Skip to main content
Log in

Extended proportionality in division problems with multiple references

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider an extension of the classic problem of division with claims to situations in which the characteristics of the agents are multi-dimensional. The proportional rule is the most prominent in the one-dimensional case, however there is no obvious way to define proportionality for the extended model. In this paper we introduce a property which generalizes proportionality, identify the family of rules satisfying it, and characterize a particular rule within this family on the basis of a property of symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. \(\mathbb{R}\) (\(\mathbb{R}_{+}\), \(\mathbb{R}_{++}\)) denotes the set of all (non-negative, positive) real numbers. \(\mathbb{R}^{N}\)(\(\mathbb{R}^{N}_{+}\), \(\mathbb{R}^{N}_{++}\)) the Cartesian product of |N| copies of \(\mathbb{R}\) (\(\mathbb{R}_{+}\), \(\mathbb{R}_{++}\)), where |N| denotes the cardinal of N.

  2. For each SN and each \(x\in \mathbb{R}^{N}\), x(S) denotes ∑ iS x i .

  3. Vector inequalities: xy means that x i y i for all i=1,2,…,k; xy means that xy and xy; x>y means that x i >y i for all i=1,2,…,k.

  4. c denotes the vector of references, \(\mathcal{C}^{1}_{N}\) the class of classic problems with set of agents N.

  5. Δk−1 denotes the (k−1)-dimensional simplex, \(\Delta^{k-1}= \{\lambda\in \mathbb{R}^{k}_{+}: \sum_{j=1}^{k}\lambda^{j}= 1\}\).

  6. If the domain of the reference matrix permits zero entries (provided that c j≥0 for each jM), then by replacing the set of indices to compute the minima, N, with \(N(j)=\{i\in N: c_{i}^{j}>0\}\) for each jM, all the results that follow are valid.

  7. x X is a Pareto-optimal solution for \(\operatorname{Max} \{ f_{1}(x),\ldots, f_{m}(x) \}, \mathrm{s}.\mathrm{t.}\ x\in X\), if there exists no other yX, such that f j (y)≥f j (x ) for all j=1,…,m, with at least one strict inequality.

  8. Remark that (x ,t ) is the optimal solution to a problem \(\operatorname{Max}\ t, \mathrm{s}.\mathrm{t}.\ t \leq \frac{x_{i}}{ c_{i}},\ i\in N, x\in X(E)\) if and only if x =p(c,E).

References

  • Bergantiños, G., Lorenzo, L., & Lorenzo-Freire, S. (2010). A characterization of the proportional rule in multi-issue allocation situations. Operations Research Letters, 38, 17–19.

    Article  Google Scholar 

  • Branzei, R., Dimitrov, D., Pickl, S., & Tijs, S. (2004). How to cope with division problems under interval uncertainty claims? International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12(2), 191–200.

    Article  Google Scholar 

  • Calleja, P., Borm, P., & Hendrickx, R. (2005). Multi-issue allocation situations. European Journal of Operational Research, 164, 730–747.

    Article  Google Scholar 

  • González-Alcón, C., Borm, P., & Hendrickx, R. (2007). A composite run-to-the-bank rule for multi-issue allocation situations. Mathematical Methods of Operations Research, 65(2), 339–352.

    Article  Google Scholar 

  • Herrero, C., & Villar, A. (2001). Four classical solutions to bankruptcy problems. Mathematical Social Sciences, 42, 307–328.

    Article  Google Scholar 

  • Hinojosa, M. A., Mármol, A. M., & Sánchez, F. J. (2012). A consistent Talmudic rule for division problems with multiple references. Top, 20(3), 661–678.

    Article  Google Scholar 

  • Ju, B.-G., Miyagawa, E., & Sakai, T. (2007). Non-manipulable division rules in claim problems and generalizations. Journal of Economic Theory, 132, 1–26.

    Article  Google Scholar 

  • Lorenzo-Freire, S., Casas-Méndez, B., & Hendrickx, R. (2009). The two-stage constrained equal awards and losses for multi-issue allocation situations. Top 18, 465–480.

    Article  Google Scholar 

  • Moreno-Ternero, J. D. (2009). The proportional rule for multi-issue bankruptcy problems. Economics Bulletin, 29, 483–490.

