Skip to main content
Log in

A simple insurance model: optimal coverage and deductible

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

An insurance model, with realistic assumptions about coverage, deductible and premium, is studied. Insurance is shown to decrease the variance of the cost to the insured, but increase the expected cost, a tradeoff that places our model in the Markowitz mean-variance model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arrow, K. (1974). Optimal insurance and generalized deductibles. Scandinavian Actuarial Journal, 1, 1–42.

    Article  Google Scholar 

  • Bortoluzzo, A. (2011). Estimating total claim size in the auto insurance industry: a comparison between Tweedie and zero-adjusted inverse Gaussian distribution. BAR, Brazilian Administration Review, Curitiba, 8(1). Available from http://www.scielo.br/scielo.php, access on 09 Dec. 2012.

  • Casualty Actuarial Society, Enterprise Risk Management Committee (2003). Overview of Enterprise Risk Management, May 2003.

  • COSO (2004). Enterprise Risk Management-Integrated Framework Executive Summary, Committee of Sponsoring Organizations of the Treadway Commission.

  • Cummins, J. D., & Mahul, O. (2004). The demand for insurance with an upper limit on coverage. The Journal of Risk and Insurance, 71, 253–264.

    Article  Google Scholar 

  • Dionne, G. (Ed.) (2000). Handbook of insurance. Boston: Kluwer Academic.

    Google Scholar 

  • Gollier, C., & Schlesinger, H. (1996). Arrow’s theorem on the optimality of deductibles: A stochastic dominance approach. Economic Theory, 7, 359–363.

    Google Scholar 

  • Hewitt, C. C. Jr., & Lefkowitz, B. (1979). Methods for fitting distributions to insurance loss data, in Proceedings of the casualty actuarial society, LXVI, pp. 139–160.

  • Jorgensen, B., & De Souza, M. C. P. (1994). Fitting Tweedie’s compound Poisson model to insurance claims data. Scandinavian Actuarial Journal, 69–93.

  • Machina, M. J. (1995). Non-expected utility and the robustness of the classical insurance paradigm. The Geneva Papers on Risk and Insurance Theory, 20, 9–50.

    Article  Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance, 7, 77–91.

    Google Scholar 

  • Markowitz, H. M. (1959). Portfolio selection: efficient diversification of investments. New York: Wiley.

    Google Scholar 

  • New Jersey Auto Insurance Buyer’s Guide A-705(4/10) (2011)

  • Olson, D. L., & Wu, D. (2010). Enterprise risk management models. Berlin: Springer.

    Book  Google Scholar 

  • Pashigian, B. P., Schkade, L. L., & Menefee, G. H. (1966). The selection of an optimal deductible for a given insurance policy. The Journal of Business, 39, 35–44.

    Article  Google Scholar 

  • Raviv, A. (1979). The design of an optimal insurance policy. The American Economic Review, 69, 84–96.

    Google Scholar 

  • Schlesinger, H. (1981). The optimal level of deductibility in insurance contracts. The Journal of Risk and Insurance, 48, 465–481.

    Article  Google Scholar 

  • Schlesinger, H. (1997). Insurance demand without the expected–utility paradigm. The Journal of Risk and Insurance, 64, 19–39.

    Article  Google Scholar 

  • Smith, V. (1968). Optimal insurance coverage. Journal of Political Economy, 76, 68–77.

    Article  Google Scholar 

  • Smyth, G. K., & Jorgensen, B. (2002). Fitting Tweedie’s compound Poisson model to insurance claims data: dispersion modeling. ASTIN Bulletin, 32, 143–157.

    Article  Google Scholar 

  • Wu, D., Olson, D., & Birge, J. (2011). Introduction to special issue on “Enterprise risk management in operations”. International Journal of Production Economics, 134, 1–2.

    Article  Google Scholar 

  • Zhou, C., Wu, W., & Wu, C. (2010). Optimal insurance in the presence of insurer’s loss limit. Insurance. Mathematics & Economics, 46, 300–307.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Gaffney.

Appendix:  Proof of Theorem 1

Appendix:  Proof of Theorem 1

We prove (42)

$$\frac{\partial}{\partial C} \operatorname{Var}L(\mathbf{X}|C,D)<0 $$

given that (22) holds,

$$\int_D^C f(x) \,dx < 1, $$

which implies that either

$$\begin{aligned} \int_C^\infty f(x) \,dx > 0, \end{aligned}$$
(50)

or

$$\begin{aligned} \int_0^D f(x) \,dx > 0, \end{aligned}$$
(51)

hold.

From (39),

$$ \operatorname{E}\phi(\mathbf{X}|C,D)=\int_D^C (D-x)f(x) \,dx+(D-C) \int_C^\infty f(x) \,dx, $$
(52)

and

$$\begin{aligned} \operatorname{Var}\phi(\mathbf{X}|C,D) &=\operatorname{E}\phi ^2( \mathbf{X}|C,D)-\bigl(\operatorname{E}\phi(\mathbf{X}|C,D)\bigr)^2 \\ &=\int_D^C (D-x)^2f(x) \,dx+(D-C)^2 \int_C^\infty f(x) \,dx \\ &\quad - \biggl(\int_D^C (D-x)f(x) \,dx+(D-C) \int _C^\infty f(x) \,dx \biggr)^2. \end{aligned}$$
(53)

By (41) the partial derivative of \(\operatorname {Var}L(\mathbf{X})\) w.r.t. C is

$$ \frac{\partial}{\partial C} \operatorname{Var}L(\mathbf{X})=\frac {\partial}{\partial C} \operatorname{Var}\mathbf{X}+ \frac{\partial }{\partial C}\operatorname{Var}\phi( \mathbf{X})+2 \frac{\partial }{\partial C} \bigl(\operatorname{E}\bigl[\mathbf{X}\phi( \mathbf {X})\bigr]-\operatorname{E}\mathbf{X}\operatorname{E}\phi(\mathbf {X}) \bigr). $$
(54)

We calculate next the three derivatives on the right side.

