Skip to main content
Log in

History-dependence in production-pollution-trade-off models: a multi-stage approach

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Multi-stage modeling provides powerful tools to study optimal switches between different technologies. In most of the related literature, however, it is assumed that the number of switches is a-priori fixed. In the present paper we allow for multiple optimally determined switches. Consequently, we are able to locate solution paths that not only lead to different long-run outcomes but also differ in the number of switches along these paths.

We present a simple production-pollution model in which a representative firm wants to maximize the profit gained out of production which, however, causes harmful pollution as by-product. The firm has the choice between two different technologies, one which is efficient in production but pollutive, and another one which is less efficient but environmentally friendly.

With this two stage-model we focus on the numerical investigation of the conditions determining when and how often it is optimal for the firm to switch between these different technologies. We show that for certain parameters even several switches can be optimal and that the height of the switching costs crucially influences the long-run outcome. In the course of these investigations, we discuss two different economic mechanisms related to the harm due to pollution which lead to the occurrence of multiple equilibria, history-dependence and so-called Skiba points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Acemoglu, D., Aghion, P., Bursztyn, L., & Hemous, D. (2012). The environment and directed technical change. American Economic Review, 102(1), 131–166.

    Article  Google Scholar 

  • Boucekkine, R., Saglam, H. C., & Vallée, T. (2004). Technology adoption under embodiment: a two-stage optimal control approach. Macroeconomic Dynamics, 8(2), 250–271.

    Article  Google Scholar 

  • Boucekkine, R., Krawczyk, J. B., & Vallee, T. (2011). Environmental quality versus economic performance: a dynamic game approach. Optimal Control Applications & Methods, 32(1), 29–46.

    Article  Google Scholar 

  • Boucekkine, R., Pommeret, A., & Prieur, F. (2012). Optimal regime switching and threshold effects: theory and application to a resource extraction problem under irreversibility (Working Papers 12-14). LAMETA, University of Montpellier.

  • Boucekkine, R., Pommeret, A., & Prieur, F. (2013). Technological vs ecological switch and the environmental Kuznets curve. American Journal of Agricultural Economics, 95(2), 252–260.

    Article  Google Scholar 

  • Brock, W., & Starrett, D. (2003). Managing systems with non-convex positive feedback. Environmental & Resource Economics, 26(4), 575–602.

    Article  Google Scholar 

  • Bultmann, R., Caulkins, J. P., Feichtinger, G., & Tragler, G. (2008). Modeling supply shocks in optimal control models of illicit drug consumption. In Lecture notes in computer science: Vol. 4818. Large-scale scientific computing (pp. 285–292).

    Chapter  Google Scholar 

  • Cassou, S. P., & Hamilton, S. F. (2004). The transition from dirty to clean industries: optimal fiscal policy and the environmental Kuznets curve. Journal of Environmental Economics and Management, 48(3), 1050–1077.

    Article  Google Scholar 

  • Caulkins, J. P., Feichtinger, G., Grass, D., Hartl, R. F., Kort, P. M., & Seidl, A. (2013). When to make proprietary software open source. Journal of Economic Dynamics & Control. doi:10.1016/j.jedc.2013.02.009.

    Google Scholar 

  • Chevallier, J., Etner, J., & Jouvet, P.-A. (2011). Bankable pollution permits under uncertainty and optimal risk management rules: theory and empirical evidence. Research in Economics, 65(4), 332–339.

    Article  Google Scholar 

  • Cohen, M. A., & Konar, S. (2000). Why do firms pollute (and reduce) toxic emissions? Available at SSRN. http://ssrn.com/abstract=922491 or http://dx.doi.org/10.2139/ssrn.922491.

  • Cunha-e Sá, M. A., Leitão, A., & Reis, A. B. (2010). Innovation and environmental policy: clean vs. dirty technical change (FEUNL Working Paper Series wp548). Lisbon: Universidade Nova de Lisboa, Faculdade de Economia.

    Google Scholar 

  • El Ouardighi, F., Benchekroun, H., & Grass, D. (2011). Controlling pollution and environmental absorption capacity. Annals of Operations Research. doi:10.1007/s10479-011-0982-4.

    Google Scholar 

  • Forster, B. A. (1975). Optimal pollution control with a nonconstant exponential rate of decay. Journal of Environmental Economics and Management, 2, 1–6.

    Article  Google Scholar 

  • Forster, B. A. (1977). On a one state variable optimal control problem. In J. D. Pitchford & S. J. Turnovsky (Eds.), Applications of control theory to economic analysis (pp. 35–56). Amsterdam: North-Holland.

    Google Scholar 

  • Goeschl, T., & Perino, G. (2007). Innovation without magic bullets: stock pollution and R&D sequences. Journal of Environmental Economics and Management, 54, 146–161.

    Article  Google Scholar 

  • Grass, D., Caulkins, J., Feichtinger, G., & Tragler, G. (2008). Optimal control of nonlinear processes: with applications in drugs, corruption, and terror. Berlin: Springer.

    Book  Google Scholar 

  • Grass, D., Hartl, R. F., & Kort, P. M. (2012). Capital accumulation and embodied technological progress. Journal of Optimization Theory and Applications, 154(2), 588–614.

    Article  Google Scholar 

  • Hediger, W. (2009). Sustainable development with stock pollution. Environment and Development Economics, 14(06), 759–780.

