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Abstract

In network interdiction problems, evaders (e.g., hostile agents or data packets) are moving through

a network toward targets and we wish to choose locations for sensors in order to intercept the

evaders. The evaders might follow deterministic routes or Markov chains, or they may be reactive,

i.e., able to change their routes in order to avoid the sensors. The challenge in such problems is to

choose sensor locations economically, balancing interdiction gains with costs, including the

inconvenience sensors inflict upon innocent travelers. We study the objectives of (1) maximizing

the number of evaders captured when limited by a budget on sensing cost and, (2) capturing all

evaders as cheaply as possible.

We give algorithms for optimal sensor placement in several classes of special graphs and hardness

and approximation results for general graphs, including evaders who are deterministic, Markov

chain-based, reactive and unreactive.

A similar-sounding but fundamentally different problem setting was posed by Glazer and

Rubinstein where both evaders and innocent travelers are reactive. We again give optimal

algorithms for special cases and hardness and approximation results on general graphs.
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1 Introduction

In network interdiction problems, one or more evaders (e.g., smugglers or terrorists, or

hostile data packets) travel through a network, beginning at some initial locations and

attempting to reach some targets. Our goal is to stop them. We do so by placing sensors on

nodes in hopes that most or all of the evaders will pass by a sensor and thus be captured (or

intercepted) before reaching their destinations (formal problem definitions are given in the

“Preliminaries” section below).
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We take as a given the evader movement dynamics, which may be either deterministic (each

evader specified by a route from source to target) or stochastic, e.g. each evader specified by

a Markov chain whose states are the nodes of the network. Evader ei induces a subgraph Gi

⊆ G in which she roams, according to the probabilities specified by her Markov chain. An

unreactive or oblivious evader [15] behaves the same regardless of the choice of sensor

locations (or interdiction sites), and so her set of possible routes can be construed as objects

we wish to pierce. In contrast, the reactive evader observes the locations of the sensors and

can change her motion.

We try to make economical use of the sensors—i.e., to balance the benefits of security (the

interdiction of many or all evaders) with the total cost (widely defined) of doing so. The cost

of placing a sensor at a given node can incorporate the cost of the device itself, the effort or

danger involved in performing the placement, and the inconvenience it causes to any

innocent travelers subjected to it. If traffic flow estimates on the graph’s edges are known

for both evaders and innocent travelers, then it is natural to try to place sensors where they

will intercept many evaders but inconvenience few innocents. If a sensor acts as a

checkpoint, capturing the evaders but examining and then letting pass the innocents, then the

inconvenience cost can be incorporated directly into the node’s sensor placement cost since

placing two sensors on an innocent’s path inconveniences her twice. In this model we study

two natural objectives: (1) maximizing the (expected, weighted) number of evaders captured

while respecting a budget on sensing cost, and (2) capturing all evaders (with probability 1)

as cheaply as possible. In the latter case evaders may be reactive, i.e., able to observe the

sensor locations and choose a different path in Gi. Regardless, ei is guaranteed to be

captured only if her target node is separated from all her source nodes within subgraph Gi.

By “separated” we mean that all paths of ei of positive probability pass at least one sensor

(see Preliminaries below). We solve these problems optimally in several special graph

settings and give hardness and approximation results in general settings.

In contrast, allowing the innocents to react to sensor locations changes the character of the

problem significantly. In this setting we study a special case of the problem (suggested by

Glazer and Rubinstein [12]) where there are a collection of bridges crossing a river, with

each traveler p restricted to using some set σ(p) of bridges (because of p’s preferences or

geography, say), and the task is to decide which bridges to open and close. This can be

viewed as a special case of our network setting in which every travel path is of length 2 but

with the restriction that sensors cannot be placed on a traveler’s start node (see Fig. 1). Note

that in this special case, sensors can also be viewed as roadblocks, in the sense that placing a

sensor on a node effectively means deleting the node from the network for evader and

innocent alike.

An instance of the bridges problem is specified by a set system with realvalued elements that

may be either positive or negative, corresponding to the value or cost (respectively) of

capturing evaders or blocking innocents. Several possible objective functions could be

considered, such as capturing all evaders while blocking as few innocents as possible or

capturing as many evaders as possible given a budget allowing a certain number of blocked

innocents. We obtain approximation results for several versions of this problem.
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Preliminaries

Given is a directed graph G(V, E) with ∣V∣ = n unless otherwise noted, used by travelers of

two types: evaders (or bads) and innocents (or goods). (These terms are used

interchangeably.) Each person p can travel within some subgraph Gp ⊆ G. Depending on the

setting, sensors can be placed on nodes or edges to capture the flow passing through. All the

sensors are placed before the moves of the reactive persons. A person p’s Markov chain

determines the probability weight fp,v of p’s traffic through each node v. If oblivious, p is

unable to shift her flow fp,v from the path going through v to some other path, so placing a

sensor at v captures all of fp,v (or at least whatever portion of it was not captured upstream).

In some settings we assume all innocents, all evaders, or both are oblivious, as discussed

below.

We emphasize that reactive indicates a two-stage setting in which all the sensors are placed

and then p can choose an unblocked path in Gp if one exists. We also emphasize that person

p is restricted to subgraph Gp regardless of whether p is oblivious or reactive, an evader or

an innocent.

Edge and Node Interdiction—In edge interdiction, sensors are installed on edges and

are represented by a matrix of decision variables r: ruv = 1 if (u, v) has a sensor placed at it

(with cost cuv) and ruv = 0 otherwise. If an evader crosses an edge with a sensor she is

detected with probability 1. In node interdiction, placing a sensor on node u (with cost cu)

means setting ruv = 1 for every edge (u, v), that is, interdicting all evaders leaving u. A

sensor on a target node does not protect that node itself but will stop evaders as they pass

through it.

