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Abstract This paper proposes an adaptation, to the two-dimensional irregular bin packing
problem of the Djang and Finch heuristic (DJD), originally designed for the one-dimensional
bin packing problem. In the two-dimensional case, not only is it the case that the piece’s
size is important but its shape also has a significant influence. Therefore, DJD as a selection
heuristic has to be paired with a placement heuristic to completely construct a solution to the
underlying packing problem. A successful adaptation of the DJD requires a routine to reduce
computational costs, which is also proposed and successfully tested in this paper. Results,
on a wide variety of instance types with convex polygons, are found to be significantly better
than those produced by more conventional selection heuristics.

Keywords 2D bin packing problem - Irregular packing - Heuristics - Djang and Finch
heuristic

1 Introduction

The problem of finding an arrangement of pieces to cut from or pack inside larger objects

is known as the cutting and packing problem, which is NP-hard. The two-dimensional (2D)
bin packing problem (BPP) is a particular case of the basic problem. It consists of finding
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an arrangement of pieces inside identical objects such that the number of objects required
to contain all pieces is minimum. The case of rectangular pieces is the most widely stud-
ied. However, the irregular case is seen in a number of industries where parts with irregular
shapes are cut from rectangular materials. For example, in the shipbuilding industry, plate
parts with free-form shapes for use in the inner frameworks of ships are cut from rectangu-
lar steel plates, and in the apparel industry, parts of clothes and shoes are cut from fabric or
leather (Okano 2002). Other direct applications include the optimization of layouts within
the wood, metal, plastics, carbon fiber and glass industries. In these industries, small im-
provements of the arrangement can result in a large saving of material (Hu-yao and Yuan-jun
2006).

This paper proposes a heuristic for selecting the next pieces to be placed when solving the
2D irregular BPP. The proposed heuristic is not only fast in execution, but it also produces
excellent results when compared against more conventional selection heuristics. A simple
but successful placement procedure is also presented, which produces outstanding results
when coupled with the proposed selection heuristic. The paper proceeds as follows. The
next section presents the problem description and a literature review. Section 3 describes the
DIJD heuristic, which is the base for our approach. Section 4 describes the implementation
details of the heuristic. Finally, Sects. 5 and 6 give the experimental results and conclusions,
respectively.

2 The 2D irregular bin packing problem

The cutting and packing problem is among the earliest problems in the literature of oper-
ational research. Wischer et al. (2007) suggested a complete problem typology which is
an extension of Dychoff (1990). In this paper, we consider the problem classified as the
2D irregular single bin size bin packing problem in Wischer, Haussner and Schumann’s
typology. Given a set L = (a;, az, ..., a,) of pieces to cut or pack and an infinite set of
identical rectangular larger elements (called objects), the problem consists of finding an ar-
rangement of pieces inside the objects such that the number of objects required to contain
all pieces is minimum. A feasible solution is an arrangement of pieces without overlaps and
with no piece outside the object limits. A problem instance or instance I = (L, xq, yo) con-
sists of a list of elements L and object dimensions x¢ and y,. The term 2D regular BPP is
mainly used when all pieces are rectangular (although circles and other regular shapes could
fall under this name too Wischer et al. 2007); otherwise, the problem is called 2D irregular
BPP. The problem is offline, and therefore the list of pieces to be packed is static and given
in advance.

The strip packing problem is a popular variant of the 2D cutting and packing prob-
lem which has only one large rectangular object with fixed width, its length is variable and
has to be minimized after placing all the small pieces (some approaches and reviews by
Dowsland and Dowsland 1995; Hopper and Turton 2001; Burke et al. 2006). A variation
of this typical strip packing problem consists on nesting irregular pieces in one large irreg-
ular object (examples by Lamousin and Dobson 1996; Lamousin and Waggenspack 1997;
Whelan and Batchelor 1992; Ramesh 2001). The amount of research devoted to the strip
packing problem has been larger when compared to the research about the 2D irregular
BPP. We found that Okano (2002) studied a problem similar to our 2D irregular single bin
size BPP but using variable bin sizes, where the problem solution involves finding appro-
priate sizes of material objects (bins) among given standard sizes in order to reduce waste.
As far as we know, there are no previous studies for, specifically, the 2D irregular single bin
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size bin packing problem. Therefore, all 2D irregular problem instances in the literature are
intended for the strip packing problem; and there are not 2D irregular BPP instances avail-
able. Also, since the strip packing problem is similar to the 2D irregular BPP, many heuristic
implementations may be similar; although, results for both kind of problems are not compa-
rable. Nevertheless the lack of research in the 2D irregular BPP, there exist many practical
applications where irregular pieces are cut from identical rectangular objects (Okano 2002).

For the 1D case, it is common to use the terms items and bins, regarding the small and
large elements respectively; whereas, for the 2D case, a variety of terms has been used. The
small elements have been named pieces, shapes or items; and the large elements have been
called objects, stock or sheets. Here, we use the terms items and bins regarding the 1D case,
and pieces and objects when referring to the 2D case.

For many real-world problems, an exhaustive search for solutions is not a practical propo-
sition due to the large size of the solution search space. Hence, many heuristic approaches
have been adopted. It is common that heuristic approaches for the bin packing problem
present at least two phases: first, the selection of the next piece to be placed and the cor-
responding object to place it; and second, the actual placement of the selected piece in a
position inside the object according to some given criteria. Some approaches consider a
third phase as a local search mechanism.

The placement procedure for irregular pieces has attracted more attention than the explo-
ration of the selection criteria. There are several techniques to generate potential placement
positions for the next piece to be placed, and many of them are based on building the no-fit
polygon. The no-fit polygon gives the set of non-overlapping placements for a given pair of
polygons. Good examples of this type of procedure that work well for the strip packing prob-
lem are described by Hu-yao and Yuan-jun (2006), Gomes and Oliveira (2002), Dowsland
et al. (2002), Burke and Kendall (1999b), Burke et al. (2007). While the no-fit polygon is a
powerful geometric technique, there are several issues that limit its scalability for industrial
applications. No-fit polygon techniques are notorious for the large quantity of degenerate
cases that must be handled to make it completely robust (Burke et al. 2006). Whilst the
generation of the no-fit polygon is academically challenging, it is a tool and not a solution
(Burke et al. 2007). After generating the possible placement positions, it is necessary to have
some criteria for choosing the best position. In 2D cutting and packing problems the most
commonly used method for packing regular and irregular pieces involves the bottom-left
class of heuristics. These methods involve simply placing the input list of pieces into the
bottom-leftmost location on the packing sheet (Allen et al. 2011).

