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Abstract

This paper reexamines the unintended consequences of the two widely cited models

for measuring environmental efficiency—the hyperbolic efficiency model (HEM) and

directional distance function (DDF). I prove the existence of three main problems: (1)

these two models are not monotonic in undesirable outputs (i.e., a firm’s efficiency

may increase when polluting more, and vice versa), (2) strongly dominated firms may

appear efficient, and (3) some firms’ environmental efficiency scores may be computed

against strongly dominated points. Using the supply-chain carbon emissions data from

the 50 major U.S. manufacturing companies, I empirically compare these two models

with a weighted additive DEA model. The empirical results corroborate the analytical

findings that the DDF and HEM models can generate spurious efficiency estimates and

must be used with extreme caution.

Keywords: Eco-efficiency; undesirable outputs; data envelopment analysis; carbon

efficiency; manufacturing
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1 Introduction

The growing awareness for environmental sustainability has made corporate environmental

performance become the focus of public attention. Investors, NGOs, and consumers are now

paying more and more attention to the environmental aspects of firms (Anton et al., 2004).

While the debate over whether “it pays to be green” still continues, one generally recognized

fact is that firms can no longer concentrates solely on their financial competitiveness while



ignoring their impacts on environmental sustainability. The optimal or efficient pollution

level for a firm (given the resources consumed and products produced) is a matter largely

subject to technological constraints, and therefore a firm’s eco-efficiency should reflect the

firm’s performance relative to other firms in the same industry. The notion of environmental

efficiency concerns a similar question: Can a firm produce more desirable outputs while gen-

erating lower environmental impacts than its competitors? The answer to this question can

provide crucial information for managers and policymakers to act pro-actively in strategy-

making and resource allocation to ensure both corporate and environmental sustainability.

However, measuring environmental efficiency can be challenging for several reasons. First,

calculating environmental efficiency scores requires an articulation of weights or preferences

for productive inputs and outputs, but both eliciting and combining preferences are difficult

in a multi-stakeholder environment (Baucells and Sarin, 2003; Kerr and Tindale, 2004).

Second, most undesirable outputs, such as greenhouse gas emissions and toxic releases, do

not have a well-established market from which we can obtain reliable price signals. This

makes prioritizing different environmental factors difficult. For example, it can be extremely

difficult assign specific weights to different dimensions of corporate social performance, such

as environmental consciousness and community relationship (Chen and Delmas, 2011).

The absence of reliable price information for environmental impacts makes data envel-

opment analysis (DEA) a useful tool for assessing environmental efficiency. DEA does not

require explicit assumptions about weights, production functions, and probability distribu-

tions for environmental inefficiency. Weights are optimized based on which input(s) a specific

firm excels at utilizing, or which output(s) a firm excels at generating in comparison to the

other firms in the sample. In this way, each firm can endogenously determine the weights

used to evaluate its eco-efficiency. Applications of DEA to environmental efficiency have also

spanned across a variety of problem contexts where undesirable outputs are consequential,

including banking and finance, electricity generation, manufacturing, and transportation.

Among different environmental efficiency models, the directional distance function (DDF)

(Chung et al., 1997) and hyperbolic efficiency models (HEM) (Färe et al., 1989) are two

of the most frequently used models in the literature.1 Compared with other competing

DEA models (e.g., Seiford and Zhu, 2002; Zhou et al., 2007), the DDF and HEM adopt an

explicit assumption about the trade-off (and boundary) relationship between the desirable

and undesirable outputs in the production possibility set. This assumption is known as

weak disposability on undesirable outputs (Shephard, 1970).2 Despite the prevalence of the

1These two models together have accumulated over 1300 citations according to Google Scholar and the
citations are increasing at an accelerated rate (Access date: 15 July 2013.)

2To economize on page space, this study will mostly focuses on the constant returns-to-scale (CRS) model,
as the CRS model was also adopted in (Chung et al., 1997) and (Färe et al., 1989). The key analytical insights
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weak disposability assumption, however, recent studies have raised a fundamental question

about this assumption and the two models. Murty et al. (2012) discover that the reference

points of DDF and HEM may not be output efficient. Chen and Delmas (2013) compare five

representative DEA models for measuring eco-efficiency (including DDF and HEM) through

an extensive Monte-Carlo experiment. They found numerical evidence showing that the

DDF and HEM are non-monotonic in pollutant quantities and the DDF and HEM scores

exhibited low correlation with the (simulated) true efficiency scores.

Building on recent findings on WDA, this study aims to further explore the analytical

structure linked to these issues. This study proves three main problems associated with these

two models and the weak disposability assumption: (1) Non-monotonicity in undesirable

outputs : the two models are not monotonic in undesirable outputs (i.e., a firm’s efficiency

may increase when polluting more, and vice versa), (2) misclassification of efficiency status :

strongly dominated firms may be identified efficient, and (3) strongly dominated projection

targets : environmental efficiency scores may be computed against strongly dominated points.

This study suggests that DDF and HEM should be applied with great caution, as these two

models are likely to provide distorted evaluation results. This paper includes a case study

based on the carbon emissions data of fifty major U.S. manufacturing firms.

2 Production models of undesirable outputs

The production model that I consider consists of n decision-making units (DMU). Each DMU

uses m inputs to produce s desirable outputs along with p different undesirable outputs.

The input vector of DMU q is denoted by Xq = (xq1, . . . , xqm), desirable output vector by

Yq = (yq1, . . . , yqs), and undesirable output vector by Bq = (bq1, . . . , bqp). The mapping that

links the input vector to the two output vectors is given by:

f(Xq) , {(Yq, Bq) : (Yq, Bq) can be produced by consuming Xq } (1)

The function f represents the production technology because it captures the correspon-

dence between inputs and outputs. An implicit assumption underlying the model is that

producer q should maximize Yq and minimize Bq for a given Xq. It follows that output

efficiency can be defined as:

derived from the CRS model are similarly applicable to the variable returns-to-scale (VRS) model. For a
more comprehensive discussion on the VRS model under the weak disposability assumption, readers are
referred to Kuosmanen (2005), Kuosmanen and Podinovski (2009), and Chen (2013).
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Definition 1 (output efficiency). DMU q is output efficient if there does not exist a non-zero

vector (SY , SB) ∈ <s+ ×<
p
+, such that (Yq + SY , Bq − SB) ∈ f(Xq).

Definition 1 means that a DMU is output efficient if technologically it cannot improve

any of its outputs at its current input level. The above definition of output efficiency is

similar to but different from the Pareto-Koopmans efficiency (Cooper et al. 2007, pp.45-46),

in that output efficiency does not consider input-side inefficiency and slacks (i.e., reduction

in inputs).

This definition also implies that firms can achieve output efficiency by either increas-

ing Yq, decreasing Bq, or both. This relationship then poses the question as to the way

to model or axiomatize the trade-off between the desirable and undesirable outputs. One

possibility is to assume that such a trade-off does not exist, ceteris paribus. In this situation,

what will later be referred to as free disposability, the technology set (X, f(X)) permits a

unilateral change in undesirable outputs with respect to desirable outputs; i.e., (Yq, Bq) ∈
f(Xq) ⇒ (Yq, B

∗
q ) ∈ f(Xq) for all B∗q = Bq, and (Yq, Bq) ∈ f(Xq) ⇒ (Y ∗q , Bq) ∈ f(Xq),

for all Y ∗q 5 Yq and Y ∗q ∈ <s+, “5” being the componentwise inequality. Alternatively, one

may assume that reducing undesirable outputs should not be “free,” by invoking the weak

disposability assumption (WDA) on undesirable outputs. Denoting the technology set under

WDA as fw(Xq), the WDA is defined as a production technology satisfying the following

three conditions (Shephard, 1970): (i)(Yq, Bq) ∈ fw(Xq) implies that (Y ∗q , Bq) ∈ f(Xq) for

all Y ∗q 5 Yq, (ii) (Yq, Bq) ∈ fw(Xq) and 0 ≤ θ ≤ 1 implies that (θY, θB) ∈ fw(Xq), and (iii)

(Yq, Bq) ∈ fw(Xq) implies that (Yq, Bq) ∈ f(X∗q ) for all X∗q = Xq.