The node and edge settings are equivalent in general, directed graphs with location-varying

costs, in the sense that a problem in one setting can be transformed into the other [15].

Oblivious Evaders—An evader is specified in terms of the probabilities of her taking

various routes, where a route is a walk (possibly containing cycles) ending at a target node.

A Markovian evader is represented by a Markov chain given by an initial source distribution

a over nodes and a transition probability matrix M. The matrix M has the property that a

specified target node t is a killing state: upon reaching t the evader is removed from the

network. Under mild restrictions on the Markov chain (such as, t is an absorbing state), the

probability of capturing the evader as a function of r can be expressed in closed form [15]:

(1)

where the symbol ☉ indicates element-wise (Hadamard) multiplication. This formulation

generalizes to a setting of multiple simultaneous evaders, each realized with probability we,

or equivalently having weight wi > 0 representing the importance of capturing her. The

probability of capturing ei is denoted by Ji(r).

Definition 1: An evader ei is specified by a (Mi, ai) pair. Evader ei is deterministic if from

each of her possible starting nodes, Mi specifies a single next node with probability 1, and is
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nondeterministic (or stochastic) otherwise. In both cases, ai may specify multiple starting

points with positive probability.

Budgeted Interdiction (BI)—The BI objective is to capture as many evaders as possible,

given a budget on sensors. More precisely, suppose we have a bound on the number of

nodes we can monitor (or on their total cost, with costs always scaled to be integral). Any

choice of some subset of nodes to observe determines a probability that a given evader will

be captured (i.e., that she will pass through at least one observed node) prior to reaching her

target t. The task in Budgeted Interdiction is to maximize the expected (weighted) number of

evaders interdicted, subject to a budget B on sensor costs:

The special case of BI where evaders follow unreactive Markov chains is termed the

Unreactive Markovian Evader (UME) interdiction problem [15].

Full Interdiction (FI)—This problem seeks a minimum-cost set of nodes to observe in

order to capture all of the evaders with probability one.

Interdiction with reactive evaders and innocents—In this setting the graph is

traversed by both evaders (“bads”) and innocent travelers (“goods”). Both types of users are

reactive, which means that a traveler p is captured only if all her paths within Gp from

source nodes to target node have received a sensor placed on some node prior to the target;

otherwise, she succeeds. The interdiction policy here aims to find the optimal balance

between allowing the goods to pass and blocking passage to the bads.

We focus on a special variant termed the Bridges Problem, where each path from the source

to target passes through exactly one other node, termed bridge. We use n to denote the

number of bridges and σ(p) the set of bridges accessible to user p. A weight  assigned to

each person (positive for bads, negative for goods).

One possible formulation is to minimize the total error: the weighted number of bads

crossing and goods unable to cross. To to be precise, let N and D indicate the sets of goods

the bads, respectively, and let binary variables xp = 1 indicate p’s success and ys = 1 indicate

that bridge s is open. To minimize the total error we solve:

In this formulation the constraints implement the requirement that a traveler p will cross if

and only if at least one of her bridges is open.
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More generally, we use TP, FP, TN, FN to indicate the weighted numbers of true positives

(bads failing to cross), false positives (goods failing), true negatives (goods succeeding), and

false negatives (bads succeeding), respectively. The above minimal error formulation is

expressed as minimization of FP + FN, and we will explore other combinations like

maximization of net flow: TN − FN. We denote the total weight of goods and bads as WN =

FP + TN and WD = TP + FN, respectively. In general capturing the bads might have, for

example, disproportionally large weight.

Contributions

With oblivious evaders and innocents, we solve the budgeted problem optimally in path and

cycle graphs (Sec. 2). With oblivious innocents (and evaders either oblivious or not), we

solve the full interdiction problem optimally in paths, cycles, and trees.

In general graphs, we give hardness results including showing that the budgeted problem is

NP-hard with even one Markovian evader (Thm. 7). In contrast, we show that full

interdiction with a single evader is in P. (Sec. 3) The problem remains hard with two or

more evaders even when the evaders follow acyclic paths (Thm. 6). This stems from an

unexpected connection to 4-colorability. With m possible evader paths, the problem is Hm-

approximable (Cor. 1, where , which is essentially optimal, given certain

complexity-theoretic assumptions.

When both evaders and innocents are reactive, we optimally solve a special case in which

the graph and travelers’ sets of paths can be represented by bridges and convex bridge sets,

respectively (Sec. 4). We also show that FP + FN is approximable with factor one plus the

maximum size of any innocent’s bridge set (Thm. 9).

The following table summarizes the key results. For brevity, we state only the key

hypotheses and use the abbreviations S for stochastic, D for deterministic, FI for Full

Interdiction and BI for budgeted interdiction. Node and edge interdiction often, but not

always, have similar complexity [15].

Setting Result Existing work

Path graph
S FI on nodes is O(n log n)
D BI on nodes is O(Bnm)
S BI on nodes is O(Bn2m)

O(n log OPT)
[20, 27]
-
-

Tree graph S FI on nodes is O(n3) Related [13, 25]

Arbitrary graphs
FI on edges of Markov evader is in P

BI is NP-hard with 1 evader
BI is NP-hard with 2 acyclic evaders

-
q evaders [15]
ibid.

Bridges
Convex case is O(n3)

Minimal error case is approximable
Net flow case is hard to approx. beyond n1−∊

new formulation
-
-

Related Work—The problems analyzed here belong to a large class of discrete

optimization problems, collectively termed Network Interdiction [4, 14, 24, 28]. They are
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motivated by applications such as supply chains, electronic sensing, and counter-terrorism

and relate to classical optimization problems like Set Cover and Max Coverage. Our setting

of budgeted interdiction with deterministic evaders on the path graph can be solved by a

complicated algorithm given by [25], but we present a much simpler algorithm. Recent work

on Set Cover with submodular costs [18,22] applies to some of our settings. Interdiction on

paths is closely-related to the literature on box stabbing (see e.g. [27] and approximation

algorithms [10]). Previous work on the Unreactive Markovian Evader (UME) interdiction

problem (maximizing the expected number of Markov chain-based evaders captured with B

sensors) showed that it is -approximable by the natural greedy algorithm [15], which is

the optimal approximation factor (we prove this for completeness in Proposition 2).