    Google Scholar 

  • Pulido, M., Sánchez-Soriano, J., & Llorca, N. (2002). Game theory techniques for University management: and extended bankruptcy model. Annals of Operations Research, 102, 129–142.

    Article  Google Scholar 

  • Pulido, M., Borm, P., Hendrickx, R., Llorca, N., & Sánchez-Soriano, J. (2008). Compromise solutions for bankruptcy situations with references. Annals of Operations Research, 158, 133–141.

    Article  Google Scholar 

  • Serrano, R. (1995). Strategic bargaining, surplus sharing problems and the nucleolus. Journal of Mathematical Economics, 24, 319–329.

    Article  Google Scholar 

  • Thomson, W. (2003). Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey. Mathematical Social Sciences, 45, 249–297.

    Article  Google Scholar 

  • Yano, H., & Sakawa, M. (1989). A unified approach for characterizing Pareto optimal solutions of multiobjective optimization problems: the hyperplane method. European Journal of Operational Research, 39, 61–70.

    Article  Google Scholar 

Download references

Acknowledgements

The research of the authors is partially supported by the Andalusian Ministry of Economics, Innovation and Science, projects P09-SEJ-4903, P11-SEJ-7782, and by the Spanish Ministry of Science and Innovation, projects ECO2011-29801-C02-01 and ECO2011-29801-C02-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hinojosa.

Appendix

Appendix

Proof Theorem 3.2

Without loss of generality, assume that N={1,…,n} and M={1,…,m}. Let R be a ratio efficient rule on \(\mathcal{C}^{M}_{N}\). Hence, given \((C,E)\in\mathcal{C}^{M}_{N}\), x=R(C,E) is a Pareto-optimal solutionFootnote 7 to the vector optimization problem:

$$ \everymath{\displaystyle }\begin{array} {l@{\ }l} \operatorname{Max} & \biggl \{ \min_{i\in N} \biggl\{ \frac{x_i}{c_i^1}\biggr\},\ldots, \min _{i\in N} \biggl\{ \frac{x_i}{c_i^m}\biggr\} \biggr\} \\[5pt] \mathrm{s}.\mathrm{t}.& x\in X(E), \\ \end{array} $$
(6.1)

This problem is equivalent to the vector linear problem:

$$ \everymath{\displaystyle }\begin{array} {l@{\ }l} \operatorname{Max} & \bigl \{t^1, \ldots, t^m\bigr\} \\[3pt] \mathrm{s}.\mathrm{t}.& t^j \leq \frac{x_i}{c_i^j},\quad i\in N,\ j\in M \\[5pt] & x\in X(E). \end{array} $$
(6.2)

in the sense that if x is Pareto-optimal to (6.1), there exists \(t\in \mathbb{R}^{M}\), such that (x,t) is Pareto-optimal to (6.2). Conversely, if (x,t) is Pareto-optimal to (6.2), then x is Pareto-optimal to (6.1).

We now rely on the parametric characterization of solutions to linear vector optimization problems as the solutions of weighted maximin problems (see Yano and Sakawa 1989) to state that (x,t) is Pareto-optimal to (6.2) if and only if there exists a vector of weights \(\gamma(C,E)\in\Delta^{M}_{++}\), such that (x,t) is an optimal solution to

$$\everymath{\displaystyle }\begin{array} {l@{\ }l} \operatorname{Max} & \operatorname{Min}_{j\in M} \bigl\{\gamma^j(C,E)t^j\bigr\} \\[3pt] \mbox{s.t}.& t^j \leq \frac{x_i}{c_i^j},\quad i\in N,\ j\in M \\[8pt] & x\in X(E). \end{array} $$

Now, by denoting z j=γ(C,E)j t j for jM, this last problem can be written as:

$$ \everymath{\displaystyle }\begin{array} {l@{\ }l} \operatorname{Max} & \operatorname{Min}_{j\in M}\bigl\{z^j\bigr\} \\[3pt] \mbox{s.t.}& z^j \leq \frac{x_i}{(c_i^j / \gamma^j(C,E))},\quad i\in N,\ j\in M \\[8pt] & x\in X(E). \end{array} $$
(6.3)

It is easy to see that if (x,z) is an optimal solution to (6.3), then \((x, \tilde{z})\), where for all jM, \(\tilde{z}^{j}=\min_{k\in M} \{z^{k}\}\) is also optimal to (6.3). It follows that the set of optimal allocations for (6.3) coincide with the set of optimal allocations to the following linear problem.