The first condition in WDA means that if (Xq, Yq, Bq) is observed, it is then technologi-

cally feasible to produce a lower amount of desirable outputs, given Xq and Bq. The second

condition stipulates that proportional reduction of the joint output vector (Yq, Bq) is feasible.

The first two conditions combined imply that a reduction in Bq must be accompanied by a

reduction in desirable outputs Yq, while the converse is not true.3 Clearly, the technology set

fw(Xq) is a subset of f(Xq), because of these additional constraints associated with WDA.

In the production economics literature, WDA is meant to reflect the notion that dis-

posal of undesirable production outputs are not free (or costly) in a “regulated” market

environment (Färe et al., 1989, 2005), and that it is difficult to explicitly (or parametrically)

factor in this cost in a DEA model.4 In this regulated environment, the process-oriented

view offers one clear example as to why the disposal of pollutants can be costly. Yet, there

3See Murty et al. (2012) for an alternative formulation that combines WDA with a technology set that
treats undesirable outputs as inputs.

4The regulated market in this context is not limited to the case of a legally regulated market but refers
more generally to a market where participants have an intrinsic interest in reacting to firms’ polluting
behaviors.
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are many other similar but exogenous factors that can also contribute to the costly disposal

of pollutants: for example, the imposition of fines, declining demand from environmentally

conscious customers, and litigation costs.

Consider for example manufactures of certain consumer products uses labor, plants, and

raw materials to produce consumer products but at the same time they generate greenhouse

gases (GHG) emissions. Before any regulations or market disincentives on generating GHG

emissions are introduced, firms’ production of products and GHGs are independent, mean-

ing that firms may freely adjust GHGs without affecting its productive capability for the

products. In contrast, when such a regulation on GHG is enforced, reduction of GHG will

come with an implied cost, and this implied cost is expressed in the form of output reduc-

tion in the model. The abatement cost can arise due to endogenous factors such as costs for

upgrading production facilities, training employees, or switching to renewable raw materials.

The abatement cost can also incurred by exogenous factors such as the imposition of fines,

losing the demand from environmentally aware customers, and litigation costs. In Sec. 5 I

will revisit this problem and present a case study in which we compute carbon efficiencies

based on real company data.

The technology fw can be formulated as a linear system under the following axioms:

fw(Xq) is convex, and fw(Xq) is the intersection of all sets satisfying the convexity axiom

and disposability assumptions; i.e., the production set fw =
⋂n
j=1 f

′
w(Xj), where f ′w(Xj) is

any convex set satisfying the disposability assumption for DMU j (Banker et al., 1984). The

model can be written as:

fw(Xq) = {(Y,B) :
n∑
j=1

λjxji ≤ xqi, i = 1, . . . ,m

n∑
j=1

λjyjr ≥ yqr, r = 1, . . . , s

n∑
j=1

λjbjk = bqk, k = 1, . . . , p

λj ≥ 0, j = 1, . . . , n} (2)

The boundary of (2) consists of non-negative linear combinations of all DMUs’ input and

output vectors. The λj represents the production intensity of the jth DMU, which can take

different values to populate different areas of (Xq, fw(Xq)). The WDA is enforced by the

equality constraints associated with undesirable outputs. See p.50 in Färe and Grosskopf

(2004) for the proof that shows (2) satisfies the WDA. If on contrary we assume that undesir-

able outputs are freely disposable, the new technology set ff (Xq) can be recast by replacing
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the equality constraints with “≤” inequality constraints, meaning that the efficient level

of undesirable outputs are bounded below by the left-hand-side value and undesirable out-

puts can be improved independently from desirable outputs. Note that the set (Xq, fw(Xq))

is convex and (2) also satisfies the constant returns-to-scale technological assumption; i.e.,

(Y,B) ∈ fw(X) implies that (δY, δB) ∈ fw(δX), δ ≥ 0.

3 Output efficiency and models for environmental ef-

ficiency

The output set fw allows us to compute the environmental efficiency for each observation as

an optimization problems. I focus on two most well-known environmental efficiency models

embedded with the WDA: the directional distance function (DDF) (Chung et al., 1997) and

hyperbolic efficiency models (HEM) (Färe et al., 1989).

I now introduce a few alternative models capable of incorporating undesirable outputs

into efficiency assessment. Seiford and Zhu (2002), for example, inverse the sign of undesir-

able outputs such that the conventional DEA models are applicable to the transformed data

set. Reinhard et al. (2000) develop a stochastic environmental efficiency model that accounts

for statistical noise and allows for making statistical inferences. Korhonen and Luptacik

(2004) propose several approaches to embed undesirable outputs in the DEA model, includ-

ing treating undesirable outputs as inputs and assigning negative weights to undesirable

outputs. Zhou et al. (2007) develop an environmental efficiency model similar to the HEM

model. In their model undesirable outputs does not need to reduce in the same proportion

(as it does in the classical DEA model), and their models focus accounting for excessive

undesirable outputs but not shortfall of undesirable outputs in the computation of environ-

mental efficiency scores. However, the projection points obtained from the above models are

not necessarily output efficient. Then how can we compare different environmental efficiency

models? Conducting simulation analysis is one possible way. See Chen and Delmas (2013)

for a simulation methodology to simultaneously generate multiple desirable and undesirable

outputs, as well as criteria for evaluating environmental efficiency models.

The formulation of the directional distance function (DDF) is given in (3). Specifically,

the DDF model calculates the environmental efficiency score of a firm according to the

maximum improvement in outputs that this firm can make in the direction (gY , gB), such

that the firm remains in fw(Xq) after this improvement. Therefore environmentally efficient

firms in the DDF model are those obtaining a zero optimal value (i.e., β∗ = 0), in a sense
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that these firms cannot improve their outputs following the pre-determined direction.

DDF
(
(Xq, Yq, Bq)

∣∣(gY , gB)
)

= max
{
β : (Yq + βgy, Bq − βgB) ∈ fw(Xq)

}
(3)

Similar to DDF, HEM computes environmental efficiency scores according to how far

a firm can proportionally increase desirable outputs and reduce undesirable outputs. The

formulation of the HEM is (Färe et al., 1989):

H
(
(Xq, Yq, Bq)

)
= max

{
γ : (γYq, Bq/γ) ∈ fw(Xq)

}
(4)

The HEM utilizes a radial measure, by which the evaluated firm simultaneously increases

desirable outputs and decrease undesirable outputs by a scaling factor γ. The optimal value

of this factor (γ ≥ 1) in (4) is the hyperbolic efficiency score. Efficient firms’ efficiency scores

are equal to 1, and inefficient firms’ scores are greater than 1 (Färe et al., 1989). The main

differences between HEM and DDF include (i) HEM adopts multiplicative efficiency mea-

sures, instead of the additive measures used in DDF, and (ii) HEM is a nonlinear (fractional)

optimization problem.

We can calculate the projection point for each DMU according to the efficiency score

obtained from either (3) or (4). For example, (Xq, Yq + β∗gy, Bq − β∗gB) is the projection

point of DMU q under DDF, and (Xq, γ
∗Yq, Bq/γ

∗) is the projection point of DMU q under

HEM, where β∗ and γ∗ are the optimal solutions to the corresponding efficiency models.

Clearly, the projection point is at the boundary of the production set, and different models

or parameter may result in different projection points. As noted, the projection point is the

linear combination of different observed DMUs. I define the reference set for an evaluated

DMU as the collection of DMUs that forms the projection point. The λ’s associated with

these active DMUs are positive in the optimal solution (Cooper et al., 2007). Thus this also

means that an efficient DMU is its own reference set and projection point.

