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Dealing with Interaction Between Bipolar Multiple

Criteria Preferences in PROMETHEE Methods

Salvatore Corrente ∗, José Rui Figueira †, Salvatore Greco ∗

Abstract: In this paper we extend the PROMETHEE methods to the case of interacting criteria

on a bipolar scale, introducing the bipolar PROMETHEE method based on the bipolar Choquet

integral. In order to elicit parameters compatible with preference information provided by the

Decision Maker (DM), we propose to apply the Robust Ordinal Regression (ROR). ROR takes

into account simultaneously all the sets of parameters compatible with the preference information

provided by the DM considering a necessary and a possible preference relation.
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1 Introduction

In many decision making problems (for a survey on Multiple Criteria Decision Analysis (MCDA) see [5]),

alternatives are evaluated with respect to a set of criteria being not mutually preferentially independent

(see [22]). In fact, in most cases, the criteria present a certain form of positive (synergy) or negative

(redundancy) interaction. For example, if one likes sport cars, maximum speed and acceleration are very

important criteria. However, since in general speedy cars have also a good acceleration, giving a high

weight to both criteria can over evaluate some cars. Thus, it seems reasonable to give maximum speed

and acceleration considered together a weight smaller than the sum of the two weights assigned to these

criteria when considered separately. In this case we have a redundancy between the criteria of maximum

speed and acceleration. On the contrary, we have a synergy effect between maximum speed and price

because, in general, speedy cars are also expensive and, therefore, a car which is good on both criteria is

very appreciated. In this case, it seems reasonable to give maximum speed and price considered together

a weight greater than the sum of the two weights assigned to these criteria when considered separately. In
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†CEG-IST, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal, e-mail:
figueira@ist.utl.pt

1

http://arxiv.org/abs/1211.0507v2


these cases, the aggregation of the evaluations is done by using non-additive integrals the most known of

which are the Choquet integral [3] and the Sugeno integral [20] (for a comprehensive survey on the use of

non-additive integrals in MCDA see [9, 12, 13]).

In many cases, we have also to take into account that the importance of criteria may also depend on the

criteria which are opposed to them. For example, a bad evaluation on aesthetics reduces the importance of

maximum speed. Thus, the weight of maximum speed should be reduced when there is a negative evaluation

on aesthetics. In this case, we have an antagonism effect between maximum speed and aesthetics.

Those types of interactions between criteria have been already taken into consideration in the ELECTRE

methods [6]. In this paper, we deal with the same problem using the bipolar Choquet integral [10, 11]

applied to the PROMETHEE I and II methods [1, 2].

This article extends the short paper published by the authors in [4] with respect to which we added the

description of the bipolar PROMETHEE I method, the proofs of all theorems presented in [4] and a didactic

example in which we apply the bipolar PROMETHEE methods and the Robust Ordinal Regression (ROR)

[16] being a family of MCDA methods taking into account simultaneously all the sets of preference param-

eters compatible with the preference information provided by the Decision Maker (DM) using a necessary

and a possible preference relation.

The paper is organized as follows. In the next section we recall the basic concepts of the classical PROMETHEE

methods; in section 3 we introduce the bipolar PROMETHEE methods; the elicitation of preference infor-

mation permitting to fix the value of the preference parameters of the model (essentially the bicapacities of

the bipolar Choquet integral) is presented in section 4; in the fifth section we apply the ROR to the bipolar

PROMETHEE methods; a didactic example is presented in section 6 while the last section provides some

conclusions and lines for future research.

2 The classical PROMETHEE methods

Let us consider a set of actions or alternatives A = {a, b, c, . . .} evaluated with respect to a set of criteria

G = {g1, . . . , gn}, where gj : A → R, j ∈ J = {1, . . . , n} and |A| = m. PROMETHEE [1, 2] is a well-

known family of MCDA methods, among which the most known are PROMETHEE I and II, that aggregate

preference information of a DM through an outranking relation. Considering for each criterion gj a weight

wj (representing the importance of criterion gj within the family of criteria G), an indifference threshold qj

