Skip to main content
Log in

Properties and calculation of multivariate risk measures: MVaR and MCVaR

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A recent paper by Prékopa (Ann. Oper. Res. 193(1):49–69, 2012) presented results in connection with Multivariate Value-at-Risk (MVaR) that has been known for some time under the name of p-quantile or p-Level Efficient Point (pLEP) and introduced a new multivariate risk measure, called Multivariate Conditional Value-at-Risk (MCVaR). The purpose of this paper is to further develop the theory and methodology of MVaR and MCVaR. This includes new methods to numerically calculate MCVaR, for both continuous and discrete distributions. Numerical examples with recent financial market data are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228.

    Article  Google Scholar 

  • Atkinson, K. E. (1988). An introduction to numerical analysis (2nd ed.). New York: Wiley.

    Google Scholar 

  • Ben-Tal, A., & Ben-Israel, A. (1991). A recourse certainty equivalent for decisions under uncertainty. Annals of Operations Research, 30, 3–44.

    Article  Google Scholar 

  • Ben-Tal, A., & Teboulle, M. (1986). Expected utility, penalty functions, and duality in stochastic nonlinear programming. Management Science, 32(11), 1445–1466.

    Article  Google Scholar 

  • Ben-Tal, A., Ben-Israel, A., & Teboulle, M. (1991). Certainty equivalents and generalized information measures: duality and extremal principles. Journal of Mathematical Analysis and Applications, 157, 211–236.

    Article  Google Scholar 

  • Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., & Makino, K. (1998). An intersection inequality for discrete distributions and related generation problems (Vol. 2719). Berlin: Springer.

    Google Scholar 

  • Bowers, N. L. J., Gerber, H. U., Hickman, J. C., Jones, D. A., & Nesbitt, C. J. (1997). Actuarial mathematics. Schaumburg: The Society of Actuaries.

    Google Scholar 

  • Busemann, H. (2008). Convex surfaces. Mineola: Dover.

    Google Scholar 

  • Cousin, A., & Di Bernadino, E. (2011). A multivariate extension of value-at-risk and conditional-tail-expectation. Université Lyon 1, ISFA, Laboratoire SAF.

  • Dentcheva, D., & Ruszczyński, A. (2009). Optimization with multivariate stochastic dominance constraints. Mathematical Programming, 117, 111–127.

    Article  Google Scholar 

  • Dentcheva, D., Prékopa, A., & Ruszczyński, A. (2000). Concavity and efficient points of discrete distributions in probabilistic programming. Mathematical Programming Series A, 89, 55–77.

    Article  Google Scholar 

  • Föllmer, H., & Schied, A. (2002). Convex measures of risk and trading constraints. Finance and Stochastics, 6, 429–447.

    Article  Google Scholar 

  • Gasca, M., & Sauer, T. (2000). On the history of multivariate polynomial interpolation. Journal of Computational and Applied Mathematics, 122, 23–35.

    Article  Google Scholar 

  • Jorion, P. (2006). Value at risk: the new benchmark for managing financial risk (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Müller, A., & Stoyan, D. (2002). Comparison methods for stochastic models and risks. Chichester: Wiley.

    Google Scholar 

  • Noyan, N., & Rudolf, G. (2012 to appear). Optimization with multivariate conditional value-at-risk constraints. Operatinal Research. Optimization online.

  • Pflug, G. C. (2000). Some remarks on the value-at-risk and conditional value at risk. In Probabilistic constrained optimization (pp. 272–281).

    Chapter  Google Scholar 

  • Prékopa, A. (1970). On probabilistic constrained programming. In Proceedings of the princeton symposium on mathematical programming (pp. 113–138). Princeton: Princeton University Press.

    Google Scholar 

  • Prékopa, A. (1971). Logarithimic concave measures with applications to stochastic programming. Acta Scientiarum Mathematicarum, 32, 301–316.

    Google Scholar 

  • Prékopa, A. (1973a). Contributions to the theory of stochastic programming. Mathematical Programming, 4, 202–221.

    Article  Google Scholar 

  • Prékopa, A. (1973b). On logarithmic concave measures and functions. Acta Scientiarum Mathematicarum, 34, 335–343.

    Google Scholar 

  • Prékopa, A. (1988). Boole-Bonferroni inequalities and linear programming. Operational Research, 36(1), 145–162.

    Article  Google Scholar 

  • Prékopa, A. (1990). Dual method for a one-stage stochastic programming problem with random rhs obeying a discrete probability distribution. Operational Research, 34, 441–461.

    Google Scholar 

  • Prékopa, A. (1990a). Sharp bounds on probabilities using linear programming. Operational Research, 38(2), 227–239.

    Article  Google Scholar 

  • Prékopa, A. (1990b). The discrete moment problem and linear programming. Discrete Applied Mathematics, 27, 235–254.

    Article  Google Scholar 

  • Prékopa, A. (1995). Stochastic programming. Dordrecht: Kluwer Academic.

    Book  Google Scholar 

  • Prékopa, A. (2003). Probabilistic programming. In A. Ruszczyński & A. Shapiro (Eds.), Hand books in operations research and management science (Vol. 10, pp. 267–351).

    Google Scholar 

  • Prékopa, A. (2012). Multivariate value at risk and related topics. Annals of Operations Research, 193(1), 49–69.

    Article  Google Scholar 

  • Prékopa, A., Vizvári, B., & Badics, T. (1998). Programming under probabilistic constraint with discrete random variable. Dordrecht: Kluwer.

    Google Scholar 

  • Saita, F. (2007). Value at risk and bank capital management. Amsterdam: Elsevier

    Google Scholar 

  • Sauerbrei, W., Meier-Hirmer, C., Benner, A., & Royston, P. (2006). Multivariate regression model building by using fractional polynomials: description of SAS, STATA and R programs. Computational Statistics & Data Analysis, 50, 3464–3485.

    Article  Google Scholar 

  • Strang, G. (2007). Computational science and engineering. Cambridge: Wellesley-Cambridge Press.

    Google Scholar 

  • Uryasev, S., & Rockafellar, R. (2000). Optimization of conditional value at risk. The Journal of Risk, 2, 21–41.

    Google Scholar 

  • Vizvári, B. (1987). Beiträge zum Frobenius Problem. Dr. Sc. Nat. Dissertation. Techniche Hochschule Carl Schorlemmer, Leuna-Merseburg, Germany.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwook Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Prékopa, A. Properties and calculation of multivariate risk measures: MVaR and MCVaR. Ann Oper Res 211, 225–254 (2013). https://doi.org/10.1007/s10479-013-1482-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1482-5

Keywords

Navigation