This section details the environmental efficiency measurement. I will elaborate on how

DDF and HEM fail to achieve the following three common purposes of efficiency measure-

ment: Non-monotonicity in undesirable outputs, misclassification of efficiency status, and

strongly dominated projection targets.

3.1 Efficiency classifications

To put the three problems of DDF and HEM in context, I develop a classification system for

DMUs, in which DMUs are screened by its output-efficiency status (according to Definition

1) and, for inefficient DMUS, whether their reference sets include inefficient points. Following
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the classification scheme introduced in Charnes et al. (1991), I divide DMUs into four disjoint

sets: E, Ẽ, NE and ÑE, which respectively represent “Output efficient DMUs,” “Output

inefficient DMUs on the production frontier,” and “inefficient DMUs whose reference set

contains only DMUs in E,” and “inefficient DMUs whose reference set contains DMUS in

Ẽ.” Note that if λj > 0 in the optimal solution to (3) or (4), DMU j will be in the reference

set of the evaluated DMU. More specifically,

Definition 2. (i) The set E consists of DMUs that belong to the boundary set of fw(X)

and are output efficient. (ii) The set Ẽ consists of DMUs that belong to the boundary set

of fw(X) and are NOT output efficient. (iii) The set NE consists of DMUs in the relative

interior of fw(X) whose reference sets contain only DMUs in E. (iv) The set ÑE consists

of DMUs in the relative interior of fw(X) whose reference sets contain at least one DMU in

Ẽ.

Observe that a DMU must belong to one and only one of the four efficiency classifications;

that is, |E ∪ Ẽ ∪ ÑE ∪ NE| = n. When Ẽ is nonempty, we have the misclassification of

efficiency status problem; when ÑE is nonempty, we then have the strongly dominated

projection targets problem.

The classification that an output-inefficient DMU falls into may depend on whether DDF

or HEM is used (and the directional vector when DDF is used), as was shown in the earlier

numerical example. However, as a DMU∈ E must be the extreme point of the polyhedra

corresponding to both fw and ff (Charnes et al., 1985). Theorem 1 follows directly from

Definition 2:

Theorem 1. A DMU is in E under ff if and only if this DMU is in E under fw.

In other words, Theorem 1 means that the set of DMUs in E are the same for DDF and

HEM. In addition, the non-emptiness of ÑE also implies the non-emptiness of Ẽ, but the

converse is not necessarily true.

4 Problem illustrations & analysis

This section analyzes the aforementioned three limitations associated with the DDF and

HEM models. Next I will provide an example to illustrate how the two problematic classifi-

cations Ẽ and ÑE can be non-empty under the weak disposability assumption.
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Table 1: Numerical example 1

Firm Input x Undesirable output b Desirable output y
A 1 1 3
B 1 2 4
C 1 3 3.5
D 1 4 2
E 1 3 2

4.1 Illustrative example

The example is shown in Table 1. The example consists of five observations (firms A to

E) with one input, one desirable, and one undesirable output. I assume that all five firms

use the same amount of inputs for the ease graphical presentation. Figure 1 illustrates the

output set fw for this sample based on the production model (2). The output set fw(X) is

represented by the region ‘0ABCDF0′. When WDA is not imposed, the output set expands

and becomes the area under the line segment ‘0AB′ and the horizontal line extended from

B to its right. More specifically, for the desirable output y, which is freely disposable, the

area below the line segments ‘0AB′ are considered feasible (c.f. the inequality constraint for

y in (2)). Observe that the frontier under the WDA (i.e., the boundary of fw) may include

points dominated in both y and b, which correspond to the problem of misclassification of

efficiency status. For example, firms C and D produce a lower amount of y but more b

than firm B. However, firms C and D are in the boundary set of fw(X). Firm E may be

projected to the dominated portion of the boundary set (i.e., the line segment between B or

C, or between C and D) with certain choices of directional vectors. This potential problem

for firm E is called the problem of strongly dominated projection targets.

I use the DDF and HEM models to to calculate the efficiency scores based on data in

Table 1. As the DDF solutions may depend on the directional vector chosen, I compute the

efficiency scores under different directional vectors (gY , gB) = (cos(ϑ), sin(ϑ)) for ϑ = 0 to

π/2, such that (gY , gB) is non-negative. The results are shown in Figure 2(a). The figure

shows that firms C and D will appear efficient under certain directional vectors (zero scores)

while appear inefficient under other vectors (positive scores). For example, in Figure 2(a)

firm C is DDF inefficient when ϑ is set to a value higher than the threshold ∼ 26.6◦; i.e.,

the angle that the directional vector would pass the BC segment in Figure 1. Similarly,

firm D’s DDF efficiency score drops from around 2.0 to zero once ϑ is larger than ∼ 56.3◦.

Firm E’s DDF efficiency scores fluctuate as ϑ’s value increases from 0 to 26.6◦, then to 63.4◦

and finally to 90◦. Moreover, the DDF scores of all three firms are a non-monotonic and

non-smooth function of the directional vector. For the HEM model, Figure 2(b) shows that
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Figure 1: Output set fw under the weak disposability assumption

firms B and C both appear efficient, although apparently firm C is dominated by firm B

(see Table 1).
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Figure 2: DDF efficiency scores of firms C, D, and E in the numerical example

Let us first focus on the non-monotonicity problem:

Theorem 2. Suppose Bj and gB are strictly positive for j = 1, . . . , n, then DDF
(
(Xq, Yq, Bq)

∣∣gY , gB)
and H

(
(Xq, Yq, Bq)

)
are non-monotonic in undesirable outputs.

Proof: Please see Appendix A.

The absence of the monotonicity property has a profound implication on the validity of

the DDF and HEM models under WDA: ceteris paribus, an increase in a firm’s undesirable

outputs may improve the firm’s efficiency score. Similarly, a reduction in a firm’s undesirable
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outputs may damage the firm’s efficiency score. In the next section I will look into the

conditions under which the non-monotonicity and the other two problems mentioned above

will occur.

4.2 Diagnosis and analytical results

As noted, the three problems are closely tied to the efficiency classifications developed earlier

in this paper. Table 2 shows the correspondences between the classification sets (if they are

non-empty) and the three problems. Although the last two problems are related to ÑE,

these problems are also indirectly related to Ẽ since the existence of ÑE implies that of Ẽ.

Table 2: Efficiency classifications and the three efficiency measuring problems

Classification Misclassification of ef-
ficiency status

Non-monotonicity in
undesirable outputs

Strongly dominated
projection targets

Ẽ X (X) (X)

ÑE X X

Thus, for a particular set of observations, from Table 2, Ẽ and/or ÑE is empty if and

only if a DMU is associated with any of the three problems. Next I introduce a simple

procedure for checking whether Ẽ and/or ÑE is empty. In this procedure, we solve DDF

and HEM under weak and free disposability separately, and then compare the efficiency

scores. Theorem 3 describes the properties of this procedure.

Theorem 3. Define DDF as in (3). Then

(i) DDF
(
(Xq, Yq, Bq)

∣∣gY , gB) = 0 and DDFf
(
(Xq, Yq, Bq)

∣∣gY , gB) > 0 implies that DMU

q belongs to Ẽ.

(ii) If DDF
(
(Xq, Yq, Bq)

∣∣gY , gB) > 0 but is not equal to DDFf
(
(Xq, Yq, Bq)

∣∣gY , gB), then

DMU q belongs to ÑE.

Proof: Please see Appendix A.

The idea behind this procedure is that the boundary sets of fw(X) intersects with that of

ff (X) only at the output-efficient facet. With minor modification Theorem 3 can be applied

to the HEM model, as well, in which case we change the ‘0’ in the theorem to ‘1’ and the

lower bound of H
(
(Xq, Yq, Bq)

)
.