Regarding the selection criteria, most researchers have focused upon exploring different
ways of finding good permutation of pieces. Okano (2002) obtains an ordering of pieces
with respect to their areas and the similarities among them. Dowsland et al. (2002) use eight
static orderings, which have the common strategy of trying to place the difficult-to-place
pieces first. Dynamic selection permits all pieces to be available to be placed next Bennell
and Oliveira (2009), for example, Bennell and Song (2010) use beam search. This approach
searches the breadth first tree, and prunes the tree at each level according to two evaluation
functions.

Several metaheuristic approaches have been applied to the strip packing problems, for ex-
ample, tabu search (Bennell and Dowsland 2001), evolutionary computation (Bounsaythip
and Maouche 1997) and ant algorithms (Burke and Kendall 1999a). Metaheuristic tech-
niques are often very effective; however, there can be some reluctance to use them for
money-critical problems. Practitioners in industry often favor the use of very simple and
readily understandable methods even if they deliver relatively inferior results (Ross 2005).
Among the main criticisms of stochastic-based problem solving techniques are: (1) the fact

@ Springer



Ann Oper Res

that they involve some randomness and unpredictability, so that identical runs may deliver
very different results; (2) there is little understanding about their average- and worst-case
behavior (Ross and Marin-Blazquez 2005); (3) solutions quality greatly depend on a good
parameter choice; and (4) the parameter tunning task requires time, knowledge and ex-
perience about the problem domain and properties which makes metaheuristics problem-
specific solution methods that can be developed and deployed only by experts (Ross 2005;
Bilgin et al. 2006).

3 The DJD heuristic

The proposed approach is based on the DJD heuristic, which is a selection heuristic designed
for the 1D case. In its original version, as explained by Ross et al. (2002), the DJD heuristic
puts items into a bin, taking items largest-first until that bin is at least one third full. It
then tries to find one, or two, or three items that completely fill the bin. If there is no such
combination it tries again, but looking instead for a combination that fills the bin to within
1 unit of its capacity. If that fails, it tries to find a combination that fills the bin to within
2 units of its capacity; and so on. This routine is to be performed as long as there are pieces
to place. DJD is a single-pass constructive heuristic. A popular variation of DJD is called
DIJT (Djang and Finch, more tuples) which considers combinations of up to five items rather
than three items.

Problems known to be hard have certain characteristics. In bin packing, especially in
the 1D case, instances with many small items are not hard, since the small items can be
employed as sand to fill up the remaining space when large items were packed. Difficulty
arises when most of the pieces have an area that is a significant fraction of the total object
area, for example at least 20 % of the object area, so that the challenge is to find the subset
among a large number of pieces to be placed in a given object (Ross 2005). We hypothesize
that the DJD heuristic is intended for these kind of hard instances; because, exactly as stated,
it works well in many problems known to be hard, but it fails in other types of problem. For
example, consider a very easy problem in which the bins have capacity 1000 and there are
10,000 items each of weight 1. Packing these items will need only 10 bins. However, DJD
will first fill a bin until it contains 334 items (just over one-third) and then add just three
more items into the bin, so the bin will contain 337 items. Thus, 30 bins will be needed
(337 x 29 =9773) (Ross 2005), a solution far from optimality. The obvious remedy to this
situation is to keep trying to place item combinations until no single item can be placed.
Although, in the case when items are so small compared with the bin free space, there is no
advantage in trying every combination of items, since no combination would result in zero
waste in the first attempts.

Ross et al. (2002, 2003), Marin-Bldzquez and Schulenburg (2006) and Pillay (2012)
have implemented the DJD and its variation DJT for the 1D BPP as a part of procedures
(hyper-heuristics) that learn to combine heuristics for solving the underlying problem. In
these approaches, the idea is to automatically apply different heuristics to different states of
the construction process. In this scenario, DJD and DJT were reported as the best heuris-
tics considered. Also, the DJD heuristic was adapted to solve the problem of scheduling
transportation events for minimizing the number of vehicles used, while satisfying the cus-
tomer demand (Terashima-Marin et al. 2005b). Kos and Duhovnik (2000) describe the same
heuristic but named it as Exact Fit in an approach for rod cutting optimization with remnants
utilization. Sim et al. (2012) present an evolutionary algorithm for evolving classifiers that
are used for predicting the best heuristic to solve each of a set of unseen 1D BPP instances.
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They present the Adaptive DJD which packs items into a bin in descending order until the
free space in the bin is less than or equal to three times the average size of the items re-
maining to be packed. This recent version of the DJD heuristic obtains poorer results than
the DJD and DJT when the metric is the percentage of instances solved using the optimum
number of bins. When the metric is the fitness given in Eq. (2) or the percentage of extra
bins required over the optimal, Adaptive DJD is better than DJD and worse than DJT when
averaging 1320 instances.

Where pieces to be placed are rectangles, DJD and DJT have been adapted and imple-
mented as a selection heuristic (Terashima-Marin et al. 2005a, 2006). For the 2D irregular
BPP, where pieces to be placed are convex polygons, DJD has been implemented as a mem-
ber of a heuristic repository in a hyper-heuristic approach (Terashima-Marin et al. 2010).
To our knowledge, DJT has not been implemented for the 2D irregular BPP. In the previous
studies, the performance of DJD was not analyzed, nor reported separately and the authors
did not report a routine for improving the running times. This is essential in the 2D case,
because simply comparing the area of a 1, 2 or 3-piece combination against the free area of
the object does not imply that the pieces can actually be placed. Indeed, several groups of
pieces may need to be tried before a given combination of pieces can be placed. Moreover,
the same pieces may be tested several times in different combinations before the algorithm
is successful in placing a 1, 2 or 3-piece group. Besides, to determine whether or not a piece
can be placed in a given object is the most time-consuming task when solving a 2D bin
packing problem. The placement task requires even more running time when pieces are ir-
regular. In this paper, DJD is adapted to and thoroughly analyzed when solving a variety of
instances of the 2D irregular BBP. Moreover, a routine for reducing redundant computation
is proposed and successfully tested.

4 The proposed DJD heuristic for the 2D irregular BPP

The DJD algorithm for the 2D case works as a selection heuristic, but it alone does not
solve the problem completely. DJD has to be paired with a placement heuristic which will
determine the exact position of each piece inside an object.