Other evader models have been studied such as the Most Vital Nodes Problem, in which the

task is to delete a set of nodes in order to maximize the weight of the shortest path from

source to destination [2, 4] or to decrease the maximum flow [16, 29], both of which could

be construed as frustrating an evader’s progress. Such evaders are reactive in the sense that

the routes they take are modified based on the set of available edges or nodes. In [14], an

intermediate model was studied in which the evader follows a parametrized generalization

of shortest path and random walk.

Reactive evaders are closely related to the Multicut problem [3], in which the objective is to

find a minimum cut that separates each of k source-sink pairs (si, ti). Unreactive Full

Interdiction is related to the recent work in [17]. They consider the Checkpoint Problem, in

which the objective is to cut all specified paths. Unlike in Full Interdiction, the objective in

the Checkpoint Problem is based on the cardinality of the intersections between the cut set

and the paths.

The Bridges Problem was introduced by Glazer and Rubinstein [12] in an economics

context, primarily motivated in terms of strategies for a listener to accept good arguments

and reject bad arguments. In this setting, states correspond to travelers and allowing oneself

to be persuaded by a statement corresponds to opening a bridge.

2 Interdiction with Oblivious Innocents

In this section we consider the Budgeted (BI) and Full Interdiction (FI) problems where the

graph G (on n nodes) is restricted to several special topologies.

Definition 2

In a path graph P with nodes numbered 1 through n, an interval [x, y] indicates the sequence

of nodes numbered x through y (with x ≤ y) the interval’s startpoint and endpoint,

respectively. Half-open intervals [x,y) = [x, y − 1] and (x, y] = [x + 1, y] are defined

similarly. For nodes x, y we write x < y to indicate that x precedes y in P. Similarly, in a tree

T, an interval [x, y] is the sequence of nodes lying on the path in T from x to y. A node v

pierces interval [x, y] if v ∈ [x, y]. An interval sequence is a set of intervals that can be

ordered so that each interval is strictly contained by the previous one. All the intervals in a
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suffix sequence share the same endpoint; all the intervals in a prefix sequence share the

same start point.

Theorem 1

When cv = 1 for every vertex v, Full Interdiction is optimally solvable in O(n log OPT) time

on paths, where OPT is the size of the optimal solution.

Proof. Consider an evader ei with start nodes Si and a target node ti. We must capture evader

ei in the case of each starting point s ∈ Si before she reaches node ti. Node s lies either to the

left or right of ti, assume to the left, i.e., s < ti (e.g., node 3 for the first evader e1 in Fig. 2).

Evader ei may (probabilistically) move to the left before returning right, and so a sensor

placed to the left of s may capture the evader with positive probability. For capturing ei with

probability 1, however, it is necessary and sufficient to place a sensor somewhere in the

interval [s, ti) ([3, 6) for e1 in Fig. 2).

Each starting point s of evader ei will correspond to an interval [s, ti) or interval (ti, s],

depending on the relative location of s to ti. Each such interval must be pierced. Intervals of

the former kind (with the evader approaching the target from the left) will form a sequences

of suffix intervals; intervals of the latter kind (with the evader is approaching from the right)

will form a sequence of prefix intervals. It suffices to consider each evader’s smallest left

interval and smallest right interval ([3, 6) and (6, 8] for e1 in Fig. 2), since each such interval

is contained within all others in the sequence. Finding these smallest intervals could be done

in linear time by using a data structure where the intervals are indexed using both of their

end points. We build an interval graph H by associating a node with each smallest interval

(each of which can be found in time O(log n) by binary search) and placing an undirected

edge for any two smallest intervals that intersect. Because the cost of piercing any interval is

cv = 1, and because each intersection of intervals corresponds to a clique of H, Full

Interdiction is equivalent to Minimum Clique Cover on H. The latter is solvable in linear

time on the interval graph (plus time for sorting) [5].

This gives a solution in O(n log n) time, however. To obtain the faster algorithm, we note

that full interdiction of the smallest left and right intervals is equivalent to the problem of

efficient stabbing of boxes in 1 dimension. It could be solved using the algorithm of Nielsen

[27] in output-sensitive time of O(n log OPT), where of course OPT ≤ n.

A generalization is also possible, as follows.

Theorem 2

When cv = 1 for every vertex v, Full Interdiction is optimally solvable in O(n3) time on trees.

Proof. The O(n2) intervals are now paths in the tree, whose intersection graph (constructable

in O(n3)) is a chordal graph, on which Minimum Clique Cover can also be solved in linear

time [11].

We now turn to interdiction with sensors on edges, specifically, directed edges. In this

setting Full Interdiction is closely related to the Minimum Directed Multicut (MDM)
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problem, in which the task is to find a minimum cut that separates each of k source-sink

pairs (si, ti).

Proposition 1

In the edge interdiction setting, Full Interdiction is 2-approximable on trees.

Proof. When restricted to an underlying tree graph, the Full Interdiction problem is identical

to Directed Multicut, which has a well-known 2-approximation [9].

Note that the 2-approximation is the best possible in general trees assuming the Unique

Games Conjecture [21]. Other algorithms are also known [13, 23] including for the case of

partial multi-cuts [23].

Definition 3

For a possible route r traveled by some evader, let Vr indicate the nodes visited along route r

before reaching its target, or the route set of r. Let m be the number of distinct route sets

among all evaders.