Since the directional vector in DDF is a user-specified parameter, one might ask: “Can

we find a directional vector(s) for DDF such that the efficiency classifications Ẽ and ÑE can

become empty?” In other words, can we find a directional vector that projects all inefficient

DMUs to the output-efficient facet? The next theorem shows that such a directional vector
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Table 3: Numerical example 2

Firm Input x Undesirable output b1 Undesirable output b2 Desirable output y
A 1 5 10 2
B 1 2 4 4
C 1 3.5 3.5 3
D 1 4 2 4
E 1 7 4 2
F 1 2.5 4.5 2.5
G 1 3 1 2.1
H 1 10 5 2

may not always exist, and whether such vectors exist or not may depend on the dispersion

of input and output variables. This also means that DDF may be bound to errors for certain

data structure (later I will show that when the same condition applies to HEM). Also note

that the fact that ÑE is not empty implies that Ẽ is not empty.

Theorem 4. For a production sets defined as in (2), there does not always exist a (gY , gB) =

0 such that ÑE is empty and DDF
(
(Xj, Yj, Bj)|(gY , gB)

)
> 0 for all j /∈ E.

Figure 3: Graphical illustration of the numerical example 2

The numerical example shown in Table 3 provides intuition for the problem and can serve

as a proof by contradiction for Theorem 4. Figure 3 displays the 8 observations (firm A to

firm H) with two undesirable outputs (b1 and b2) and one desirable output (y). Without

loss of generality, I assume that the input of all firms are equal. The efficient facet in this

example is shaded. Firms, such as C, E, and F , are in the interior of fw() and therefore they
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are inefficient. Firms, such as A, B, D, G, and H, are the extreme points fw() and are on the

boundary of the output set. Observe that firms A and H, while being dominated in outputs,

are still located on the boundary of fw(). Now our question is then to find a directional

vector that can project both firms A and H to the efficient facet and hence Ẽ becomes

empty. Based on (2) and (3), we can formulate the set of permissible directional vectors for

firm A as the set ΩA =
{

(gBb1, g
B
b2, g

Y
y ) : 2λAB+4λAD+3λAG = 5−gBb1; 4λAB+2λAD+1λAG = 10−gBb2;

4λAB + 4λAD + 2λAG ≥ 2 + gYy ; λAB + λAD + λAG ≤ 1; λAB, λ
A
D, λ

A
G ≥ 0

}
.

Here (gBb1, g
B
b2, g

Y
y ) is the directional vector to be determined, and λAB, for example, rep-

resents the intensity of firm B in forming the efficient facet for firm A. Similarly, we can

formulate the set of directional vectors for firm H as ΩH =
{

(gBb1, g
B
b2, g

Y
y ) : 2λHB+4λHD+3λHG =

10− δ ∗gBb1; 4λHB + 2λHD + 1λHG = 5− δ ∗gBb2; 4λHB + 4λHD + 2λHG ≥ 2 + δ ∗gYy ; λHB +λHD +λHG ≤ 1;

λHB , λ
H
D , λ

H
G , δ ≥ 0

}
,

where δ is a positive number used for scaling the directional vector (gBb1, g
B
b2, g

Y
y ).

Now our question is reduced to one of checking whether ΩA ∩ΩH is empty; i.e., whether

these two systems of constraints combined are feasible. If ΩA ∩ΩH is empty, there does not

exist a directional vector such that firms A and H can be projected onto the efficient facet.

First let us look at ΩA. By the last two constraints of ΩA, it must hold that sb1 ≤ 5 and

sb2 ≥ 6 for any sy ≥ 0. Hence sb2 > sb1. For ΩH , we can similarly show that sb2 < sb1.

Therefore ΩA ∩ΩH is empty, which also means that for any nonnegative directional vectors,

at least one of firms A or H will obtain a zero DDF score.

Let us now look back into the DDF formulation for more insights and intuitions. Suppose

the directional vector is not given, we may express the constraints of DDF as (for DMU

‘0’) as gYr ≤
∑

j∈E λjyjr − y0r, r = 1, . . . , s,, gBk =
∑

j∈E λjbjk − b0k, k = 1, . . . , p, and∑
j∈E λjxji ≤ x0r, i = 1, . . . ,m. In the reference set is limited to output-efficient DMUs

only, so the projection point (if exists) will be output efficient. Given that X0 is not too

high compared to those of the DMUS in E, then if one of the undesirable output of DMU

0 (say u) is relatively high, u will drive up the value of gBu (compared with other gBk ’s) to

maintain feasibility, since high values of λ’s may violate the input constraints. Now suppose

there exists another DMU whose undesirable output v (v 6= u) also assumes high value,

this DMU would impose a similar requirement on the relative magnitude between gBv and

all the other gBk ’s. Putting these conditions together will then result in infeasibility in the

search of a common directional vector that projects both DMUs onto the output-efficient

facet. Note that in certain industrial sectors it is not uncommon that the majority of the

pollution is produced by a small proportion of producers. For example, Freudenburg (2005)

finds evidence of the disproportion of emissions at the macro and industrial level. Using

the toxic release inventory data in the United States, he finds that around 80% of the toxic
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release is usually produced by only 20% of the firms in an economy or sector.

Theorem 5 shows that the HEM model also has the misclassification problem.

Theorem 5. The non-emptiness of Ẽ under DDF for all non-negative directional vectors

implies the non-emptiness Ẽ under HEM.

Proof: Please see Appendix A.

Theorem 5 and the above discussion indicate that DMUs producing more undesirable

outputs can appear environmentally efficient than other DMUs in DDF under akk directional

vectors. In summary, the above analysis confirms that DDF and HEM are subject to the three

efficiency measuring problems, especially when extremely output-inefficient observations are

present. As noted earlier, the projection targets must be strongly efficient if an (weighted)

additive model is used (Charnes et al., 1985). Weighted additive models are a general class

of models that include many variants (Charnes et al., 1985; Seiford and Zhu, 2005). Next

I will compare DDF and HEM with a weighted additive model, which is adapted from the

range-adjusted model (Cooper et al., 1999) and is called Median Adjusted Measure (MAM),

by means of empirical data from major U.S. manufacturing firms. Please refer to Appendix

B for detail about the MAM model. I conclude this section by the following theorem (the

proof can be found in Charnes et al. (1985)):

Theorem 6. For all weighted additive model is used, all DMUs either belong to E or Ẽ; or

equivalently NE and ÑE are empty sets.

5 Measuring the supply chain carbon-efficiency of ma-

jor U.S. manufacturing firms

As environmental problems such as climate changes and resource scarcity continue to grow,

companies are faced with mounting pressure to mitigate their environmental impacts be-

yond the legal requirement—one of the most noticeable among them is corporate carbon

emissions. Foreseeing the development of carbon-control mechanisms such as carbon tax

and cap-and-trade systems, more and more managers and investors begin to view excessive

carbon emissions as an indication of corporate misgovernance, as well as a major source of

risk and uncertainty (Hoffman, 2005; Carmona and Hinz, 2011). Many leading companies

across different industries therefore have attempted to seek ways to improve and measure

their carbon-related performance compared with their competitors’.

The sample used in the application consists of 50 publicly traded manufacturing com-

panies with the highest total assets according to 2-digit NAICS codes (31, 32 and 33) in
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year 2009. Data about total assets, cost of goods sold, and revenue are collected from the

Standard & Poor’s COMPUSTAT database; the GHG emission data are compiled by Tru-

cost (http://www.trucost.com). I consider total assets and cost of goods sold as the inputs,

annual revenues as the desirable output, and annual direct and supply chain GHG emis-

sions as the two undesirable outputs. Specifically, direct GHG emissions are those generated

within the firm, and supply chain GHG emissions are those generated by the firm’s first-

tier suppliers. Summary statistics of the input and output variables are provided in Table

4. The financial variables are measure in million U.S. dollars, and the GHG emissions are

measured in CO2e tons. The Carbon Dioxide Equivalent (CO2e) is a measurement unit used

to aggregate the impact caused by different greenhouse gases. In CO2e, different greenhouse

gases are expressed as the amount of carbon dioxides that can cause a similar global warming

effect in the atmosphere. For DDF, the sample average revenues and emission values are

used as the directional vector. Efficiency scores obtained from the MAM model, as well as

DDF and hyperbolic models for the fifty firms can be found in Table 5. In this application

I focus on GHG as the environmental output from business operation. Note that these are

other indicators that are also critical to environmental sustainability (e.g., water contami-

nation and waste generation). Hence the evaluation results presented in this paper should

be interpreted with care. The efficiency classification for each firm under DDF and HEM is

also shown in the results. The classifications is determined by calculating a firm’s projection

points under DDF and HEM and then running the MAM model to evaluate the efficiency

of the projection points.