For the 2D case (regular and irregular), the general process of the DJD heuristic is out-
lined in the pseudo code of Algorithm 1. In the 2D adaptation of the heuristic, DJD puts
pieces into an object, taking them by decreasing area, until at least one-third of its area is
covered. It then tries to find one, or two, or three pieces that completely fill the object. If
there is no such combination it tries again, but looks instead for a combination that fills the
bin to within w of its capacity. If that fails, it tries to find such a combination that fills the
object to within 2w of its capacity; and so on. In the 1D case, the waste incremental sug-
gested is 1 unit. Depending on the order of magnitude of the object and pieces sizes, in 2D
it would not be feasible to manage a 1-unit incremental. Therefore, the incremental should
be selected according to the total object area. For the 2D adaptation of the heuristic, the
processes of reviewing groups of one, two or three pieces are modified to optimize running
time. These processes mentioned in Algorithm 1, are described in Algorithms 2, 3 and 4
respectively.

Pieces are placed sequentially when trying groups of 2 or 3 pieces. Only when the first
piece is placed successfully, a next one is tried, and so on. If all possible second pieces fail
to fit, the first piece is unplaced and then we try a different group.

Every time a combination of 1, 2 and 3 pieces is placed, the checking process starts all
over again in the same object (resetting the allowed waste to 0). Only when no more pieces
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Algorithm 1 The DJD heuristic
Input: A list of pieces sorted by decreasing area; width and height of the rectangular ob-
jects.
Output: All pieces placed in objects.
1: waste = 0; w [increment of allowed waste, w = 1 in the original version of the heuristic]

2: while there are pieces to place do
3:  Fill the object until at least one-third of its area is covered
4:  Register in memory every piece that does not fit

5:  Try pieces one by one [see Algorithm 2]
. if a piece could be placed leaving a free area up to waste then
7: reset waste = 0 and start again trying pieces one by one

8:  Try groups of 2 pieces [see Algorithm 3]
9:  if a pair of pieces could be placed leaving a free area up to waste then
10: reset waste = 0 and start again trying pieces one by one

11:  Try groups of 3 pieces [see Algorithm 4]
12:  if a group of 3 pieces could be placed leaving a free area up to waste then
13: reset waste = 0 and start again trying pieces one by one

14:  if no piece could be placed trying all possible 1, 2 or 3-piece groups
AND waste < object free area then

15: waste = waste + w
16:  else
17: open a new object

Algorithm 2 Trying pieces one by one

1: for all pieces in decreasing size order do

2:  if object free area — area of piece > waste then

3 break

4:  if area of piece > object free area OR piece has failed to fit then
5: continue [with the next piece]

6:  Try to place the piece in the object

7. if the piece could be placed then

8 return

9: else

10: register in memory that the piece does not fit

can be placed in an object, a new object is opened. The DJD heuristic works in one open
object at a time, there is no need to review previous open objects. Order is important in 2D
packing; groups with the same pieces are revised considering all possible orderings. When
executing a placement heuristic, a piece combination that cannot be placed in a particular
order could be placed in another piece order.

In order to reduce the computational effort, a record of what pieces have been tried so far
as a first member of a 1, 2 or 3-pieces group is kept for each object, so the algorithm does
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Algorithm 3 Trying groups of 2 pieces

1: for all pieces in decreasing size order do

2:  if object free area — piece’s area — largest piece’s area > waste then
3: break
4:  if the piece has failed to fit OR piece’s area 4 smallest piece’s area > free space then
5: continue [with the next piece in the list]
6:  Try to place the piece in the object
7. if piece could not be placed then
8: register it in memory
9:  else {select a second piece when a first piece succeeded to be placed}
10 for all remaining pieces do
11: if object free area — area of the 2 pieces > waste then
12: break
13: if the piece or the pair of pieces has failed to fit OR 2 pieces’ area > free space
then
14: continue [with the next piece]
15: Try to place the second piece in the object
16: if the piece could be placed then
17: return
18: else
19: unplace first piece AND register that the pair of pieces does not fit

not try again the same piece in a different group. Additionally, a record is kept of all ordered
pairs of pieces that failed to be placed in a particular object either as a 2-piece group or as
the first 2 pieces of a 3-piece group. These pairs of pieces are, therefore, not tried again in
the same order in the same object. Finally, all ordered 3-piece groups that fail to fit in an
object are recorded as well. These records help to reduce an important amount of redundant
computation.

As it can be seen in Algorithms 2, 3 and 4, when DJD checks one, two or three-piece
groups, first it compares the pieces’ areas against the maximum waste allowed and against
the available object area. Only then, does DJD try to place them. For the 2D BPP, checking
if a piece could or could not be placed, is computationally expensive. Pieces should be in
descending order when the DJD heuristic starts, allowing the For cycles to break at some
point when reviewing pieces; thus, reducing comparisons (see Algorithms 2, 3 and 4).

According to the placement procedures considered, when a piece cannot be placed in an
object at a given time, there is a slight possibility that it can actually be placed later when one
or more pieces had been placed. Considering this possibility in the implementation would
increase the algorithm running time. If time is not a constraint, the option would be to keep
a record of pieces that fail to fit just until one piece or group is placed, and then clean up the
records.

5 Algorithms for geometric computation

The algorithms presented in this section are the building blocks for implementing the place-
ment heuristics (Sect. 6.2). These algorithms are suited for dealing with convex and non-
convex shapes (even though our testbed instances have only convex pieces). Each piece is
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Algorithm 4 Trying groups of 3 pieces

for all pieces in decreasing size order do

1:

2:  if object free area — piece’s area — area of the 2 largest pieces > waste then

3: break

4:  if the piece has failed to fit OR piece’s area + 2 smallest pieces’ area > free space
then

5 continue [with the next piece]

6:  Try to place the piece in the object

7. if piece could not be placed then

8 register it in memory

9: else {select a second piece when a first piece succeeded to be placed}

10: for all remaining pieces do
11: if object free area — area of the 2 pieces — area of largest piece > waste then
12: break
13: if the piece or the pair of pieces has failed to fit OR
area of the 2 pieces + area of smallest piece > object free area then
14 continue [with the next piece]
15: Try to place the second piece in the object
16: if the piece could not be placed then
17: unplace first piece AND register that the pair of pieces does not fit
18: else {select a third piece when two pieces have been placed}
19: for all remaining piece do
20: if object free area — area of the 3 pieces > waste then
21: break
22 if any piece, or pair or 3-piece group of pieces have failed to fit OR
area of the 3 pieces > object free area then
23: continue [with the next piece]
24: Try to place the third piece in the object
25: if the piece could be placed then
26: return
27: else
28: unplace first 2 pieces AND register that the 3-piece group does not fit

represented by its vertices coordinates ordered counterclockwise. Algorithms are mainly de-
voted to the task of detecting overlapping (Algorithms 5, 6 and 7), to compute the distance
that one piece can slide without crossing to another (Algorithms 9 and 10) and to compute
adjacency (Algorithm 11).