$$\everymath{\displaystyle }\begin{array}{l@{\ }l} \operatorname{Max} & s\\[3pt] \mbox{s.t.}& s \leq \frac{x_i}{(c_i^j / \gamma^j(C,E))},\quad i\in N,\ j\in M\\[8pt] & x\in X(E). \end{array} $$

Let \(K(C, E)= \frac{1}{\sum_{j}\frac{1}{\gamma^{j}(C,E)}}\). For jM, denote \(\alpha^{j}(C,E)= \frac{k(C,E)}{\gamma^{j}(C,E)}\), and note that for iN, the set of constraints \(s \leq \frac{x_{i}}{(c_{i}^{j} / \gamma^{j}(C,E))}=\frac{x_{i}}{\alpha^{j}(C,E)c_{i}^{j}}, j\in M\) is equivalent to \(\frac{s}{K} \leq \frac{x_{i}}{\overline{c^{\alpha}}_{i}}\), where \(\overline{c^{\alpha}}_{i}= \max_{j\in M}\{\alpha^{j}(C,E)c^{j}_{i}\}\) for all iN, and the problem can be written as:

$$ \everymath{\displaystyle }\begin{array}{l@{\ }l} \operatorname{Max} & s\\[3pt] \mbox{s.t.}& \frac{s}{K} \leq \frac{x_i}{\overline{c^\alpha}_i},\quad i\in N,\\[8pt] & x\in X(E). \end{array} $$
(6.4)

Since for each \((C,E)\in\mathcal{C}_{N}^{M}\), K is a constant, the optimal allocations to this problem coincide with the optimal allocations to problem

$$ \everymath{\displaystyle }\begin{array}{l@{\ }l} \operatorname{Max} & t\\[3pt] \mbox{s.t.}& t \leq \frac{x_i}{\overline{c^\alpha}_i},\quad i\in N,\\[8pt] & x\in X(E). \end{array} $$
(6.5)

Hence, if R is ratio-efficient, given x =R(C,E), there exists t such that (x ,t ) is the optimal solution to (6.5), and therefore,Footnote 8 \(x^{*}=p(\overline{c^{\alpha}}, E)\). As defined in Sect. 2, \(p(\overline{c^{\alpha}}, E)=\overline{P} (C^{\alpha}, E)=\overline{P}^{\alpha}(C, E)\).

The converse also follows from the characterization of Pareto-optimal solutions to linear vector optimization problems as the solutions to weighted maximin problems. □

Proof Proposition 4.2

Let \((C,E)\in\mathcal {C}^{M}\), and \(x=\overline{P}^{\omega}(C,E)=\overline{P}(C^{\omega},E)=p(\overline {c^{\omega}},E)\), where \(\overline{c^{\omega}}=(\max_{j\in M}\{{c^{\omega}}^{j}_{i}\})_{i\in N}\). Consider N′⊂N. From the consistency of the classic proportional rule, it follows that \(x_{N'}=p(\overline{c^{\omega}}_{N'}, x(N'))\). On the other hand, \(\overline{P}^{\omega}(C_{N'}, x(N'))=\overline{P}(C_{N'}^{\omega},E)= p(\overline{c_{N'}^{\omega}},E)=p(\overline{c^{\omega}}_{N'}, x(N'))=x_{N'}\). □

Proof Theorem 4.3

It is straightforward to prove that the max-proportional rule satisfies neutrality.

We will prove that if the regular weighted max-proportional rule \(\overline{P}^{\omega}\) satisfies neutrality, then ω is such that ω j=ω k, for all j,kM. It is easy to see that in this case the rule coincides with the max-proportional rule as defined in Sect. 2.

Consider \((C, E) \in\mathcal{C}^{M}_{N}\), \(C\in \mathbb{R}^{N\times M}\), such that \(c_{i}^{j}=1\) for i=j, \(c_{i}^{j}=\varepsilon\) if ij, with \(0<\varepsilon< \frac{\omega^{j}}{\omega^{k}}\), for all j,kM, and let m and n be |M| and |N| respectively.