Note that multiple distinct routes can give rise to the same route set, and that a route set in a

path graph is always an interval with an end point at the target node. We now turn to

Budgeted Interdiction.

Theorem 3

Let m be the total number of different evader route sets. Budgeted Interdiction with

deterministic evaders and unit costs is optimally solvable on the path graph in time O(Bnm)

= O(Bn3), where B is the budget.

Proof. We give a dynamic programming solution in Algorithm 1. We compute an optimal

solution using a table  that stores the optimal solution restricted to the l left-most

intervals, nodes  and budget b. We first compute the value of node v restricted to the

first l intervals, i.e., val[l, v] is the sum of the weights of those intervals when the only

sensor is node v. Each subproblem solution is computed in constant time: given inputs l, v,

b, if v is not chosen, then the optimal solution value is the same as inputs l, v − 1, b; if v is

chosen, then the optimal solution value is the value of choosing v in this situation, plus

optimal solution on the intervals lying to the left of v, using the first v − 1 nodes and a

budget of b − cv (or 0 if b − cv < 0).

Proof of correctness is by induction: if node v is chosen, then due to the linear ordering,

nodes prior to v only contribute to piercing intervals 1 through pr(v). Note that correctness

holds also when interval weights may be negative.

Note that in our formulation interdiction costs are integers and hence, the case of B non-

integer has the same solution value as the integer case with budget [B].
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Theorem 4

Budgeted Interdiction with nondeterministic evaders and unit costs is optimally solvable on

the path graph, in time O(Bn2m) = O(Bn4).

Proof. Our proof generalizes from our approach deterministic evaders. We observe that the

case of nondeterministic evaders gives rise to sequences of suffix intervals and sequences of

prefix intervals. For each such sequence corresponding to a single nondeterministic evader,

the computation of val[l, v] will be based on all the intervals in the sequence that v pierces.

More precisely, let {[1, t), [2, t), …, [s, t)} be a suffix sequence for some nondeterministic

evader ei with source s and target t. For each node v < t there is some probability pv that

placing a sensor at node v suffices for capturing ei. Namely, pv is 1 for any v ∈ [s, t), while

for each node v < s the probability pv can be computed based on the Markov chain of ei, that

is, just the probability that her Markov chain visits v and is computed as follows. For ei’s

Markov chain (a, M), let M−v denote a transition matrix where row v has been replaced by

zeros, i.e. the chain with v as a killing state. Then .

For each interval in the sequence, we now define a marginal probability  as follows:

;  for 1 < v ≤ s, and  for s ≤ v < t By construction, the 

values for all intervals containing a given node u will sum to exactly the probability of

evader ei reaching node u, and hence of such a sensor placement sufficing to capture evader

ei. (The values labeling the intervals in Fig. 2 are the marginal probabilities, weighted by the

probability of choosing their starting points.) Marginal probabilities are assigned to prefix

intervals similarly. Therefore the value of a set of sensor locations for a given instance of the

problem with nondeterministic evaders is exactly the value of those locations for the

resulting problem instance with interval sequences of deterministic evaders; that is, the

nondeterministic problem reduces to the deterministic problem (albeit with up to a factor n

more intervals).

These problems can also be solved on the cycle by reduction to path graphs.
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Theorem 5

Full Interdiction is optimally solvable in O(n2) time on the cycle graph. Budgeted

Interdiction with deterministic or nondeterministic evaders and budget B (assuming unit

costs) is optimally solvable on the cycle graph in time O(Bn4) or O(Bn5), respectively.

Proof. For the minimization problem, we reduce to a collection of n path graph instances,

corresponding to n ways to “cut” the cycle graph, as follows. For each node v ∈ V, consider

placing a sensor at node v. It will pierce some set of intervals, with the effect that none of the

remaining intervals to pierce include node v, yielding a path graph instance with nodes v + 1,

…, n, 1, …, v − 1. Solve each resulting path graph instance in linear time, and return the

cheapest solution (combined with v). The budgeted problems are solved by a similar

reduction.

The process can be generalized to Full Interdiction on arbitrary graphs containing c cycles,

though at a cost of O(nc): find all the cycles [19] and then explore all possible cuts.

Previously, [20] has shown an Θ(n log n) algorithm for what we termed full interdiction on

paths (see therein for other algorithms). However, the algorithm in [20] requires complex

special purpose data structures. As well, budgeted interdiction on tree graphs could be

solved using the algorithm of [25] in O(Bn2).

3 Interdiction of Oblivious Evaders on General Graphs

Recall that in the Budgeted Interdiction Problem, the interdictor chooses B locations for the

sensors, which are assumed to be invisible to the evaders, who do not change their motion.

In effect, the interdictor must find a set of B nodes that collectively give the highest

probability of intercepting one or more Markov chains (the evaders) - a problem named

Unreactive Markovian Evader Interdiction (UME).

How hard is it to find such a set? It was shown in [15] that UME can be formulated as a

Mixed-Integer Program and that UME is NP-hard when the number of evaders can be

arbitrarily large. Even the simpler Budgeted Interdiction is weakly NP-hard if interdiction

costs are not unitary, as can be seen with a reduction from the Knapsack problem. However,

the complexity of UME is an open problem when the number of evaders is bounded and the

costs are unitary. Such complexity must arise from the network topology and the

stochasticity of motion, and this question is addressed in the following two theorems.

Theorem 6

Budgeted Interdiction with 2 Markovian oblivious acyclic evaders is NP-hard.

In the proof we use a reduction of Planar Vertex Cover - an NP-complete problem [8].