Most of the algorithms are based on basic geometrical concepts, but particular cases
and exceptions deserve special care. The easiest-to-solve cases should be reviewed first in
order to avoid unnecessary computations. For example, when checking whether a point is
inside a shape, a quick computation to determine is the point is above (or below) the top or
(the bottom) of the piece will discard many cases. Trivial cases like this one are a frequent
scenario when applying the placement heuristics with our set of instances.

Two considerations to take into account are:

1. Our function that reviews if two segments have an intersection returns false if they belong
to the same line, even if one segment touch the other by one of their ends or if they
overlap. In other words, our definition of intersection of segments refers to segments
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Algorithm 5 Decide if two pieces intersects each other

Input: A list of coordinates of two pieces P; and P;.
Qutput: A boolean value indicating whether the two pieces intersects each other.

1: if lowest end of P; is above upper end of P, OR lowest end of P is above upper end of
P, then

2:  return false

3: if leftmost end of P is right of the rightmost end of P, OR leftmost end of P; is right
of the rightmost end of P; then

4:  return false

: for all edges ¢; of P; do
for all edges e, of P, do
if Intersects(eq, ¢») then
return true
: return false

Algorithm 6 Decide if a point is inside a shape

Input: A list of coordinates of a piece and a point (x, y).
Qutput: A boolean value indicating whether the point is or not inside the piece.

1: if x < the piece lowest part OR x > the piece upper part then
2:  return false

3: if y < the piece leftmost part OR y > the piece rightmost part then
4:  return false

5: for all vertices of the piece do
6:  if the point (x, y) is equal to the vertex then
7 return false

8: for all sides of the piece do

9:  if the point (x, y) is along the side then

10: return false

11: Create the point (M, y), where M is a very large number.

12: for all sides of the piece do

13:  if the side of the piece intersects the segment (x, y) to (M, y) then
14: counter ++

15: for all vertices i of the piece do

16:  if the vertex belong to the segment (x, y) to (M, y) then

17: D, < Dfunction(segment, vertex i — 1) [see Eq. (1)]
18: D, < Dfunction(segment, vertex i + 1)

19: if D; and D, have different signs then

20: counter ++

21: if counter is odd then
22: return true

23: else

24:  return false
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Fig.1 Ray from point P to the

right actually touches 4 times the

shape boundaries. The ray

crosses the shape at vertex B. In P A B
contrast, the ray touches vertex A
only tangentially and does not
cross the shape at this point.
Therefore, the count for crosses
is 3. Since 3 is an odd number,
we conclude that P is inside the
shape

v

Fig. 2 Interpretation of the P P
D-function B A

DABP >0 DABP <0

that crosses but are not coincident. Note that this definition implies that reviewing for
intersection of two segments that are exactly the same, the function will return false.

2. Our function that reviews if a point is inside a segment returns true if the point is one of
the ends of the segment. When the sum of the distances from the point to the two ends
of the segment is equal to the segment length, then we consider that the point belongs to
the segment.

To know whether two pieces intersects each other, a routine that checks intersection for
each pair of sides from both pieces was implemented (Algorithm 5). Initially, a revision is
done to confirm that the orthogonal rectangles that circumscribe both pieces intersect. This
is used to discard the easiest non-intersection cases. This test does not work if one piece is
completely inside the other, in which case no edges intersect but the pieces do intersect. In
consequence, this algorithm is always followed by Algorithm 7 that reviews if one piece is
completely inside another.

Algorithm 6 determines whether a point is inside a shape. If the point is along an edge
of the piece or one of its vertices, then the algorithm will return false. The basic idea is to
trace a ray from the point to any fixed direction. If the ray cuts the shape an odd number of
times, then the point is inside the shape; otherwise it is outside. If the ray touches a vertex
of the shape; it is important to determine if the ray touches the shape tangentially or if it
actually crosses the shape (see Fig. 1). This is done employing the D-function (Eq. (1)). For
line intersection, the D-function gives the relative position of a point P with respect to an
oriented edge AB (see Fig. 2). The D-function is defined as follows:

Dppp=(Xa—Xp)(Ya—Yp) — (Y4 —Yp) (X4 — Xp) (D

Depending if D4pp is negative or positive, the point P is on the left or the right side of
the edge AB. The definition of left and right is as follows: if an observer would stand at
point A looking in the direction of B, point P would be at the observer’s left or right. If
D spp =0, the point P is on the supporting line of edge A B (Bennell and Oliveira 2008).

Algorithm 7 is used to determine if a piece is completely inside another piece. Initially,
a revision is done to confirm that the orthogonal rectangles that circumscribe both pieces
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Algorithm 7 Decide if a shape is completely inside another shape

Input: The two pieces P; and P;.
Output: A boolean value indicating whether one of the pieces is inside the other.

Part 1

1: if lowest end of P; is above upper end of P, OR lowest end of P, is above upper end of
P, then

2:  return false

3: if leftmost end of P is right of the rightmost end of P, OR leftmost end of P; is right
of the rightmost end of P; then

return false
5: if the 2 pieces intersect each other [see Algorithm 5] then
6:  return false

Part 2 [At this point we only have pieces that do not intersect each other]
7: Vmar < Mmax(maximum P; y-coordinate, maximum P, y-coordinate)
8: Ymin <— min(minimum P; y-coordinate, minimum P, y-coordinate)
9: Xpax < mMax(maximum P; x-coordinate, maximum P, x-coordinate)
10: X, < min(minimum P; x-coordinate, minimum P, x-coordinate)
11: if (ymwc - ymin)(xmax - xmin) <(area of Pl+ area of PZ) then
12:  return true

Part 3

13: y; < average(maximum P; y-coordinate, minimum P; y-coordinate)

14: X; < average(maximum P; x-coordinate, minimum P; x-coordinate)

15: y, < average(maximum P, y-coordinate, minimum P, y-coordinate)

16: X < average(maximum P, x-coordinate, minimum P, x-coordinate)

17: if point (x;, ¥;) is inside P; and P, or point (X3, y,) is inside P; and P, then
18:  return true

Part 4

19: for all vertices and edge midpoints and points near each vertex of P, do
20:  if inside P, then

21: return true

22: for all vertices and edge midpoints and points near each vertex of P, do
23:  ifinside P; then

24: return true

Part 5

25: if P is equal to P, and in the same position then
26: return true

27: else

28:  return false

intersect and that the actual pieces do not intersect (part 1). If both pieces do not intersect,
we find the orthogonal rectangle that circumscribe both pieces at the same time. If the area
of this rectangle is less than the sum of areas of both pieces, it means unequivocally that one
piece is inside the another (part 2). If the point in the middle of piece 1 is inside piece 1, then
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D E

Fig.3 Piece AEFG is inside piece ABCDEFG. In this case, checking if all vertices and edges midpoints
of AEFG are inside ABC DE F G will return false. Only when a point very close to vertex E is found inside
ABCDEFG, the algorithm returns true to the question about if one of the pieces is inside the other. In this
case, reviewing intersection of these two pieces with Algorithm 5 will return false because none of the sides
crosses another (although they coincide)

Objeat

{a) {b)

Fig. 4 Piece ABCDE FGH contains all area to the (a) left and (b) below a given piece

we check if this point is inside piece 2. The same is checked for the middle point of piece 2
(part 3). If this is not the case, then, all vertices and edge midpoints from both pieces are
checked to know if they are inside the other piece. Checking vertices and edges midpoints is
not an infallible test with non-convex shapes. It is possible to find a case where all vertices
edges midpoints of the inside shape are all along the contour of the larger piece. See for
example Fig. 3. Therefore, two points close to each vertex (one for each of the edges) are
also tested (part 4). Finally, it is convenient to check whether the two pieces are not equal
and in the same position (part 5).