Case 1: mn. In this case,

$$C=\left (\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} 1 & \varepsilon& \cdots& \varepsilon\\ \varepsilon& 1 & \cdots& \varepsilon\\ \vdots & \vdots & \ddots& \vdots\\ \varepsilon& \varepsilon&\cdots & 1\\ \varepsilon& \varepsilon&\cdots & \varepsilon\\ \vdots & \vdots & \ddots& \vdots\\ \varepsilon& \varepsilon&\cdots& \varepsilon\\ \end{array} \right ). $$

For each iN, \(\omega^{j} c_{i}^{j}= \omega^{j}\) if j=i, and \(\omega^{j} c_{i}^{j}= \omega^{j} \varepsilon\) if ji. Therefore, for iN, such that im, \(\max_{j\in M}\{\omega^{j} c_{i}^{j}\}= \omega^{i}\). If, on the other hand, i>m, then \(\max_{j\in M}\{\omega^{j} c_{i}^{j}\}=\overline{\omega}\varepsilon\), where \(\overline{\omega}= \max_{j} \{\omega^{j}\}\). It follows that

$$\overline{P}^{\omega}(C, E)= p\bigl(\bigl(\omega^1, \omega^2,\ldots,\omega^m, \overline{\omega}\varepsilon, \ldots, \overline{\omega}\varepsilon\bigr), E\bigr). $$

Consider σ {1,2}Π M, such that σ {1,2}(1)=2, σ {1,2}(2)=1, σ {1,2}(j)=j, if j≠1,2, and denote by D the permuted matrix:

$$D=C^{\sigma^{\{1,2\}}}=\left (\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \varepsilon& 1 & \cdots& \varepsilon\\ 1 & \varepsilon& \cdots& \varepsilon\\ \vdots & \vdots & \ddots& \vdots\\ \varepsilon& \varepsilon&\cdots & 1\\ \varepsilon& \varepsilon&\cdots & \varepsilon\\ \vdots & \vdots & \ddots& \vdots\\ \varepsilon& \varepsilon&\cdots& \varepsilon\\ \end{array} \right ). $$

If i≠1,2, then it is easy to see that \(\max_{j\in M}\{\omega^{j} d_{i}^{j}\}=\max_{j\in M}\{\omega^{j} c_{i}^{j}\}\). For i=1, \(\max_{j\in M}\{\omega^{j} d_{1}^{j}\}=\omega^{2}\) and for i=2, \(\max_{j\in M}\{\omega^{j} d_{2}^{j}\}=\omega^{1}\). Therefore:

$$\overline{P}^{\omega}(D, E)= p\bigl(\bigl(\omega^2, \omega^1,\ldots,\omega^m, \overline{\omega}\varepsilon, \ldots, \overline{\omega}\varepsilon\bigr), E\bigr). $$

Now, by applying neutrality, \(\overline{P}^{\omega}(D, E)=\overline{P}^{\omega}(C,E)\), and it follows that ω 1=ω 2. Similarly, by considering permutations σ {1,3},…,σ {1,m}Π M, the equality of all weights is proved.

Case 2: m>n. Suppose m≥3, since otherwise there is at most one agent and there is not a real division problem. In this case matrix C is:

$$C=\left (\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 1 & \varepsilon& \cdots& \varepsilon& \varepsilon& \cdots& \varepsilon\\\varepsilon& 1 & \cdots& \varepsilon& \varepsilon& \cdots& \varepsilon\\ \vdots & \vdots & \ddots& \vdots & \vdots & \ddots& \vdots\\ \varepsilon& \varepsilon&\cdots & 1 & \varepsilon& \cdots& \varepsilon\\ \end{array} \right ). $$

By considering \(D=C^{\sigma^{\{1,2\}}}\), a similar reasoning applies to obtain

$$\overline{P}^{\omega}(C, E)= p\bigl(\bigl(\omega^1, \omega^2,\ldots,\omega^m\bigr), E\bigr) = \overline{P}^{\omega}(D, E)= p\bigl(\bigl(\omega^1,\omega^2, \ldots,\omega^m,\bigr), E\bigr) $$

which implies ω 1=ω 2.

Again, by considering permutations σ {1,3},…,σ {1,m}Π M, the equality of all weights is proved. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinojosa, M.A., Mármol, A.M. & Sánchez, F.J. Extended proportionality in division problems with multiple references. Ann Oper Res 206, 183–195 (2013). https://doi.org/10.1007/s10479-013-1388-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1388-2

Keywords

Navigation