Planar Vertex Cover asks to determine whether given an undirected planar graph G’(V’, E’)

there exists a set C of B’ ≥ 0 nodes that can cover all the edges of G’. The set C ⊂ V’ is

called a “vertex cover” if all the edges are incident to at least one node in C.
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Proof: Given an instance of the Planar Vertex Cover problem G’(V’, E’) with budget B’

construct an instance of UME node interdiction on a derived graph G(V, E) as follows in

steps 1-3.

Step 1: Graph Coloring. Run the graph coloring algorithm [30] on G’ and compute the color

assignment: f : V’ → {white, red, green, black (abbreviated {w, r, g, b}).

Step 2: Construction of the UME graph. Assemble G(V, E) as follows (Fig. 3): (a) The nodes

are copied from V’ and a special target node t is added: V = V’ ∪ {t}

(b) Include the original edges E’ and for all u ∈ V’ add an edge (u, t) to t: E = E’ ∪ {(u, t) ∣u

∈ V’}

(c) Define d: All nodes u ∈ V can be completely interdicted: duv = 1 ∀u, v ∈ V.

Step 3: Construction of the source distributions and transition matrices for the evaders. The

two evaders travel on 3-node paths: from some source node through penultimate nodes to

the node t, as follows.

Define two sets of source nodes: S1 (=colors {w, r}) and S2 (=colors {w, g}):

Define two sets of penultimate nodes: P1 (=colors {g, b}) and P2 (=colors {r, b}):

Finally, introduce evaders 1 and 2. For each evader i, let a(i) be uniformly distributed over

all nodes of class Si. Define M(i) so the evader takes the 3-node path discussed earlier:

1.  if u ∈ Si and v ∈ Pi where zu = ∥{v∣v ∈ Pi such that (u, v) ∈ E}∥

2.  if u ∈ Pi and v = t

3.  otherwise.

An illustration of the evader motion is found in Fig. 3. In the pathological case where all

nodes in G’ are singletons (degree= 0), arbitrarily choose any node u ≠ t and for evader i ∈

{1, 2} let a(i) = δuv for all v ∈ V and M(i) = 0.

Observation 1: each of the nodes in V’ belongs to one of four disjoint sets corresponding to

the four colors {w, g, r, b}: w ↔ S2 ∩ S1, g ↔ S2 ∩ P1, r ↔ P2 ∩ S1 and b ↔ P2 ∩ P1.

These correspond to the four bit strings of length 2: 00, 01, 10 and 11; Bit i = 1 if and only if

evader i has the node as a penultimate node.
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Observation 2: no evader’s source node coincides with the same evader’s penultimate node:

P1 ∩ S1 = ∅ and P2 ∩ S2 = ∅. Thus a direct jump from Si to t has probability = 0.

Observation 3: node t could be pruned from any interdiction set without changing the

expected interdiction probability because interdiction only affects outgoing evaders and

node t has none.

Define the UME decision problem: Is it possible to find an interdiction set Q of size at most

B so that expected interdiction probability ⟨J⟩ = 1?

Claim: The UME decision problem with budget B set to B’ is a “YES” instance if and only

if a B’-cover exists for the graph G’.

Justification: The pathological case where all nodes are singletons is a UME “YES” instance

for any B ≥ 0 since the evader cannot reach the target and it is also a Planar Vertex Cover

“YES” instance (B’ ≥ 0) since no edges exist.

Suppose now that a non-pathological UME instance is a “YES” instance. Since adjacent

nodes in G’ have different colors, Observation 1 implies that any two adjacent nodes u, v ∈

V \ {t} must be different by at least one bit. Thus ∃evader i such that one of {u, v} is a

source node (ith bit = 0) while the other is a penultimate node (ith bit = 1). The definitions of

a(i) and M(i) imply that evader i traverses through (u, v) with positive probability. Since this

is a “YES” instance with ⟨J(Q)⟩ = 1, the interdiction set Q must contain at least one of the

endpoints {u, v} (whether or not node t ∈ Q, by Observation 3). Therefore the set Q is a

cover for graph G’.

Conversely, if the Planar Vertex Cover decision problem is a “YES” instance then there

exists a vertex cover set C. From Observation 2 and the definition of a(i) it follows that with

probability 1 the evader passes on his way to the target through the edges copied from the

original graph (the edges in E’). Therefore make Q = C and get that ∀i, evader i will be

interdicted with probability = 1. This a UME “YES” instance.

The proof above shows that UME is NP-hard even under fairly restrictive conditions: (1)

only 2 evaders are needed, (2) the interdiction efficiencies d are everywhere = 1, (3) the

graph is unweighted and undirected, and (4) the evaders follow 3-node paths without cycles.

We now show that budgeted interdiction is hard with a single evader as long as the evader is

allowed to make cycles.

Theorem 7

Budgeted Interdiction on nodes is NP-hard with a single oblivious cyclic Markovian evader

and unit interdiction cost.

Proof. We reduce from Vertex Cover (VC) to the decision problem of determining whether

the interdiction probability J can be raised to a certain threshold using at most B sensors.

Given a VC problem instance, i.e., a graph G on n nodes and an integer B, we construct a

budgeted interdiction (BI) instance with a Markovian evader on a graph G’. The graph G’
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extends graph G by adding a target node t, which is made adjacent to all other nodes. We

define the evader e thus. Each node corresponds to a state of its Markov chain. All non-

target nodes are equally likely to be chosen as e’s start node. When at a given node v, e

moves to the target t with probability 50%; otherwise, e moves to one of v’s other neighbors,

chosen uniformly at random.

For a particular solution, let the profit for a node be the probability of interdiction if the

evader starts at that node. We will now show that the VC instance admits a vertex cover of

size B if and only if the BI instance admits a size-B solution of profit at least B + (n − B)/2.

Note that an overall interdiction probability of  is the same as a total profit of (n +

B)/2 = B + (n − B)/2 over all nodes.