Algorithm 8 builds a piece that holds all the area in the object that is left of a given piece
(see Fig. 4a). A similar procedure is done to build a piece containing all the area below a
given piece (see Fig. 4b). Algorithm 9 computes the distance by which a point can reach
horizontally a segment. An analogous procedure finds a vertical distance from a point to a
given segment.

Algorithms 8 and 9 are needed when executing Algorithm 10 which computes the dis-
tance that a given piece can be moved to the left avoiding collision against other pieces in
the object and without exceeding the object limits. A similar procedure was implemented in
this investigation to find how much a given piece can be moved down. The implementation
of this algorithm is basic for bottom-left moves that take place in all placement heuristics
(Sect. 6.2).

Algorithm 11 returns the distance in which two segments coincide. This algorithm consti-
tutes the basis for implementing the heuristic called Constructive Approach with Maximum
Adjacency (Sect. 6.2).
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Algorithm 8 Builds a piece containing all the area at the left of a given piece

Input: A piece P.

Output: A piece whose area is the same that the left area of P.
1: Find (x1, y1), the vertex at the top of P which is leftmost [point A in Fig. 4a].
2: Find (x,, y»), the vertex at the bottom of P which is leftmost [point D in Fig. 4a].
3: return the piece comprised by the following vertices:

4: (x1, y1)

5: ©,y1)

6: (07 Y2)

7: (x2, y2) and

8: all vertices in P between (x,, y,) and (x1, y;)

Algorithm 9 Computes the horizontal distance from a point to a given segment. Distance is
zero if the point is along the segment. Distance is positive if the point is in the right of the
segment. Otherwise it is negative
Input: A point (x, y) and a segment defined by points (x;, y;) and (x2, y»).
Qutput: The horizontal distance from (x, y) to the segment defined by (x;, y;) and (x3, y;).
1. if(y <y and y < y;) or (y > y; and y > y,) then
2 return ‘The point does not reach horizontally the segment’
3: if (y=y; and y = y;) and (x > x; and x > x;) then
4:  return min(x — xy, X — X;)
5: if (y =y, and y = y;) and (x < x; and x < x;) then
6
7
8
9

: return —min(x; — x, xp — x)
: if (y = y; and y = y,) then
return 0
. else
10:  return x —x; + (x; — x2)(y1 — ¥)/(y1 — y2)

Algorithm 10 Computes the distance that a given piece can be moved to the left without
overlapping other pieces and without exceeding the object limits

Input: A piece P and the other pieces that are inside the same object.
Output: The distance that P can be moved to the left.
1: Build piece P’ whose area is the same that area at the left of P [Algorithm 8 and Fig. 4al.
2: Find the set S containing all pieces in the object that intersect or are inside P’ but do
not intersect nor are inside P.
3: m < minimum x-coordinate of P
4: if S is empty then
5:  return m
6: for all vertices i of P do
7. for all edges j of all pieces in the object do
8 if vertex i reaches edge j projecting to the left then
9: d < distance from vertex i to edge j [Algorithm 9]
10: if d < m then
11: m<«d
12: return m
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Algorithm 11 Measures the distance in which two segments coincide

Input: The two finite segments S; and S;.
Output: The distance in which S; and S, coincide.

4
5
6: return O
7
8
9

1: if lowest end of S is above upper end of S, OR lowest end of S, is above upper end of
S| then

2:  return 0
3: if leftmost end of S is right of the rightmost end of S, OR leftmost end of S, is right of

the rightmost end of S; then
: return 0
. if slope of S # slope of S, then

. if y-intercept of S; # y-intercept of S, then
: return O [segments are parallel]
. if S| and S, are both horizontal then

10:  p; < rightmost point out of the leftmost ends of S; and S,.

1:  p, < leftmost point out of the rightmost ends of S; and S,.

12:  return distance from p; to p,

13: else

14:  p; < upper point out of the lowest ends of S| and ;.
15:  p, < lowest point out of the upper ends of S; and S,.

6:  return distance from p; to p;

6 Experiments and results

This section describes how the DJD is tested against seven other selection heuristics com-
bined with four different placement heuristics. Characteristics of the problem instances are
given as well as a way to measure the quality of the solution.

6.1 The other selection heuristics

The selection heuristics used for comparison against DJD are:

1.

First Fit (FF). Considers the open objects in the order they were initially opened, and

places the next piece in the first object where it fits. If the piece does not fit in any open

object, a new object is opened to place it. Pieces are processed in the order they are
presented in the instance being solved. This heuristic considers all partially filled objects
as candidates for the next piece to be packed.

. First Fit Decreasing (FFD). Sorts pieces by decreasing area, and places the pieces ac-
cording to FF.

. First Fit Increasing (FFI). Sorts pieces by increasing area, and places the pieces accord-
ing to FF.

. Filler. Sorts the pieces in order of decreasing area and packs as many pieces as possible
within the open object. When no single piece can be placed in the open object, a new
object is opened to continue packing the pieces from largest to smallest. This heuristic
works with one open object at a time.

. Best Fit (BF). Considers the open objects in the increasing order of free area, and places

the next piece in the first object where it fits, that is, in the object that leaves minimum

waste. If the piece does not fit in any open object, a new object is opened to place it.
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Fig. 5 Bottom-left heuristic for
irregular pieces
(Terashima-Marin et al. 2010)
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Pieces are processed in the order they are presented in the instance being solved. This
heuristic considers all partially filled objects as candidates for the next piece to pack.

6. Best Fit Decreasing (BFD). Same as the previous heuristic, but sorts the pieces by de-
creasing area.

7. Worst Fit (WF). Same as heuristic BF but places the piece in the open object where it
worst fits (that is, in the object with the largest available room).

