Skip to main content
Log in

Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Computing optimal stochastic portfolio execution strategies under an appropriate risk consideration presents many computational challenges. Using Monte Carlo simulations, we investigate an approach based on smoothing and parametric rules to minimize mean and Conditional Value-at-Risk (CVaR) of the execution cost. The proposed approach reduces computational complexity by smoothing the nondifferentiability arising from the simulation discretization and by employing a parametric representation of a stochastic strategy. We further handle constraints using a smoothed exact penalty function. Using the downside risk as an example, we show that the proposed approach can be generalized to other risk measures. In addition, we computationally illustrate the effect of including risk on the stochastic optimal execution strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander, S., Coleman, T. F., & Li, Y. (2006). Minimizing VaR and CVaR for a portfolio of derivatives. Journal of Banking & Finance, 30(2), 583–605.

    Article  Google Scholar 

  • Almgren, R., & Chriss, N. (2000/2001). Optimal execution of portfolio transactions. The Journal of Risk, 3(2), 5–39.

    Google Scholar 

  • Almgren, R., & Lorenz, J. (2007). Adaptive arrival price. In B. R. Bruce (Ed.), Algorithmic trading III: precision, control, execution (pp. 59–66). Institutional Investor Journals.

    Google Scholar 

  • Almgren, R. F. (2008). Execution costs. In Encyclopedia of quantitative finance (pp. 1–5).

    Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1997). Thinking coherently. Risk, 10, 68–71.

    Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203–228.

    Article  Google Scholar 

  • Bertsimas, D., & Lo, A. W. (1998). Optimal control of execution costs. Journal of Financial Markets, 1(1), 1–50.

    Article  Google Scholar 

  • Bertsimas, D., Lo, A. W., & Hummel, P. (1999). Optimal control of execution costs for portfolios. Computing in Science & Engineering, 1(6), 40–53.

    Article  Google Scholar 

  • Coleman, T. F., & Li, Y. (1996). An interior trust region approach for nonlinear minimization subject to bounds. SIAM Journal on Optimization, 6(2), 418–445.

    Article  Google Scholar 

  • Coleman, T. F., & Verma, A. (2000). ADMIT-1: automatic differentiation and MATLAB interface toolbox. In ACM transactions on mathematical software (pp. 150–175).

    Google Scholar 

  • Coleman, T. F., Li, Y., & Patron, C. (2007). Total risk minimization. In J. R. Birge & V. Linetsky (Eds.), Handbook of financial engineering (pp. 593–635). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • de Farias, D. P., & Roy, B. V. (2003). The linear programming approach to approximate dynamic programming. Operations Research, 51(6), 850–865.

    Article  Google Scholar 

  • Downward, A., Young, D., & Zakeri, G. (2012, submitted). Electricity contracting and policy choices under risk-aversion. Operations Research, 1–43.

  • Duffie, D., & Pan, J. (1997). An overview of value at risk. The Journal of Derivatives, 4(3), 7–49.

    Article  Google Scholar 

  • Fabozzi, F. J., Kolm, P. N., Pachamanova, D., & Focardi, S. M. (2007). Robust portfolio optimization and management. New York: Wiley.

    Google Scholar 

  • Follmer, H., & Schied, A. (2011). Stochastic finance: an introduction in discrete time (3rd ed.). Berlin: de Gruyter.

    Book  Google Scholar 

  • Goh, M., & Meng, F. (2009). A stochastic model for supply chain risk management using conditional value at risk. In T. Wu & J. V. Blackhurst (Eds.), Managing supply chain risk and vulnerability: tools and methods for supply chain decision makers (pp. 141–157). Berlin: Springer.

    Chapter  Google Scholar 

  • Griewank, A., & Corliss, G. (1991) SIAM proceedings series: In EDS, automatic differentiation of algorithm: theory, implementation and applications.

    Google Scholar 

  • Grossman, S. J., & Vila, J. (1992). Optimal dynamic trading with leverage constraints. Journal of Financial and Quantitative Analysis, 27(2), 151–168.

    Article  Google Scholar 

  • Haugh, M. B., & Lo, A. W. (2001). Computational challenges of financial engineering. Computing in Science & Engineering, 3, 54–59.

    Article  Google Scholar 

  • Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2), 327–343.

    Article  Google Scholar 

  • Huberman, G., & Stanzl, W. (2004). Price manipulation and quasi-arbitrage. Econometrica, 72(4), 1247–1275.

    Article  Google Scholar 

  • Huberman, G., & Stanzl, W. (2005). Optimal liquidity trading. Review of Finance, 9(2), 165–200.

    Article  Google Scholar 

  • Kirilenko, A., Samadi, M., Kyle, A. S., & Tuzun, T. (2011, working paper). The flash crash: The impact of high frequency trading on an electronic market. 1–63.

  • Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation: a simple least-squares approach. The Review of Financial Studies, 14(1), 113–147.

    Article  Google Scholar 

  • Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1–2), 125–144.

    Article  Google Scholar 

  • Moazeni, S., Coleman, T. F., & Li, Y. (2010). Optimal portfolio execution strategies and sensitivity to price impact parameters. SIAM Journal on Optimization, 20(3), 1620–1654.

    Article  Google Scholar 

  • Moazeni, S., Coleman, T. F., & Li, Y. (2013). Optimal execution under jump models for uncertain price impacts. Journal of Computational Finance, 16(4), 1–44.

    Google Scholar 

  • Moazeni, S., Coleman, T. F., & Li, Y. (2013). Regularized robust optimization: The optimal portfolio execution case. Computational Optimization and Applications, 55(2), 341–377.

    Article  Google Scholar 

  • Nocedal, J., & Wright, S. J. (2000). Numerical optimization. Berlin: Springer.

    Google Scholar 

  • Pérold, A. (1988). The implementation shortfall: paper versus reality. The Journal of Portfolio Management, 14, 4–9.

    Article  Google Scholar 

  • Pflug, G. C., & Romisch, W. (2007). Modeling, measuring and managing risk. Singapore: World Scientific.

    Book  Google Scholar 

  • Powell, W. B. (2011). Approximate dynamic programming: solving the curses of dimensionality (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2(3), 21–41.

    Google Scholar 

  • Shapiro, A. (2008). Stochastic programming approach to optimization under uncertainty. Mathematical Programming, 112(1), 183–220.

    Article  Google Scholar 

  • Shapiro, A., Dentcheva, D., & Ruszczynski, A. (2009). Lectures on stochastic programming: modeling and theory (MPS-SIAM series on optimization). Philadelphia: SIAM.

    Book  Google Scholar 

  • Wu, D. D., & Olson, D. (2010). Enterprise risk management: a DFA VaR approach in vendor selection. International Journal of Production Research, 48(16), 4919–4932.

    Article  Google Scholar 

  • Yau, S., Kwon, R. H., Rogers, J. S., & Wu, D. (2011). Financial and operational decisions in the electricity sector: contract portfolio optimization with the conditional value-at-risk criterion. International Journal of Production Economics, 134(1), 67–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Moazeni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moazeni, S., Coleman, T.F. & Li, Y. Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy. Ann Oper Res 237, 99–120 (2016). https://doi.org/10.1007/s10479-013-1391-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1391-7

Keywords

Navigation