV j
1 andV k

1 . The labelings to which

columnsj andk are keyed need not be adjacent, but columnsj andk can be used to construct an optimal

basis with labelings that are adjacent. To indicate how, we turn to the example in Table 1. In this example,

columnsj andk assign identical labels to the states, except for the sets{6, 7, 8, 9} and{13, 14} of labels.

Table 1. An optimal basis.

label . . . 6 7 8 9 . . . 13 14

columnj . . . a b c d . . . f g

columnk . . . d c b a . . . g f

Optimal solutions to the unconstrained multi-armed bandithavingR(i) = r0(i)+ y1r1(i) for each state

i are in product form. As a consequence, every columnp whose labeling permutes the labels assigned to the

sets{a, b, c, d} and{f, g} of states has0 as its reduced cost in Program 2. A total of7 = 1 + 3 + 2 + 1

interchanges of states whose labels are adjacent converts the permutation for columnk into the permutation

for columnj. One of these interchanges must move the type-1 reward from the side ofC1 on whichV k
1 lies

to the side on whichV j
1 lies, and that switch identifies a pair of adjacent labelings. This switch identifies

a pair of priority rules that are keyed to adjacent labelingsand whose columns form an optimal basis. The

pattern exhibited by this example holds in general. The Triangularizer and Evaluator can be used to compute

the reward vector for each labeling.

8.2 Non-adjacency with two constraints

For a multi-armed bandit problem with two constraints, an initial randomization over 3 priority rules has

been shown to be optimal. Examples exist in which no optimal solution is an initial randomization over

priority rules that are keyed to a sequence of three adjacentlabelings. Such an example is now presented.

This example has 3 chains (bandits), each of which consists of a single state. The three bandit’s states are

a, b andc, respectively. The multi-state(a, b, c) is observed initially. Playing any bandit causes immediate

termination. Playing the bandit whose state isa earns the reward vector(1, 0, 0) whose entries are, respec-

tively, the type-0, type-1 and type-2 reward. Similarly, playing the bandit whose state isb earns reward

vector(0, 1, 0), and playing the bandit whose state isc earns reward vector(0, 0, 1). The lower bounds on
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expected type-1 and type-2 rewards areC1 = 0.3 andC2 = 0.1. There are six labelings, which are listed

below. Labeling (v) hasL(a) = 3, L(b) = 1 andL(c) = 2, for instance.

state a b c

labeling (i) 1 2 3

labeling (ii) 1 3 2

labeling (iii) 2 1 3

labeling (iv) 2 3 1

labeling (v) 3 1 2

labeling (vi) 3 2 1

For this example, it is optimal to use labeling (i) or (ii) with probability of0.6, to use labeling (iii) or

(iv) with probability 0.3 and to use labeling (v) or (vi) with probability of0.1. But no sequence of three

labelings, one from each pair, is adjacent. For instance, labelings (i) and (iii) are adjacent to each other, but

neither is adjacent to labeling (v) or (vi).

9 Relaxing Hypothesis C

The model with a risk-averse exponential utility function can be generalized by replacing Hypothesis RA

with these conditions:

• Each banditk has a transition rate matrixqk that is nonnegative.

• At least one banditk has a transition rate matrixqk that is transient.

• Every closed communicating classC of states in any banditn has spectral radius of(qn)CC that

exceeds1.

When Hypothesis RA is weakened in this way, the analysis becomes more intricate. One difficulty stems

from the fact that if a policyπ has a transition rate matrixQπ that is not transient, its utility vectorV π cannot

satisfy (2.13). The fact that the risk-averse exponential utility function hasu(0) = −1 and the weakened

hypothesis can be used to work around this difficulty by ruling out any stationary policy that plays a bandit

at each state in any closed communicating class. A second difficulty arises from the fact that the interchange

argument in Proposition 5.1 can no longer rest on the classicresults in [5] or [21]. The interested reader is

referred to the analysis in [6] and to the characterization of optimal policies in [7].

The linear-utility model can be generalized in a similar way. It suffices that each bandit has a matrix

qk that is substochastic, that at least one banditk has a matrixqk that is transient, and that every closed

communicating class of states in any bandit has a gain rate that is negative.

With each of these generalizations, only a minor change is required in the computation. The change is

to avoid playing banditb(j) if at some point in the computation it has transition rateq(j, j) that equals or

exceeds1.

23



10 Acknowledgements

The authors are pleased to acknowledge that this paper has benefited immensely from the reactions of Dr.

Pelin Cambolat to earlier drafts. The contribution of the second author has been supported in part by NSF

grant CMMI-0928490. The contribution of the third author has been supported in part by ISF Israel Science

Foundation) grant 901/10.

References

[1] Altman, E. 1999.Constrained Markov Decision Processes.Chapman & Hall/CRC, Boca Raton, USA.
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