    Article  Google Scholar 

  • Heijdra, B. J., & Heijnen, P. (2009). Environmental policy and the macroeconomy under shallow-lake dynamics (CESifo Working Paper Series 2859). CESifo Group Munich.

  • Helfand, G. E. (1991). Standards versus standards: the effects of different pollution restrictions. American Economic Review, 81(3), 622–634.

    Google Scholar 

  • Henriques, I., & Sadorsky, P. (1996). The determinants of an environmentally responsive firm: an empirical approach. Journal of Environmental Economics and Management, 30(3), 381–395.

    Article  Google Scholar 

  • Keeler, E., Spence, M., & Zeckhauser, R. (1972). The optimal control of pollution. Journal of Economic Theory, 4, 19–34.

    Article  Google Scholar 

  • Lange, A., & Moslener, U. (2004). A bird in the hand is worth two in the bush? When do we prefer something certainly dirty to something perhaps clean? Journal of Risk and Uncertainty, 29, 35–51.

    Article  Google Scholar 

  • Makris, M. (2001). Necessary conditions for infinite-horizon discounted two-stage optimal control problems. Journal of Economic Dynamics & Control, 25(12), 1935–1950.

    Article  Google Scholar 

  • Mäler, K., Xepapadeas, A., & de Zeeuw, A. (2003). The economics of shallow lakes. Environmental & Resource Economics, 26(4), 603–624.

    Article  Google Scholar 

  • Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. London: Oxford University Press.

    Google Scholar 

  • Nahorski, Z., & Ravn, H. (2000). A review of mathematical models in economic environmental problems. Annals of Operations Research, 97, 165–201. doi:10.1023/A:1018913316076.

    Article  Google Scholar 

  • Pearce, D. (1976). The limits of cost-benefit analysis as a guide to environmental policy. Kyklos, 29(1), 97–112.

    Article  Google Scholar 

  • Plourde, C. G. (1972). A model of waste accumulation and disposal. Canadian Journal of Economics, 5, 119–125.

    Article  Google Scholar 

  • Prieur, F. (2009). The environmental Kuznets curve in a world of irreversibility. Economic Theory, 40(1), 57–90.

    Article  Google Scholar 

  • Rauscher, M. (2009). Green R&D versus end-of-pipe emission abatement: a model of directed technical change. In Thünen-series of applied economic theory (Vol. 106). Germany: University of Rostock, Institute of Economics.

    Google Scholar 

  • Saglam, C. (2011). Optimal pattern of technology adoptions under embodiment: a multi-stage optimal control approach. Optimal Control Applications & Methods, 32(5), 574–586.

    Article  Google Scholar 

  • Stimming, M. (1999). Capital accumulation subject to pollution control: open-loop versus feedback investment strategies. Annals of Operations Research, 88, 309–336. doi:10.1023/A:1018994716675.

    Article  Google Scholar 

  • Tahvonen, O., & Salo, S. (1996). Nonconvexities in optimal pollution accumulation. Journal of Environmental Economics and Management, 31(2), 160–177.

    Article  Google Scholar 

  • Tahvonen, O., & Withagen, C. (1996). Optimality of irreversible pollution accumulation. Journal of Economic Dynamics & Control, 20(9), 1775–1795.

    Article  Google Scholar 

  • Tomiyama, K. (1985). Two-stage optimal control problems and optimality conditions. Journal of Economic Dynamics & Control, 9(3), 317–337.

    Article  Google Scholar 

  • Tomiyama, K., & Rossana, R. J. (1989). Two-stage optimal control problems with an explicit switch point dependence: optimality criteria and an example of delivery lags and investment. Journal of Economic Dynamics & Control, 13(3), 319–337.

    Article  Google Scholar 

  • Vallée, T., & Moreno-Galbis, E. (2011). Optimal time switching from tayloristic to holistic workplace organization. Structural Change and Economic Dynamics, 22(3), 238–246.

    Article  Google Scholar 

  • Wagener, F. O. O. (2003). Skiba points and heteroclinic bifurcations, with applications to the shallow lake system. Journal of Economic Dynamics & Control, 27(9), 1533–1561.

    Article  Google Scholar 

  • Xepapadeas, A. P. (1992). Environmental policy, adjustment costs, and behavior of the firm. Journal of Environmental Economics and Management, 23(3), 258–275.

    Article  Google Scholar 

  • Xepapadeas, A. (2005). Economic growth and the environment. In K. G. Mäler & J. R. Vincent (Eds.), Handbook of environmental economics (Vol. 3 pp. 1219–1271). Amsterdam: Elsevier. Chapter 23.

    Google Scholar 

Download references

Acknowledgements

We thank Franz Wirl, Alexia Fürnkranz-Prskawetz, Dieter Grass, Richard Hartl, Anastasios Xepapadeas, Peter Kort and Michael Rauscher for discussion and remarks. Further on, we thank the editors and referees for their valuable comments. This research was supported by the Austrian Science Fund (FWF) under Grant P21410-G16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Moser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, E., Seidl, A. & Feichtinger, G. History-dependence in production-pollution-trade-off models: a multi-stage approach. Ann Oper Res 222, 457–481 (2014). https://doi.org/10.1007/s10479-013-1349-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1349-9

Keywords

Navigation