First assume there is a size-B vertex cover C of G. Then an BI solution with sensors placed

at all the nodes in C will have profit  for each of the B nodes in C plus 1/2 for

each of the remaining n − B nodes, since for any node v not in C, all v’s neighbors in G must

be in C.

Now assume there is no size-B vertex cover, and consider a set S of B nodes, a set which

must fail to cover some edge. Again for each of the B nodes in S we have profit 1. Every

other node v will have profit at most 1/2, since without its own sensor, an evader starting at v

goes directly to t with probability 1/2. But now consider an edge (u, v) that is left uncovered

by S. The evasion probability when starting at u is greater than 1/2—at least 1/2 + 1/(4

deg(G))—since if e reaches node v, it now has a second chance to move to t, and so the

profit of u is less than 1/2. Therefore the total profit is strictly less than B + (n − B)/2.

It follows from Theorem 6 above that Full Interdiction (not just Budgeted Interdiction) is

NP-hard with 2 evaders. It does not remain hard when limited to a single evader, however.

Theorem 8

Full Interdiction with one evader is solvable in polynomial time.

Proof. We solve the problem by reducing to a Min Cut problem. Given a set of routes

specifying the evader’s behavior, we introduce a source node s pointing to all start nodes of

its Markov chain. All edges that the evader has zero probability of reaching and crossing are

removed from the graph G. Any unreachable nodes are also removed. Now, in order to

interdict the evader before they reach t, we must delete vertices in order to separate s from t

in G. It is well known that this Min Vertex Cut problem can be solved in polynomial time,

by reduction to Directed Min Cut, as follows [6]. First replace any undirected edge with a

pair of directed edges. Then replace each node v (other than s or t) with a pair of nodes and

directed edge (va, vb), where each edge directed to v is now directed to va and each edge

directed from v is now directed from vb. We compute a Min Cut on the resulting graph G’. If

any edge is chosen that does not correspond to a node in G, we can substitute one of the

edges corresponding to its two vertices (if one of these is the target, then the non-target node
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is chosen). The resulting modified Min Cut solution to G’ will correspond to a Min Vertex

Cut solution to G, and moreover to a Full Interdiction solution.

Because of the diversity of possible evaders much remains to be done in refining our

understanding of UME-like problems. For example, it is not known whether the 1-evader

acyclic budgeted interdiction problem has a polynomial-time solution.

We now turn to approximation algorithms for the general setting, by relating interdiction to

the Set Cover and Maximum Coverage problems. It was shown in [15] that weighted

Budgeted Interdiction with any number of Markovian evaders is 1-1/e-approximable. We

now tighten this claim.

Proposition 2

The Budgeted Interdiction problem in NP-hard to approximate within factor 1 − 1/e − ε for

any ε > 0.

Proof. We reduce from Maximum Coverage, which has the stated hardness property [7].

Given is a family of subsets Si of a ground set U = {e1, …, en. The task is to choose k

subsets whose union is of maximum cardinality. For each set Si we introduce a

corresponding node vi. For each element ej we introduce a corresponding evader whose

Markov chain takes it deterministically (in some arbitrary order) through all the nodes

corresponding to sets containing ej and thence to a special target node. Then a selection of

sets covering evader paths is equivalent to a selection of sets covering elements, with exactly

the same solution value.

Identifying nodes and route sets (Def. 3) with elements and sets in the Hitting Set problem

yields a reversible reduction, and hence the following immediately results:

Corollary 1

Full Interdiction is hard to approximate with factor (1 − ε) ln m for any ε > 0, assuming NP

⊆ DTIME(mO(log log m)), where where n is the number of nodes and m is the number of route

sets. It can be approximated with factor Hm in time polynomial in n + m.

Proof. We reduce from Set Cover, as in [15], creating a node for each set and a route set

(with a corresponding deterministic evader) for each element. The rest follows from Feige

[7].

4 Reactive Innocents and the Bridges Problem

Recall that in the bridges problem each of the users p of the graph has a set σ(p) of bridges,

representing his paths to the target.

Consider now the the min-error FP + FN setting, i.e., the problem of finding a policy that

minimizes the weighted sum of successful bad users and blocked good users. We show

below that a geometric or “convex” version of the min-error problem is optimally solvable.

Since the two objective functions differ only by a constant and a negation (TN − FN = (WN
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− FP) − FN, where WN indicates the total value of all goods), the same holds for the net flow

problem.

4.1 Convex bridge sets

Definition 4—An instance of the Bridges Problem is convex if the bridges can be ordered

so that if two bridges x and y are accessible to a person p then any bridge z with x < z < y is

accessible to p as well.

The problem example shown in Figure 1 in the introduction is convex. We assume that the

indices of travelers are sorted in order of their positions from left to right and the bridge

indices are sorted in order of their rightmost accessing person. This setting can be solved by

mapping it to Budgeted Interdiction on the path graph and adapting Algorithm 1.

Corollary 2—The convex Bridges Problem is solvable in time O(n∣N∣+n∣D∣) = O(n3).

Proof. Given a Bridges Problem instance (say in the min-error formulation), we introduce a

Budgeted Interdiction instance (with budget arbitrarily large) as follows. Each of the bridges

is identified with a node on the path graph. For each traveler p we define an evader p on the

interval Ip, where Ip are all bridges available to p. This produces ∣N∣ + ∣D∣ ≤ n(n − 1) distinct

intervals. The weight of evader p is set to negation of the traveler’s cost: .

The formulations are now equivalent: in the Bridges Problem, a traveler succeeds if and only

if one or more of her bridges is open; in BI, an evader is interdicted if and only if one or

more of the nodes in her interval is interdicted by a sensor.