Table 4: Descriptive statistics of the inputs and outputs (n = 50)

Variable Median Std. Dev. Min Max
Cost of goods sold (in mil. $) 33801.6 39357.7 1335 220652
Total assets (in mil. $) 72168.7 61136.1 26295 276404
Revenue (in mil. $) 54236.2 50182.5 10416.14 301500
Direct GHGs (mil. tons of CO2e) 13.4 32.5 2.01 173.0
1st-tier suppliers GHGs (mil. tons of CO2e) 11.0 16.7 3.74 95.5

Table 5: Environmental efficiency scores and classifica-

tions for the major 50 manufacturing firms: the CRS

case

Company name MAM DDF HEM DDF class HEM class

Johnson & Johnson 0 0 1 E E

Cisco Systems Inc. 0 0 1 E E
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Nokia Corp. 0 0 1 E E

Apple Inc. 0 0 1 E E

Amgen Inc. 0 0 1 E E

Philip Morris Intl. Inc. 0 0 1 E E

Dell Inc. 0 0 1 E E

Archer Daniels Midland 0 0 1 E E

Medtronic Inc. 0 0 1 E E

Eli Lilly & Co. 0 0 1 E E

Qualcomm Inc. 0 0 1 E E

Evraz Group S.A. 17.99 0 1 Ẽ Ẽ

Alcoa Inc. 20.85 0 3.07 Ẽ ÑE

Boston Sci. Corp. 0.15 0 1 Ẽ Ẽ

Novartis AG 0.18 0.05 1.11 ÑE NE

Thermo Fisher Sci. Inc. 0.18 0.03 1.23 ÑE ÑE

Danaher Corp. 0.23 0.06 1.43 ÑE NE

Teva Pharma. Ind. Ltd. 0.25 0.00 1.02 ÑE ÑE

Bristol-Myers Squibb Co. 0.27 0.07 1.21 ÑE NE

Xerox Corp. 0.27 0.04 1.46 ÑE NE

Bombardier Inc. 0.29 0.06 1.46 ÑE NE

Corning Inc. 0.31 0.09 2.23 ÑE NE

Emerson Electric Co. 0.33 0.07 1.31 ÑE NE

National Oilwell Varco Inc. 0.34 0.07 1.65 ÑE NE

Coca-Cola Co. 0.35 0.08 1.24 ÑE NE

Altria Group Inc. 0.42 0.07 1.37 ÑE NE

Pfizer Inc. 0.46 0.10 1.15 ÑE ÑE

Hewlett-Packard Co. 0.46 0.08 1.20 ÑE ÑE

Northrop Grumman Corp. 0.46 0.15 1.28 ÑE ÑE

Lockheed Martin Corp. 0.49 0.11 1.34 ÑE ÑE

General Dynamics Corp. 0.55 0.17 1.39 ÑE ÑE

Merck & Co Inc 0.56 0.11 1.30 ÑE ÑE

Honeywell Intl. Inc. 0.64 0.20 1.41 ÑE ÑE

Intel Corp. 0.65 0.18 1.28 ÑE NE

Deere & Co. 0.69 0.12 1.74 ÑE NE

Johnson Controls Inc. 0.75 0.14 1.52 ÑE ÑE

Boeing Co. 0.80 0.18 1.35 ÑE NE

ABB Ltd. 0.95 0.22 1.53 ÑE ÑE

16



Abbott Laboratories 1.01 0.24 1.50 ÑE NE

Caterpillar Inc. 1.16 0.33 1.73 ÑE ÑE

United Tech. Corp. 1.18 0.28 1.45 ÑE ÑE

Ford Motor Co. 1.75 0.50 1.35 ÑE ÑE

Kimberly-Clark Corp. 2.32 0.39 1.67 ÑE ÑE

3M Co. 2.51 0.23 1.38 ÑE ÑE

PepsiCo Inc. 2.82 0.64 1.48 ÑE ÑE

Kraft Foods Inc. 2.83 0.24 2.17 ÑE NE

Procter & Gamble Co. 2.86 0.82 1.54 NE ÑE

DuPont 6.81 0.50 1.73 ÑE ÑE

Suncor Energy Inc. 12.16 0.56 2.17 ÑE ÑE

Dow Chemical Co. 24.53 0.81 1.74 ÑE ÑE

The results provide several interesting observations. First, some of the firms that appear

efficient in the DDF and HEM models are in fact output-dominated (i.e., the misclassification

problem). Specifically, there are three instances of Ẽ for DDF (Qualcomm, Evraz Group,

and Alcoa), and two for HEM (Qualcomm and Evraz Group). Take Evraz and Xerox as two

contrasting examples. Evraz is efficient in the DDF and HEM models, but has extremely

poor performance in the MAM model (46th among the 50 firms). Contrastingly, Xerox are

considered inefficient across all three models, but its MAM ranking is much better than

Evraz’s. In fact, however, these two firms are close in their total assets and cogs levels, but,

while Evraz’s annual sales in 2009 is only 64% of Xerox’s, its estimated direct emissions

are more than 100 times higher than Xerox’s, and its first-tier supply chain GHG emissions

are 2.55 times of Xerox’s counterparts. This shows that DDF and HEM may easily provide

distorted evaluation results.

We can also see that a high proportion of the firms have been misclassified in HEM

and DDF model. Specifically, 23 firms are assigned to either Ẽ or ÑE in the HEM model

(46% occurrence rate), and 39 in the the DDF model (78% occurrence rate). I apply a

Wilcoxon matched-pairs sign-rank test to detect if rankings change significantly across these

three models. To test the difference between the MAM score and the HEM score, the null

hypothesis is rejected at the 5% significance level (p = 0.0143); I obtain a similar result for

the case of MAM vs. DDF at the 1% significance level (p < 1%). Both the F variance

ratio test and the Levene’s test lead to the same conclusion that the scores have significantly

unequal variance at the 1% significance level.
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6 Discussion

6.1 The debate over weak-vs.-free disposability

Recall that Shephard’s production set is founded on the following axioms: convexity, minimal

extrapolation, free disposability on inputs and desirable outputs, and WDA on undesirable

outputs (Banker et al., 1984; Kuosmanen and Podinovski, 2009; Färe and Grosskopf, 2009).

Studies that advocate WDA argue that the environmental technology set should satisfy null-

jointness; see Färe and Grosskopf (2004) pp.76-77. Specifically, the null-jointness property

is described as “...if some positive amount of the good output is produced then some bad

output must also be produced. (Färe and Grosskopf (2004), p. 47).” Null-jointness rules

out the possibility to produce positive outputs with zero pollution, while this situation is

considered feasible in the model without WDA (such as (A.2)). Although this property may

be of certain importance for some ideological reasons, its empirical significance is limited. A

DMU with nonzero B will never be associated with a projection point with zero undesirable

outputs (see (2)), and therefore no DMUs’ efficiency score will rely on points that violate

the null-jointness property. If instead a DMU q whose Yq = 0 but Bq = 0 is observed, then

this DMU can be viewed as a proof that null-jointness is not an adequate assumption for

this sample. Several other desirable properties for efficiency measures has been suggested

in the production economics literature, including, for example, monotonicity, indication,

homogeneity, unit invariance, and continuity; see, e.g., Russell (1985) for a formal discussion.