Notice that the first part of DJD, when an object is filled until one-third, corresponds to
the FFD heuristic. These seven heuristics are all the single-pass selection heuristics that we
could get in the literature for the offline BPP. These selection heuristics are mainly associated
with rectangles in the literature (Hopper and Turton 2002; Ross et al. 2002; Terashima-Marin
et al. 2006). To implement them with irregular shapes we need to employ adequate functions
for shape movement and feasibility check (Sect. 5).

6.2 The placement heuristics

Once a piece and an object are selected, the placement heuristic states the way in which the
piece is located inside the object. Two different placement heuristics could arrive to different
conclusions as to whether a piece can or cannot be placed inside the object, and about the
piece’s final coordinates. We consider four placement heuristics that work in combination
with the selection heuristics:

1. Bottom-Left (BL). This is the best known heuristic of its type. The piece starts at the top
right hand corner of the object and it slides down and left with a sequence of movements
until no other movement is possible (see Fig. 5). If the final position does not overlap
the object boundaries, the piece is placed in that position. The heuristic does not allow
a piece to skip around another placed piece. The performance of this heuristic greatly
depends on the initial ordering of the pieces (Dowsland et al. 1998, 2002). Its advantage
lies in its speed and simplicity.

2. Constructive Approach (CA). This heuristic is based on the work presented by (Hifi and
M’Hallah 2003). The heuristic starts by placing the first piece at the bottom-left of the
object. Then, for each placed piece five alternative positions are computed and stored in
alist: (x,0), (0,y), (x,y), (x,¥y) and (x, y), where x, x, ¥y, and y are the maximum and
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Fig. 6 Positions to be
considered in the Constructive

Approach (Terashima-Marin ©.» (x.5) ¥
etal. 2010) I y ¢
JEP
(%0)
Fig. 7 Constructive Approach
Heuristic (Terashima-Marin et al. —/ 74
2010)

(a) (b)

(c) (d)

minimum coordinates in x and y (see Fig. 6). Given that some positions might coincide,
each position appears only once in the list. In our implementation, the four corners of the
object (the large sheet of stock material) were also added as candidate positions. From
each position in the list, the next piece slides vertically and horizontally following down
and left movements as shown in Fig. 7. Positions with overlapping pieces, or exceeding
the object dimensions, are discarded. Among the remaining positions, the most bottom-
left position is chosen. Using the corners as a departure point to slide the piece bottom
and left, allows the method to reach certain gaps between pieces, which would not be
reachable if only the five initial positions were considered.

3. Constructive Approach (Minimum Area) (CAA). This is a modification of the previ-
ous heuristic. The variation consists of selecting the best position from the list based on
which one yields the bounding rectangle with minimum area, containing all pieces, and
that fits in the bottom left hand corner of the object. The bounding rectangle area is com-
puted with the product of the maximum horizontal coordinate and the maximum vertical
coordinate of all pieces already placed plus the new piece to be located in the proposed
position. Figure 8 shows the rectangle with minimum area for two different positions for
a single piece. This criterion was chosen based on the idea of selecting a point with which
all pieces, not only the last piece, are deepest (bottom and left).

4. Constructive Approach (Maximum Adjacency) (CAD). This heuristic is partially
based on the approach suggested by Uday et al. (2001). However, when the first piece is
to be placed, our implementation considers only the four corners of the object. For the
subsequent pieces, the possible points are the same as those in the constructive approach
(CA, listed as our second placement heuristic), described above. Each position in the
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Fig. 8 Candidate rectangles
when locating a piece
(Terashima-Marin et al. 2010)

N N
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list is evaluated twice: the piece starts in the initial position and its adjacency (i.e., the
common boundary between its perimeter and the placed pieces and the object edges) is
computed. Then, the piece is slid down and left and the adjacency is computed again.
The position with the largest adjacency is selected as the position of the new piece.

Placement is the most time-consuming procedure in building a solution because the ge-
ometric algorithms from Sect. 5 have to be performed many times in every attempt. For
example, consider that we have an object with some placed pieces and we want to place a
new piece employing the BL heuristic. We start placing the new piece at the top right hand
corner of the object and computing the distance that the piece can slide downwards. This
distance is the minimum of all distances among all new piece vertices and all the edges of
the placed pieces. The sliding operations downwards and leftwards may be performed sev-
eral times until the new piece reaches its definite position and then a validation is performed
to check if the final position does not exceed the object limits. Otherwise we say that the
heuristic fails to place the new piece in the given object. The CA, CAA and CAD heuristics
involve finding several final positions and then selecting the best valid position according
to the given criteria for each heuristic. Several attempts to place a piece may be executed
before one piece succeeds. A new object is opened only when all the remaining pieces fail
to fit into the current object.

For the last listed three placement heuristics: CA, CAA and CAD, the algorithm rotates
each piece by multiples of 90 degrees and chooses the rotation that is better according to
each heuristic criterion. For the first heuristic, BL, no rotation is considered, since BL does
not choose among several possible positions as the other three placement heuristics do. Our
empirical study explored all combinations of selection and placement heuristics with each
of the available instances.

6.3 Description of instances

The benchmark instances in our study were produced by the generator proposed by
Terashima-Marin et al. (2010). The generated pieces are convex irregular polygons with
a number of sides between 3 and 8. A total of 540 instances were generated within 18 dif-
ferent types. For each generated instance, the order of all the pieces is randomized before
writing the list of pieces. Their characteristics are listed in Tables 1 and 2. The optimum
solution in all instances, except type G, is achieved only when all objects are filled up to
100 %. Objects for all instances are squares.

The instance set contains a wide variety of feature values (see Table 2). For example,
there are instances whose pieces have an average size of 1/30 of the object, while other
instances have huge pieces (averaging 1/3 of the object size). Average piece rectangularity
goes from 0.35 to 1 along the 540 instances. Rectangularity is a quantity that represents the
proportion between the area of a piece and the area of a horizontal rectangle containing it.
This measure depends on the original orientation of the piece which is given by the particular
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Table 1 Description of problem instances

Type Objects Pieces Num. of Optimal
side instances (num. of objects)

A 1000 30 30 3

B 1000 30 30 10

C 1000 36 30 6

D 1000 60 30 3

E 1000 60 30 3

F 1000 30 30 2

G 1000 36 30 <15

H 1000 36 30 12

1 1000 60 30 3

J 1000 60 30 4

K 1000 54 30 6

L 1000 30 30 3

M 1000 40 30 5

N 1000 60 30 2

(¢} 1000 28 30 7

P 1000 56 30 8

Q 1000 60 30 15

R 1000 54 30 9

Total 540

instance to solve. The lower the rectangularity, the more irregular the pieces are. As one can
see in Table 2, instances of type I have a rectangularity value of 1 which means that all of
these instances are rectangular.