  1. (a)

    Clearly,

    $$ \frac{\partial}{\partial C}\operatorname{Var}\mathbf{X}=0. $$
    (55)
  2. (b)
    $$\begin{aligned} \frac{\partial}{\partial C}\operatorname{Var}\phi(\mathbf {X})&=(2C-2D) \int _C^\infty f(x) \,dx+2 \int_D^C (D-x)f(x) \,dx \int_C^\infty f(x) \,dx \\ &\quad -2(C-D) \biggl(\int_C^\infty f(x) \,dx \biggr)^2 \\ &=2 \int_C^\infty f(x) \,dx \biggl[C \int _0^C f(x) \,dx \\ &\quad -D \int_0^D f(x) \,dx-\int_D^C xf(x) \,dx \biggr] \end{aligned}$$
    (56)
  3. (c)

    From (39),

    $$\begin{aligned} \operatorname{E} \bigl(\mathbf{X}\phi(\mathbf{X})\bigr) - \operatorname {E} \mathbf{X}\operatorname{E} \phi(\mathbf{X}) &= D \biggl[\int_D^\infty x f(x) \,dx - (\operatorname{E} \mathbf{X}) \int_D^\infty f(x) \,dx \biggr] \\ &\quad -C \biggl[\int_C^\infty x f(x) \,dx - ( \operatorname{E} \mathbf {X}) \int_C^\infty f(x) \,dx \biggr] \\ &\quad - \biggl[\int_D^C x^2 f(x)\,dx-( \operatorname{E} \mathbf{X}) \int_D^Cx f(x) \,dx \biggr]. \end{aligned}$$

Therefore

$$ 2 \frac{\partial}{\partial C} \bigl(\operatorname{E}\bigl[\mathbf{X}\phi (\mathbf{X}) \bigr]-\operatorname{E}\mathbf{X}\operatorname{E}\phi (\mathbf{X}) \bigr)=2 \biggl[\operatorname{E}\mathbf{X}\int_C^\infty f(x) \,dx-\int_C^\infty xf(x) \,dx \biggr]. $$
(57)

Substituting (55), (56), and (57) in (54) we get

$$\begin{aligned} \frac{1}{2} \frac{\partial}{\partial C}\operatorname{Var} L(\mathbf {X}) &=\int _C^\infty f(x) \,dx \biggl[C \int _0^C f(x) \,dx-D \int_0^D f(x) \,dx-\int_D^C xf(x) \, dx+\operatorname{E} \mathbf{X} \biggr] \\ &\quad -\int_C^\infty xf(x) \,dx \\ &=\int_C^\infty f(x) \,dx \biggl[C \int _0^C f(x) \,dx-D \int_0^D f(x) \,dx \\ &\quad +\int_0^D xf(x) \,dx +\int _C^\infty xf(x) \,dx \biggr] -\int _C^\infty xf(x) \,dx \end{aligned}$$
(58)

Rearrange (58) to get

$$\begin{aligned} \frac{1}{2} \frac{\partial}{\partial C}\operatorname{Var L(\mathbf {X})} &=C \int _C^\infty f(x) \,dx \int_0^C f(x) \,dx+\int_C^\infty f(x) \,dx \int _C^\infty xf(x) \,dx \end{aligned}$$
(59)
$$\begin{aligned} &\quad -\int_C^\infty xf(x) \,dx +\int_C^\infty f(x) \,dx \biggl(\int _0^D xf(x) \,dx-D \int_0^D f(x) \,dx \biggr). \end{aligned}$$
(60)

The right side of (59) can be written as

$$\begin{aligned} &=C \int_C^\infty f(x) \,dx \int _0^C f(x) \,dx+\int_C^\infty xf(x) \, dx \biggl(\int_C^\infty f(x) \,dx -1 \biggr) \\ &=C \int_C^\infty f(x) \,dx \int _0^C f(x) \,dx-\int_C^\infty xf(x) \, dx \int_0^C f(x) \,dx \\ &=\int_0^C f(x) \,dx \biggl(C \int _C^\infty f(x) \,dx-\int_C^\infty xf(x) \,dx \biggr) \\ &< 0\quad \text{if (50) holds, because then}\ \int _C^\infty xf(x) \,dx > C \int_C^\infty f(x) \,dx. \end{aligned}$$

Similarly, (60) is negative if (51) holds, because then

$$D \int_0^D f(x) \,dx > \int _0^D xf(x) \,dx. $$

This completes the proof of (42) if any of the conditions (50)–(51) holds.

The inequality (43) is similarly proved.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaffney, C., Ben-Israel, A. A simple insurance model: optimal coverage and deductible. Ann Oper Res 237, 263–279 (2016). https://doi.org/10.1007/s10479-013-1469-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1469-2

Keywords

Navigation