Scheel and Scholtes (2003) proved that the additive model is almost everywhere continuous

in the input-output space. Murty et al. (2012) propose a production model that combines

technologies with WDA and technologies that treat undesirable outputs as inputs. However,

their technical efficiency index belongs to the Farrel-type of radial measure, and therefore the

index is not monotonic in undesirable output. In conclusion, although these properties all

have their distinct theoretical importance, the monotonicity property is arguably the most

fundamental property for the purpose of empirical applications.

6.2 Variable returns-to-scale technology

The models presented in this paper all satisfy the constant returns-to-scale (CRS) assump-

tion. In the standard DEA model, the variable returns-to-scale (VRS) formulation can be

easily expressed as the CRS formulation with an additional convexity constraint on the in-

tensity variables λj’s (Banker et al., 1984). The VRS formulation under WDA, however, is

more complicated. Specifically, the classical VRS formulation under WDA first appeared

in Shephard (1970) but the formulation is highly nonlinear. Recently, Kuosmanen (2005)
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extends Shephard’s original formulation and proposes a linear model that satisfies VRS and

WDA. See also Chen (2013) for a comparative discussion. Details about the Kuosmanen’s

VRS production model are provided in Appendix C, where we also use the formulation to

repeat the carbon-efficiency exercise based on the application data used in Sec. 5.

Comparing the VRS and CRS results shows that the error rates for these the VRS and

CRS models are very close (cf. Tables 5 and 6). Under the CRS assumption, the DDF model

generates 3 observations in Ẽ and 36 observations in ÑE, while the HEM model generates

2 observations in Ẽ and 21 observations in ÑE (Table 5). When switching to the VRS

assumption, the HEM generates the same number of observations in Ẽ and ÑE as in the

CRS case, while for DDF the number of observations in ÑE decreases to 25 and the number

of observations in Ẽ increases to 4. This shows that, at least for our sample, under the two

alternative assumptions on returns-to-scale the error rate largely remains stable for the Ẽ

class. Extending from the above observation, I want to underline that the implication of non-

monotonicity is not really limited to non-monotonicity per se, partly because one can only

observe non-monotonicity in a dynamic setting, which is not our focus. Rather, in a static

setting, the non-monotonicity property means that some inefficient firms may be wrongly

identified as efficient in the evaluation result. However, even when only a few (or even just

one) DMUs are wrongly identified as efficient, this can generate a profound consequence for

the other DMUs. For example, as illustrated in the paper, these dominated DMU(s) will

serve as the reference points forming the efficient facet (as if they were efficient), which will

be used to benchmark other inefficient DMUs in the sample. Then the efficiency scores of

these inefficient DMUs will be distorted in a sense that the scores are computed based on

dominated DMUs. As a result, the rankings of efficiency scores will lose its fundamental

meaning, even when only very few dominated DMUs are mistakenly deemed efficient due to

WDA.

In addition, some firms’ efficiency scores remain stable or unchanged under both CRS

and VRS assumptions. These include, for example, Coca-Cola Co., Lockheed Martin Corp.,

and ABB Ltd, among others. The main reason for this situation to occur is that in the VRS

model these companies are projected to a point either on the efficient frontier exhibiting

CRS or a point close to it. As a result, the efficiency scores for these companies show very

limited variations under different returns-to-scale assumptions.

7 Conclusion

This paper examines critical implementation issues of the two most widely applied envi-

ronmental efficiency models: non-monotonicity, misclassification of efficiency status, and
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strongly dominated projection targets. This paper shows that for samples with certain struc-

tures (loosely speaking, when the sample contains heavily polluting firms), these three issues

are bound to arise. This paper also shows that the classical weak disposability assumption

on undesirable outputs can create a portion of the output-dominated frontier, which can be

considered the root cause for the three issues. Our findings provide important implications

for both empirical and theoretic researchers of environmental efficiency. Our findings suggest

that researchers should be cautious when invoking the classical weakly disposability assump-

tion on undesirable outputs, which has been the standard assumption in a large stream of

studies. As corporate environmental efficiency is growing in its importance, findings from

this study have an important theoretical implication. Further, the application areas of the

environmental efficiency model should not be limited by its name. In many other dimensions

of corporate operations, we also need to consider both positive and negative consequences

of an activity or policy (e.g., debts, labor accidents, and litigations). Promising application

areas may include but not limit to banking, transportation, and manufacturing. I encourage

researchers to explore more application areas in other emerging contexts.
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Appendix A: Proofs of theorems

Proof: Proof of Theorem 2: For the proof, it suffices to show that a DMU originally

deemed inefficient can become efficient with a sufficient increase in any bk. We first show

the proof for the non-monotonicity of the DDF model. Consider (Xj, Yj, Bj) ∈ <m+s+p
+

for j = 1, . . . , n. Without loss of generality, we consider DMU n and suppose β∗n =

DDF (Xn, Yn, Bn|gY , gB) > 0 for a directional vector (gY , gB) ∈ <s+p++ . We will show that

DMU n can become efficient in the DDF model after a sufficient increase in one of its undesir-

able output bnp. By construction in optimality it must hold that λ∗1B1 +λ∗2B2 + . . .+λ∗nBn =

Bn − β∗ng
B, where λ∗1, λ

∗
2, . . . , λ

∗
n, β

∗ are the optimal solution to (3); namely, Bn − β∗ng
B

is in the convex cone generated by vectors B1 to Bn. To formalize the feasible region

for(2), define the convex cones generated by the B vector of all except for DMU n’s as

C\n =
{
B
∣∣λ1B1 + . . .+ λn−1Bn−1, λi ≥ 0, i = 1, . . . , n− 1

}
and the one including Bn as

C∗(Bn) =
{
B
∣∣λ1B1 + . . .+ λn−1Bn−1 + λnBn, λi ≥ 0, i = 1, . . . , n

}
.

Suppose DMU n now increases its bnp to b∗np (so b∗np � bnp) until the new output vector B∗n

satisfies: (i) B∗n /∈ C\n, and (ii) (B∗n − εgB) /∈ C∗(B∗n) for all ε > 0 such that (B∗n − εgB) = 0.

There must exist a b∗np satisfying condition (i) because Bj is strictly positive for all j and

therefore C\n ⊂ <p++. We next show that there must also exist a b∗np satisfying condition (ii).

Suppose (B∗n−εgB) ∈ C∗(B∗n). Then according to Farkas’ Lemma, condition (ii) corresponds

to the following condition (iii): there does not exist a vector d ∈ <p such that {d′Bj ≥ 0

for all j 6= n} ∧ {d′B∗n ≥ 0} ∧ {d′(B∗n − εgB) < 0}. However, we can further increase b∗np

to b∗∗np (so b∗∗np � b∗np � bnp) and construct a vector d that is component-wise positive except

for the pth component (i.e., dp < 0), where dp ≥ −(
∑p−1

k=1 bjk)/bjp for j = 1, . . . , n − 1,

dp ≥ −(
∑p−1

k=1 b
∗
nk)/bnp, and dp < −(

∑p−1
k=1 bnk− εgBk )/(b∗∗np− εgBp ). So we can always find such

a d and b∗∗np that meet condition (iii). Denote B∗∗n as Bn with the pth component replaced

by b∗∗np. By Farkas’ Lemma, it then holds that (B∗∗n − εgb) /∈ C∗(B∗∗n ) and hence condition

(ii) is satisfied.

Given that B∗∗n satisfies conditions (i) and (ii), the only feasible (and optimal) solution to

(3) is DDF (Xn, Yn, B
∗∗
n |gY , gB) = β∗∗n = 0. So DMU n is considered efficient since β∗∗n = 0.