6.4 Measure of performance

The quality of a solution, produced by any pair of selection and placement heuristics for a
given instance, is based on the percentage of usage for each object, given by:

Zz{v=01 Ui2
N,

where N, is the total number of objects used and U; is the fractional utilization for each
object i. This measure of fitness rewards objects that are filled completely or nearly so, and
avoids the problem of too many ties among different heuristics that occur when performance
is measured by the number of objects used.

f= (@)

6.5 Results

The value of the waste incremental w is an important choice in the DJD heuristic. As ob-
served experimentally in our instance set, if the waste incremental is set to w = 1, many
1-unit increments occur during the solution construction at a high computational cost with-
out placing any single piece. We empirically found that a waste incremental of one-twentieth
of the total object area is a good balance between fast and good solutions. Increments lower
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Table 2 Characteristics of problem instances

Average Piece area Average Percentage Percentage of
piece standard rectan- of right vertical/horizontal
area deviation gularity angles sides

Minimum 0.033 0.014 0.35 11 34

Total average 0.154 0.100 0.68 42 65

Maximum 0.354 0.280 1 100 100

Average of instances per type

A 0.100 0.069 0.70 42 68
B 0.333 0.162 0.87 67 84
C 0.167 0.124 0.68 36 63
D 0.050 0.036 0.57 23 51
E 0.050 0.035 0.41 12 38
F 0.067 0.050 0.59 29 57
G 0.332 0.156 0.87 67 83
H 0.333 0.158 0.86 67 83
I 0.053 0.017 1 100 100
J 0.067 0.034 0.83 68 83
K 0.154 0.150 0.63 34 60
L 0.100 0.075 0.51 23 50
M 0.125 0.102 0.55 28 55
N 0.033 0.024 0.62 32 60
o 0.250 0.223 0.57 27 58
P 0.143 0.173 0.49 18 43
Q 0.250 0.053 0.89 51 76
R 0.167 0.153 0.63 36 62

than w = 1/20 of the object total size have a high computational cost, without a significant
improvement in fitness, while increments higher than w = 1/20 of the object size lead to
inferior results.

We explored the phenomenon of a piece that cannot fit into an object and it later fits (when
there are one or more pieces in the object). This is rare for placement heuristics CA, CAA
and CAD. Therefore, in this case, trying to fit pieces after they have failed to be placed,
increases the running time. Results may be slightly better (or worse) in some cases, but
generally speaking, the small improvement does not pay the huge excess of processing time
(although this would depend on the particular application). For the BL placement heuristic
this phenomenon is less rare. Hence, when using BL in combination with any selection
heuristics, a record of pieces that fail to be placed is kept until a piece is successfully placed.
After that, the records are cleaned.

We explored four different initial levels of fullness before trying to place combinations
of pieces within an allowed waste, namely, 1/4, 1/3, 1/2 and 2/3. DJD heuristics with these
levels are referred to as DJD, 4, DID; 3, DJD;, and DJID, 3, respectively. Along with the 7
selection heuristics described above, we have 11 different selection heuristics overall.

All instances were solved with all heuristics (11 selection heuristics x 4 placement
heuristics = 44 ways to solve a given instance). Figure 9 shows the solution of an instance
type C with the selection heuristic DJD; /3 and the placement heuristic CAD.
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Fig.9 DJDj/3 in combination r

with CAD heuristic solves an e
instance of type C. This solution
gets one more object than the
optimal solution in which there
would be zero waste. In this
solution, fitness is 0.776 7
measured with Eq. (2) e

I~

Table 3 Average fitness for all the combinations of selection and placement heuristics over the 540 instances

Selection heuristics

Placement FF FFD FFI Filler BF BFD WF DIJD DJD DID DID Average

heuristics 1/4 1/3 1/2 2/3

BL 0.347 0.422 0.302 0426 0.348 0.423 0.306 0.485 0.472 0.435 0429 0.400
CA 0439 0.563 0.352 0.569 0.437 0.564 0.385 0.583 0.583 0.566 0.563 0.510
CAA 0436 0.560 0.350 0.567 0.438 0.562 0.373 0.574 0.576 0.561 0.562 0.505
CAD 0.501 0.648 0.383 0.650 0.501 0.650 0.421 0.682 0.683 0.653 0.649 0.584

Average 0.431 0.548 0.347 0.553 0.431 0550 0.371 0.581 0.578 0.554 0.551 0.500

Table 3 shows the average fitness for every possible combination of selection and place-
ment heuristics along the 540 instances. Two variants of the DJD heuristic, DID;,3 and
DID 4, outperformed the other selection heuristics tried. The best combination of selection
and placement heuristic is DJD, ;3 + CAD, closely followed by DJD,,4 + CAD. The place-
ment heuristic CAD is clearly the best regardless of which selection heuristic it is paired
with. For the different variations of the DJD tried, DJD, 4 is the best when used along with
the BL and CA placement heuristics and DJD, 3 is the best when used along with the CA,
CAA and CAD placement heuristics. Therefore, we found that the one-third of the object
capacity for the initial fullness before trying different combinations of pieces, as stated by
the original version of the DJD for 1D BPP, is also suitable for the 2D irregular BPP.

For all the problem instances types from A to R, the CAD heuristic produced better aver-
age performance when combined with all the selection heuristics. Table 4 shows the average
fitness obtained by all the selection heuristics with the CAD placement heuristic. Results
are reported for the CAD placement heuristic only as it produced the best performance.
Type I and J are the only instance types where DJD,,3 outperformed all others, and type /
instances are the only ones where all pieces are regular (rectangles). Apart from type I,
type J instances have the highest percentage of right angles. It seems that DJD,,3 goes well
along with rectangles. All type Q instances are solved to optimally by DJD;, using CAD
placement heuristic, and 73 % of Q instances were solved to optimally by DID,,3 4+ CAD.
Optimum solutions of all type Q instances have exactly four pieces in each of 15 objects.
Several instances of types B, H and O are also solved to optimally by several variations of
DJD.