Then we pass the instance to an adaptation of Algorithm 1: we remove the budget dimension

from the dynamic programming table and also remove the outer loop iterating over budget

values, saving a factor of O(B) in running time. The resulting algorithm computes an

optimal interdiction solution. (Recall that Algorithm 1 supports intervals with weights both

positive and negative.) Given this solution, we then solve the Bridges Problem by opening a

bridge if and only if the corresponding node has a sensor placed at it.

4.2 The general min-error FP + FN Bridges Problem

In this section we develop an approximation algorithm for the min error setting. The min-

error problem is precisely the Positive-Negative Partial Set Cover Problem (PNPSCP) [26],

which, as a generalization of Red-Blue Set Cover, is strongly inapproximable. In particular,

PNPSCP is hard to approximate with factor Ω(2log1−ε
 m)) (where m is the number of sets)

unless NP ⊆ DTIME(mpolylog(m)) though approximable with factor , where

π is the number of goods.

Inspired by Glazer and Rubinstein, we will call an m-claw an object c consisting of a good

gc and minimal set of bads Bc such that for each bridge s ∈ σ(gc), s is also in σ(bi) for some

bad bi ∈ Bc, which means that in any consistent solution, either gc must fail or at least one bi

must succeed. Glazer and Rubinstein show that this is also a sufficient condition for being a

valid solution, and hence obtain a Set Cover problem: for each m-claw, choose a person to
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err on, with minimum total error cost over all m-claws. Unfortunately, this instance in

general has exponentially many constraints (since for each good g with bridge set σ(g), each

s of whose bridges admit some number D(s) of bads, there will be ∣C∣ = πs∈σgD(s) many m-

claws), and so the standard log ∣C∣ approximability of set cover becomes trivially weak. We

therefore modify the definition of m-claw slightly, and introduce a claw, as follows.

Definition 5—A claw is an object c consisting of a good gc and, for each bridge si ∈ σ(gc)

the set b ∈ σ−1(si) of all the bads who can use bridge si.

Each claw c therefore imposes the following constraint: in any valid solution, either gc must

fail or all the bads in σ−1(si) for some si ∈ σ(gc) must succeed. Given c, let a kill move be the

action of killing gc (i.e., blocking all of her bridges); let an open bridge move be the action

of opening some bridge si. Now we can interpret this problem as an instance of Submodular

Cost Set Cover [18, 22] in which the elements are claws and there are two kinds of sets. For

each possible kill move mg, introduce a set Mg = {g}; for each possible open bridge move

mi, introduce a set Mi consisting of all the claws that opening bridge i would satisfy. There

are N elements (claws) and N + m sets (moves).

Theorem 9—The general FP + FN Bridges Problem is (maxg∈N ∣σ(g)∣ + 1)-approximable.

Proof. First we claim that the cost of a set of moves is submodular. Indeed, the cost of each

kill move is simply the additive cost of the specified good failing; the marginal cost of an

open bridge move is monotonically decreasing since it is based on the number of additional

bads that opening the bridge then allows to succeed. Second we claim that the value of the

total error of the Bridge solution returned is at most the cost of the moves chosen. Indeed,

first, the only time bridges are opened is during bridge moves, and so the total cost of bads

succeeding is at most the cost of the open bridge moves; second, when bridges are closed at

the end, all constraints have been handled, and so the failures of all goods have already been

“paid for”, in the cost of the kill moves. Therefore the algorithms of [18,22] apply, which

provide a solution with approximation factor f, which is the maximum number of sets that

any element appears in. In the constructed set cover instance, f translates into 1 plus maxg∈N

∣σ(g)∣.

In computational experiments, we were able to solve fairly large instances of the general FP

+ FN using a Mixed-Integer Program. In those experiments, we generated problem instances

with 10000 bridges and 5000 evaders, 5000 innocents, and with a mean of 20 bridges

available to each of them assigned at random. Weights were selected uniformly at random

from [0, 1]. To our surprise, IBM’s CPLEX 12.2 was able to solve those instances

consistently in less than 10 seconds on a 1GHz dual core Intel i5 processor.

5 Hardness results for the Bridges Problem

The following two results are approximation-preserving reductions from the Maximum

Independent Set (MIS) problem. MIS is the problem of finding a maximum cardinality set of

vertices such that no pair of elements is connected by an undirected edge. MIS is hard to
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approximate with factor n1−ε (where ∣V∣ = n) for any ε > 0 [31]. A MIS instance consists of a

graph G = (V, E) and a positive integer k.

Proposition 3

The Bridges Problem variant in which the goal is to maximize TN subject to a bound on FN

is NP-hard to approximate with factor n1−ε.

Proof. In our reduction, each vertex v becomes a bridge sv and a bad bv who can cross only

sv. Each edge (u, v) becomes k + 1 goods who can cross bridges su and sv. The bound on FN

is set to k, which prevents any two goods connected by an edge from both failing.

NP-hardness of optimally solving the min-error setting (FP + FN) follows from the hardness

of the net-flow setting: maximizing TN − FN is the same as minimizing FN − TN = FN −

(WN − FP) = FP + FN − WN. The hardness of approximation properties, however, are not

the same. Whereas the min-error setting can be usefully approximated (Thm. 9 above), the

net-flow setting can not:

Proposition 4

The net-flow TN − FN setting of the Bridges Problem is NP-hard to approximate with factor

n1−ε.

Proof. In our reduction, each vertex becomes a bridge and (usually) some bad people, and

each edge becomes a good person. All the people introduced have value 1 or −1.

Specifically, for each vertex v ∈ V, we introduce a bridge sv and deg(v) − 1 bads, whose only

accessible bridge is sv itself. (If deg(v) = 0, we similarly introduce one good.) For each edge

e = (u, v) ∈ E, we introduce a good pe, whose accessible bridges are u and v.