Thus DDF is non-monotonic in undesirable outputs, given that β∗ > 0. The proof for HEM

can be analogously constructed by replacing gB with a common radial contraction factor θ

for undesirable outputs and therefore its proof is omitted.

Proof: Proof of Theorem 3:

Part (i): Denote the optimal solution to DDF ′ as β∗ > 0 and λ∗j , j = 1, . . . , n, and

optimal slack variables as (SY , SB) = (sy1, . . . , s
y
s , s

b
1, . . . , s

b
p) ∈ <s+×<

p
+. Then by Definition 1,

the optimal solution to DDF ′ must satisfy:
∑n

j=1 λ
∗
jxji ≤ xqi for i = 1, . . . ,m;

∑n
j=1 λ

∗
jyjr =
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yqr + β∗gyr + syr for r = 1, . . . , s; and
∑n

j=1 λ
∗
jbjk = bqk − β∗gbk − sbk for k = 1, . . . , p.

Now let (g̃Y , g̃B) = (β∗gY + SY , β∗gB + SB) be the new directional vector of DDF . It

must hold that DDF
(
(Xq, Yq, Bq)

∣∣g̃Y , g̃B) = 1, which is a sufficient condition that DMU q is

not output efficient. In addition, the original optimal value DDF
(
(Xq, Yq, Bq)

∣∣gY , gB) = 0

implies that DMU q is not in the relative interior of f(X) defined in (2). Hence DMU q ∈ Ẽ.

Part (ii): DDF
(
(Xq, Yq, Bq)

∣∣gY , gB) > 0 indicates that DMU q is in the relative interior

of f(Xq). This then excludes the possibility that DMU q ∈ E or DMU q ∈ Ẽ. In addition,

DDF
(
(Xq, Yq, Bq)

∣∣gY , gB) 6= DDFf
(
(Xq, Yq, Bq)

∣∣gY , gB) suggests that the projection points

for DMU q under DDF and DDFf are different. Therefore, from part (i) of the theorem,

we can conclude that the projection points of DMU q under DDF include DMUs in Ẽ.

Therefore DMU q ∈ ÑE.

Proof: Proof of Theorem 5:

The proof is basically constructed by showing that, for an inefficient DMU, we can always

find a directional vector that leads to a projection point that dominates that of the HEM.

Define g : <++ → <s+p++ , where g(γ) = (γY, 1/γB) to be a function in the HEM model that

projects (B, Y ) to the boundary of fw(X) in (2). To begin, we first show that the function

g is convex with respect to the componentwise inequality “<” in <s+p+ (i.e., the generalized

convexity induced by <s+p+ ). We proceed by comparing the following two functions for

λ ∈ [0, 1] and γ1, γ2 ≥ 1: λg(γ1) + (1− λ)g(γ2) = λ(γ1Y,
1
γ1
B) + (1−λ)(γ2Y,

1
γ2
B) =

(
(λγ1 +

(1− λ)γ2)Y, (
λ
γ1

+ 1−λ
γ2

)B
)
, and g(λγ1 + (1− λ)γ2) =

(
(λγ1 + (1− λ)γ2)Y,

1
λγ1+(1−λ)γ2B

)
.

From the first equation, we obtain ( λ
γ1

+ 1−λ
γ2

)B = λγ2+(1−λ)γ1
γ1γ2

B. To prove g is con-

vex with respect to “<”, we thus need to show λγ2+(1−λ)γ1
γ1γ2

≥ 1
λ(γ1)+(1−λ)γ2 , or equivalently

(λγ2+(1−λ)γ1)(λ(γ1)+(1−λ)γ2)
γ1γ2

≥ 1. Let ζ = (λγ2+(1−λ)γ1)(λ(γ1)+(1−λ)γ2)
γ1γ2

. Observe that the two

points (λγ2 + (1−λ)γ1) and (λγ1 + (1−λ)γ2) are symmetric with respect to 1
2
(min{γ1, γ2}+

max{γ1, γ2}) for all λ in [0,1]. Thus we can express ζ as:

ζ =

(
1
2
(min{γ1, γ2}+ max{γ1, γ2}) + δ

)(
1
2
(min{γ1, γ2}+ max{γ1, γ2})− δ

)
max{γ1, γ2}min{γ1, γ2}

=
1
4
(min{γ1, γ2}+ max{γ1, γ2})2 − δ2

max{γ1, γ2}min{γ1, γ2}
, (A.1)

where δ ∈ [0, 1
2
(max{γ1, γ2} − min{γ1, γ2})] is a scalar contingent on λ; also observe

that γ1γ2 = max{γ1, γ2}min{γ1, γ2}. Now if we set δ to its upper bound 1
2
(max{γ1, γ2} −

min{γ1, γ2}), we would obtain ζ = 1. Since ζ is strictly decreasing in d, the preceding result

implies that ζ ≥ 1 as intended.

We have shown that g is convex because λg(γ1) + (1−λ)g(γ2) < g(λγ1 + (1−λ)γ2) for λ

in [0,1], γ1 ≥ 1, and γ2 ≥ 1. Because g is positive, convex and continuously differentiable for
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γ ≥ 1, then for (Yq, Bq), it must hold that g(γ1) < (Yq, Bq) +∇g(1)′(γ1− 1), where ∇g(γ) is

the tangent vector of g defined as [∂y1
∂γ
, ..., ∂ys

∂γ
, ∂b1
∂γ
, ..., ∂bp

∂γ
]. Setting (gY , gB) = ∇g(1)′(γ1 − 1)

as the directional vector for (Yq, Bq), by the strong disposability for Yq and convexity, it hold

that (Y ?
q , B

?
q ) = (Yq, Bq) + θ∇g(1)′(γ1 − 1) ∈ fw(Xq) if g(γ′) = (Y ′q , B

′
q) is feasible, where

Y ′q = Y ?
q . Furthermore, (Y ′q , B

′
q) is dominated by (Y ?

q , B
?
q ) in B. Note that Ẽ and ÑE can be

non-empty given (gY , gB) by Theorem 4. By the above dominance relationship just stated,

Ẽ and ÑE can also be non-empty under g.

Appendix B: A modified RAM model for environmental

efficiency

One important issue for implementing the weighted additive model is that we must specify

weights. This is particular a problem as DEA models are known as a weight-free approach

and do not require subjective weight assignments. Chen and Delmas (2013) use the DMU’s

own outputs to normalize the output improvements and then calculate environmental effi-

ciency as the average normalized score. This approach has a potential limitation in that

different DMUs would be based its own production but miss information about distributions

of different outputs across the entire sample, which may carry significant practical implica-

tions. Some studies assign weights based on the sample statistics, such as the range adjusted

measure (RAM) model proposed by Cooper et al. (1999):

max Γ =
1

s+ p

( s∑
r=1

s+r /R
+
r +

p∑
k=1

s−k /R
−
p

)
s.t.

n∑
j=1

λjxji ≤ xqi, i = 1, . . . ,m

n∑
j=1

λjyjr = y∗qr + s+r , r = 1, . . . , s

n∑
j=1

λjbjk = b∗qk − s−k , k = 1, . . . , p

λj ≥ 0, j = 1, . . . , n

s+r , s
−
k ≥ 0, r = 1, . . . , s; k = 1, . . . , p, (A.2)

where R+
r is the range of the rth desirable output and R−p is the range of the pth unde-

sirable output. Note that the RAM model can also incorporate slacks variables for inputs.

For the purpose of the current paper, we focus on the output-oriented RAM model. For the
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economic intuition behind the RAM model, see Cooper et al. (1999) for an excellent exposi-

tion of the rationale behind the additive efficiency model and its use to measure allocative,

technical, and overall inefficiencies.