Table 4 shows that only four instance types (D, E, F and N) where solved better for a
heuristic different from DJD. These four instance types have an average of piece area below
one-tenth of the object area. As we hypothesized above, it seems that the DJD heuristic is

@ Springer



Ann Oper Res

Table 4 Average fitness obtained by all the selection heuristics when combined with the CAD placement
heuristic for each instance type. The best selection heuristic for each instance type is in bold font

Selection heuristics

Instance  FF FFD FFI Filler ~BF BFD  WF DJD DJD DID DID

type 1/4 1/3 172 2/3

A 0.486 0.600 0.371 0.601 0.491 0.600 0.379 0.598 0.596 0.605 0.599
B 0.606 0.753 0460 0.753 0.611 0.754 0.549 0.929 0.929 0.756 0.753
C 0.515 0.704 0.381 0.701 0.506 0.709 0421 0.751 0.763 0.723 0.702
D 0411 0.578 0.338 0.576 0410 0.579 0362 0.574 0.566 0.576 0.573
E 0.301 0.412 0.230 0411 0.298 0411 0.224 0.393 0.399 0403 0406
F 0.393 0493 0.279 0496 0.388 0.493 0.297 0491 0493 0493 049%4
G 0.592 0.707 0.448 0.707 0.601 0.708 0.520 0.814 0.814 0.708 0.707
H 0.603 0.747 0458 0.746 0.622 0.747 0518 0928 0.928 0.746 0.746
1 0.598 0.619 0.573 0.624 0.598 0.619 0.577 0.621 0.619 0.626 0.627
J 0.543 0.661 0.457 0.664 0.538 0.662 0462 0.652 0.659 0.660 0.665
K 0.541 0.709 0.385 0.713 0.526 0.710 0.447 0.706 0.718 0.700 0.708
L 0.349 0485 0.278 0494 0.347 0485 0290 0.512 0499 0.502  0.489
M 0.417 0.579 0.307 0.580 0.406 0.582 0.337 0.573 0.589 0.584 0.58
N 0.446 0495 0.290 0.503 0.445 0495 0371 0493 0493 0497 0499
(0] 0.537 0.791 0409 0.791 0.545 0.787 0.432 0.823 0.812 0.791 0.81
P 0.481 0.661 0.358 0.664 0483 0.662 0.396 0.678 0.678 0.663 0.657
Q 0.672 0942 0483 0943 0.670 0.972 0.558 0967 0977 1 0.946
R 0.533 0.724 0390 0.726 0.538 0.726 0442 0.771 0.753 0.725 0.723

Average 0.501 0.648 0.383 0.650 0.501 0.650 0.421 0.682 0.683 0.653 0.649

not intended for instances with many small pieces. DJD,;3 was the best heuristic for the
other two instance types in our data set (/ and J) with piece area average below 1/10 of the
object area.

We ran the algorithms on a Intel Core Duo 2.33 GHz PC. Computation times, measured
in seconds, are shown in Table 5. The first seven selection heuristics are listed in Table 5 from
fastest to slowest (left to right). All the combinations of selection and placement heuristics
produced results within reasonable time (below 10 seconds). However, the DJD variants
have longer running times. It was observed experimentally, for DID;,; + CAD, that there
is an average computational time reduction of 80 % when compared to the case where no
record is kept at all.

In order to assess the statistical significance of the results, we conducted the hypothesis
testing procedure called one-way repeated measures, ANOVA. We employed the solution of
each available instance with the eleven different selection heuristics (including the four vari-
ations of the DJD heuristic) in combination with the CAD placement heuristic. Considering
a sample size of 540 instances, we rejected the hypothesis that observed differences were
due to chance in at least a pair of heuristics (p-value < 0.0001, the Greenhouse-Geisser
correction was used because the assumption of sphericity has not been met). So, at least one
heuristic is significantly different from the others. In order to determine which heuristics
may be considered to be of similar performance and which not, we performed multiple pair-
wise comparisons with the Bonferroni adjustment and a significance level of 0.05. Figure 10
ranks the eleven selection heuristics considered and connects those that perform equivalently
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Table 5 Average computational time (in seconds) for all the combinations of selection and placement heuris-
tics over the 540 instances

Selection heuristics

Placement WF BF  FF FFI FFD BFD Filler DIJD DIJD DJD DJD Average

heuristics 1/4 1/3 12 2/3

BL 0.01 0.02 0.01 0.02 0.02 0.02 0.04 1.12 0.93 0.68 032 0.29
CA 041 076 0.83 0.85 120 1.18 5.77 10.04 9.72 7.83 6.61 4.11
CAA 044 081 080 0.86 1.12 1.22 545 9.89 9.54 7.89 6.62 4.06
CAD 047 095 094 090 133 142 6.18 12.52 1237 104 9.02 5.14

Average 033 063 064 066 092 09 436 840 814 670 564 340

DID;j
Filler
FFI WF BF FF BFD DIDy,
+ L L * L
FFD DID,;, DID
L - 7
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Average Fitness

Fig. 10 Comparison of means for the 11 heuristics considered, using the Bonferroni adjustment. DIDy /4
and DJD /3 are the better heuristics and there is not significant difference between them

according to the Bonferroni procedure. The FFI heuristic produced the overall lowest fitness,
and it is significantly different from the other heuristics. From lowest to highest fitness, the
next heuristic is WF; then, BF and FF form a group of similar heuristics since their fitness is
not significantly different. Two variations of the DJD heuristic (DJD,,3 and DJD, ;) along
with FFD, Filler and BFD perform in a similar way along the set of considered instances.
The heuristics DJD, /4 and DJD, 3 are the best, and are significantly different from the rest.
Although DID, 3 performs slightly better than DJD, 4, this difference is not statistically
significant.

7 Conclusions

This article proposed an adaptation, to the two-dimensional irregular bin packing problem,
of the Djang and Finch heuristic originally designed for the one-dimensional bin packing
problem. Four variants of the DJD heuristic (with initial fullness of 1/4, 1/3, 1/2 and 2/3,
before combinations of pieces are tried to be placed within an allowed waste) were explored
and compared with several alternative selection heuristics in the literature. Selection heuris-
tics need to be paired with a placement heuristic to completely solve packing problems.
Several placement heuristics were explored and the Constructive Approach with Maximum
Adjacency (CAD) was found to outperform the others in our study. Also, the value of the
waste incremental is an important choice in the DJD heuristic. We found, empirically, that
a waste incremental of one-twentieth of the total object area represents a good balance be-
tween fast and good solutions.
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An extensive empirical study was conducted over 540 irregular convex instances of dif-
ferent types and a wide range of characteristics. The proposed DJD heuristic was found
to statistically outperform the alternative selection heuristics. Moreover, the computational
time, although longer for the DJD variants is still within reasonable bounds, which was
achieved by a routine keeping appropriate records to reduce the amount of redundant com-
putation. The DJD variants with 1/4 and 1/3 initial fullness levels produced the best results.
Therefore, the one-third of the object capacity for the initial fullness before trying different
combinations of pieces, as stated by the original version of the DJD for the one-dimensional
case, is also suitable in two dimensions. For further research, we plan to test this adaptation
in instances with concave polygons which will increase the level of geometrical complexity.
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