We now claim that the MIS instance has a solution of value at least k if and only if the

Bridges Problem instance does. First, assume there is an independent set S of size k. For

each vertex v ∈ S, we open the corresponding bridge. Each bridge sv with deg(v) = 0 has one

good and no bads, for a net value of 1. For each bridge sv with deg(v) > 0, there are deg(v)

goods who can cross it (and possibly others) and deg(v) − 1 bads who can cross only it.

Since no two vertices in S are adjacent, though, for each open bridge the goods who can

cross it can cross no other open bridges. Therefore for each open bridge sv, all its deg(v)

goods will use it, which means that bridge contributes exactly deg(v) − (deg(v) − 1) = 1 to

the solution value, for a total of k.

Conversely, assume there is a bridges solution of value at least k. Observe that no open

bridge can contribute value greater than 1, since at most deg(v) goods use it but necessarily

all its deg(v)−1 bads will do so. Therefore a solution of value k will involve opening at least

k bridges. If any bridge can be closed without decreasing the solution quality, do so,

repeatedly, until there is no longer any such bridge. At that point, the solution will consist of

k open bridges, each of value k. But again by the previous argument, in order for two bridges

each to contribute value 1, the corresponding vertices must be independent. Thus the k

vertices corresponding to the open bridges form an independent set.
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Corollary 3

The maximum-probability net-flow TN−FN setting of the Bridges Problem of [12] is as hard

to approximate as the (integral) net-flow TN − FN setting.

Proof. Consider the Bridges Problem instance produced in Proposition 4, but now allow

fractional bridge openings and take the max-probability objective. An integral solution is in

particular a valid fractional solution, and so the forward direction of the if and only if goes

through unchanged. Now assume there is a max-prob fractional solution of value at least k.

Suppose some bridge s is open with probability p, 0 < p < 1. If more bads are using s than

goods, then closing s will only improve the solution, so assume otherwise. In this case,

assume that γ goods are using s and β bads are, with γ ≥ β. Then fully opening the bridge

will increase the value of at least γ goods by amount (1 − p)—any other goods that had

chosen other bridges that were also open with probability p will now shift to this bridge—

and will increase the value of β bads by the same amount (1 − p), for a total change to the

bridge’s net flow of at least (1 − p)γ−(1 − p)β, which is non-negative. Therefore we can

convert the fractional solution into an integral solution of value still at least k. But then by

the previous argument we can use the solution to obtain an independent set of size k.

Corollary 4

The maximum-probability min-error FP + FN setting of the Bridges Problem of [12] is as

hard to approximate as the (integral) min-error FP + FN setting.

Proof. The proof is similar to that of Corollary 3.

6 Discussion

In this paper, we gave positive results for network interdiction problems in a number of

settings, as well as a number of negative results. An interesting open problem is to give

unconditional approximation results for Full Interdiction on general graphs, which is a

generalization of the Minimum Directed Multicut problem. Unlike in Directed Multicut, in

Full Interdiction there is for each evader an arbitrary subgraph Gi of G consisting of the

edges that evader ei is permitted to traverse: Gi are all edges visited by ei with positive

probability. Therefore the following hardness result is inherited from Directed Multicut [3]:

Proposition 5

Full Interdiction is hard to approximate (even in DAGs) with factor 2Ω(log1−ε
 n) for any ε >

0 unless NP ⊆ ZPP.

As with the Directed Multicut problem, a trivial k-approximation can be obtained by

combining the results of k separate Min Cut solutions, corresponding to each evader.

Obtaining a nontrivial approximation for this problem on general graphs appears

challenging, however. The best-known approximation for Directed Multicut is 

[1].
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These results depend on disjointness arguments which limit the number of successive Min

Cut problems that need to be solved (and hence bound the final solution cost) by arguing

that each Min Cut solution will permanently separate a given edge e from a certain number

of nodes or edges in the graph, thus bounding the number of cuts that e can be involved

with. In our problem, however, si does not have to be separated from ti in the graph G, but

only within the subgraph of G corresponding to evader ei. The effect of this relaxed

separation requirement is that once e is separated from a given node v in the graph for

evader ei, v may still be reachable from e for another evader j. Obtaining nontrivial

approximation results for this problem therefore may require different techniques.

A second clear open problem concerns the Bridges Problem. Iwata and Nagano [18] give a

hardness of approximation result for factor o(n/ ln2 n) for set cover with monotone

submodular functions and an approximation algorithm whose factor is the frequency f

(which can be O(n) in general). We formulate the problem of minimizing FP + FN as a

monotone submodular set cover problem, which allows us to apply the f-approximation

algorithm, but the hardness result we obtain for our problem is only for factor o(ln n). It

remains to close this gap.
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Fig. 1.
A bridges problem instance represented as network interdiction with three intermediate

nodes corresponding to bridges. An innocent begins at node 2 and evaders begin at nodes

1,3,4.
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Fig. 2.
An instance of Network Interdiction with two stochastic evaders on the graph P12. One

evader is traveling from nodes 3 and 8 to 6, and one is traveling from nodes 3 and 11 to 9.

Because of their stochastic motion, the evaders could be partially interdicted at nodes such

as 1 or 12 that do not lie on the shortest paths to their targets.
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Fig. 3.
The graphs G’, G showing the evaders and the classes of nodes. The original Vertex Cover

instance is on G’ (drawn with elliptical nodes and solid edges). G is created by adding node t

(rectangle) and the edges to t (dashed lines). On G’ White indicates class S2 ∩ S1, green

(large ellipses) indicates class S2∩P1, red (small ellipses) indicates class P2 ∩ S1 and black

indicates class P2∩P1. Evader motion is marked with arrows. For example, the bi-directional

arrow between nodes 3 and 5 marks that it is passed in both direction by evaders: evader 1

moves along 5 → 3 → t and evader 2 moves along 3 → 5 → t.
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