We propose a model based on the concept from the RAM model, as Cooper et al. (1999)

point out that the RAM-type of efficiency models come with a number of desirable properties,

including (i) the efficiency score is bounded in [0,1], (ii) the model is unit invariant, (iii) the

model is strongly monotonic in slacks, and (iv) the model is translation invariant under the

variable returns-to-scale technological assumption (Banker et al., 1984). However, we find

using ranges as the normalizing factors problematic, and choose to use other normalizing

variables instead of ranges in the original model. For example, it is stated in Cooper et al.

(1999) that 0 ≤ Γ ≤ 1, where a zero value indicates efficiency and a value of one indicates

full efficiency. As the slacks are usually much lower in magnitude than their corresponding

ranges, the efficiency scores obtained from the original RAM model tends to be low in both

magnitude and variation (Cooper et al., 1999; Steinmann and Zweifel, 2001). Therefore the

RAM scores cannot effectively differentiate the performance of different DMUs. Furthermore,

if we observe extremely inefficient firms that makes certain R+
r and/or R−p larger. These

extremely inefficient firms may be those that produce lower than minimal observed desirable

outputs but higher than maximum observed undesirable outputs at a fixed input level. The

efficiency scores of all the other firms may decrease markedly, and most firms would appear

more efficient although the efficient frontier remains unaltered. As it is not uncommon

to observe “heavy polluters” in applications, using ranges or other dispersion measures of

outputs do not seem appropriate. Also note that if a weighted additive model is used, the

disposability assumption on undesirable outputs will not have any impact on the resultant

efficiency scores (e.g., Theorem 1).

Another problem of using ranges is that ranges cannot reveal the relative magnitude of

the output. For example, suppose we obtain for a particular DMU that its slack for an

output is 5 and the corresponding range for that output is 50. The managerial implication

of this output slack for this DMU may be quite different if the maximum and minimum of

the output are respectively 10 and 60 rather than 500 and 550, for example. As the main

purpose of the normalizing factors are to obtain unit invariance, we opt for using the median

of outputs to replace the range used in the objective function of (A.2), which is more robust

than ranges or averages as the basic statistical properties of these measures. We call our

efficiency measure based on median the “Median Adjusted Measure” (MAM). The MAM

score then has an intuitive interpretation as the average of slacks compared to the sample

median of the corresponding output variables. Note that one may designate the normalizing

parameters in the original range adjusted model in other ways; see, e.g., Cooper et al. (2011)
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for a comprehensive discussion.
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Appendix C: VRS model under the weak disposability

assumption

The following discussion is taken from Kuosmanen (2005) and Kuosmanen and Podinovski

(2009); see also Kuosmanen and Kazemi Matin (2011) for a updated summary of the de-

velopment in the VRS model with WDA. The classical Shephard’s WDA production model

under variable returns-to-scale is fvrs(X) := {(Y,B) :
∑n

j=1 λjxji ≤ xi, i = 1, . . . ,m;

µ
∑n

j=1 λjyjr ≥ yr, r = 1, . . . , s; µ
∑n

j=1 λjbjk = bk, k = 1, . . . , p;
∑n

j=1 λj = 1; λj ≥ 0, j =

1, . . . , n; 0 ≤ µ ≤ 1}. The constraint that makes λj’s sum up to one to express the variable

returns-to-scale condition (Banker et al., 1984). The µ variable is meant to reflect that the

output space of Ωvrs is the convex combination of the DMU’s output vector proportionally

scaled down by the ratio µ. Kuosmanen (2005) generalizes Shephard’s model by allowing

each DMU to contribute a different value of µ (i.e., 0 ≤ µ1 ≤ 1, . . . , 0 ≤ µj ≤ 1, and thus

each DMU can assume a different scale down factor).

The Kuosmanen technology set also rectify the problem that Ωvrs is not convex. Like

the Shephard’s model, the Kuosmanen’s VRS model is nonlinear, too. However, Kuosma-

nen (2005) shows the VRS formulation can be converted into an equivalent linear form:

fTKvrs (X) := {(Y,B) :
∑n

j=1 zjxji ≤ xi, i = 1, . . . ,m;
∑n

j=1 zjyjr ≥ yr, r = 1, . . . , s;∑n
j=1(zj + νj)bjk = bk, k = 1, . . . , p;

∑n
j=1(zj + νj) = 1; zj, νj ≥ 0, j = 1, . . . , n}.

Table ?? shows the efficiency scores under the VRS assumption for firms that also ap-

peared in the application presented earlier in this article. As did in that application, we

calculate the HAM, DDF, HEM scores for the fifty firms, and the MEM scores of their pro-

jection targets using the DDF and HEM models. Finally, the last two columns display the

efficiency class of the firms when either DDF or HEM is used for efficiency evaluation.

Company name MAM DDF HEM DDF class HEM class

Amgen Inc. 0 0 1 E E

Apple Inc. 0 0 1 E E

Archer Daniels Midland Co. 0 0 1 E E

Boston Scientific Corp. 0 0 1 E E

Cisco Systems Inc. 0 0 1 E E

Corning Inc. 0 0 1 E E

Danaher Corp. 0 0 1 E E

Dell Inc. 0 0 1 E E

Eli Lilly & Co. 0 0 1 E E

Emerson Electric Co. 0 0 1 E E
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Ford Motor Co. 0 0 1 E E

Hewlett-Packard Co. 0 0 1 E E

Johnson & Johnson 0 0 1 E E

Kimberly-Clark Corp. 0 0 1 E E

Medtronic Inc. 0 0 1 E E

Nokia Corp. 0 0 1 E E

Novartis AG 0 0 1 E E

Pfizer Inc. 0 0 1 E E

Philip Morris Intl. Inc. 0 0 1 E E

Qualcomm Inc. 0 0 1 E E

Thermo Fisher Scientific Inc. 0 0 1 E E

Procter & Gamble Co. 2.27 0 1 Ẽ Ẽ

Evraz Group S.A. 17.92 0 1 Ẽ Ẽ

Alcoa Inc. 20.83 0 2.77 Ẽ ÑE

Dow Chemical Co. 24.49 0 1 Ẽ Ẽ

Teva Pharmaceutical Ind. 0.21 0.01 1.01 ÑE ÑE

Bombardier Inc. 0.05 0.01 1.03 ÑE ÑE

Xerox Corp. 0.15 0.03 1.21 ÑE NE

National Oilwell Varco Inc. 0.19 0.04 1.31 ÑE NE

Kraft Foods Inc. 2.81 0.05 1.78 ÑE ÑE

Bristol-Myers Squibb Co. 0.26 0.06 1.21 ÑE NE

Altria Group Inc. 0.39 0.06 1.35 ÑE NE

Coca-Cola Co. 0.33 0.08 1.23 ÑE NE

Merck & Co Inc 0.52 0.08 1.17 ÑE ÑE

Johnson Controls Inc. 0.56 0.10 1.19 ÑE ÑE

Lockheed Martin Corp. 0.48 0.11 1.33 ÑE ÑE

Deere & Co. 0.67 0.12 1.73 ÑE ÑE

Northrop Grumman Corp. 0.44 0.15 1.26 ÑE ÑE

Boeing Co. 0.66 0.16 1.17 ÑE ÑE

General Dynamics Corp. 0.53 0.17 1.39 ÑE ÑE

Intel Corp. 0.64 0.18 1.27 ÑE ÑE

Honeywell Intl. Inc. 0.62 0.20 1.39 ÑE ÑE

3M Co. 2.43 0.20 1.32 ÑE ÑE

ABB Ltd. 0.93 0.22 1.52 ÑE ÑE

Abbott Laboratories 0.99 0.24 1.49 ÑE ÑE

United Technologies Corp. 1.15 0.27 1.33 ÑE ÑE
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Caterpillar Inc. 1.15 0.33 1.69 ÑE ÑE

Suncor Energy Inc. 12.13 0.46 2.00 ÑE ÑE

E.I. DuPont de Nemours & Co. 6.79 0.48 1.69 ÑE ÑE

PepsiCo Inc. 2.81 0.59 1.44 ÑE ÑE
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