(being the largest difference dj(a, b) = gj(a) − gj(b) compatible with the indifference between alternatives a

and b), and a preference threshold pj (being the minimum difference dj(a, b) compatible with the preference

of a over b), PROMETHEE methods (from now on, when we shall speak of PROMETHEE methods, we
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shall refer to PROMETHEE I and II) build a non decreasing function Pj(a, b) of dj(a, b), whose formulation

(see [1] for other formulations) can be stated as follows

Pj(a, b) =























0 if dj(a, b) ≤ qj

dj(a,b)−qj
pj−qj

if qj < dj(a, b) < pj

1 if dj(a, b) ≥ pj

The greater the value of Pj(a, b), the greater the preference of a over b on criterion gj . For each ordered

pair of alternatives (a, b) ∈ A × A, PROMETHEE methods compute the value π(a, b) =
∑

j∈J wjPj(a, b)

representing how much alternative a is preferred to alternative b taking into account the whole set of criteria.

It can assume values between 0 and 1 and obviously the greater the value of π(a, b), the greater the preference

of a over b.

In order to compare an alternative a with all the other alternatives of the set A, PROMETHEE methods

compute the negative and the positive net flow of a in the following way:

φ−(a) =
1

m− 1

∑

b∈A\{a}

π(b, a) and φ+(a) =
1

m− 1

∑

b∈A\{a}

π(a, b).

These flows represent how much the alternatives of A \ {a} are preferred to a and how much a is preferred

to the alternatives of A \ {a}. For each alternative a ∈ A, PROMETHEE II computes also the net flow

φ(a) = φ+(a)−φ−(a). On the basis of the positive and the negative flows, PROMETHEE I provides a partial

ranking on the set of alternatives A, building a preference (PI), an indifference (II) and an incomparability

(RI) relation. In particular:































































aPIb iff























Φ+(a) ≥ Φ+(b),

Φ−(a) ≤ Φ−(b),

Φ+(a) − Φ−(a) > Φ+(b) − Φ−(b)

aIIb iff







Φ+(a) = Φ+(b),

Φ−(a) = Φ−(b)

aRIb otherwise

On the basis instead of the net flows, the PROMETHEE II method provides a complete ranking on the

set of alternatives A defining, in a natural way, a preference (PII) and an indifference (III) relation for

which aPIIb iff Φ(a) > Φ(b) while aIIIb iff Φ(a) = Φ(b).
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3 The bipolar PROMETHEE methods

In order to extend the classical PROMETHEE methods to the bipolar framework, we define for each criterion

gj , j ∈ J , the bipolar preference function PB
j : A×A → [−1, 1], j ∈ J in the following way:

PB
j (a, b) = Pj(a, b) − Pj(b, a) =











Pj(a, b) if Pj(a, b) > 0

−Pj(b, a) if Pj(a, b) = 0

(1)

It is straightforward proving that PB
j (a, b) = −PB

j (b, a) for all j ∈ J and for all pairs (a, b) ∈ A×A.

In this section we propose to aggregate the bipolar vector PB(a, b) =
[

PB
1 (a, b), . . . , PB

n (a, b)
]

through

the bipolar Choquet integral.

The bipolar Choquet integral is based on a bicapacity [10, 11], being a function µ̂ : P (J ) → [−1, 1], where

P (J ) = {(C,D) : C,D ⊆ J and C ∩D = ∅}, such that

• µ̂(∅,J ) = −1, µ̂(J , ∅) = 1, µ̂(∅, ∅) = 0 (boundary conditions),

• for all (C,D), (E,F ) ∈ P (J ), if C ⊆ E and D ⊇ F , then µ̂(C,D) ≤ µ̂(E,F ) (monotonicity condition).

According to [14, 15], we consider the following expression for a bicapacity µ̂:

µ̂(C,D) = µ+(C,D) − µ−(C,D), for all (C,D) ∈ P (J ) (2)

where µ+, µ− : P (J ) → [0, 1] such that:

µ+(J , ∅) = 1, µ+(∅, B) = 0, ∀B ⊆ J , (3)

µ−(∅,J ) = 1, µ−(B, ∅) = 0, ∀B ⊆ J , (4)

µ+(C,D) ≤ µ+(C ∪ {j} ,D), ∀(C ∪ {j} ,D) ∈ P (J ), ∀j ∈ J ,

µ+(C,D) ≥ µ+(C,D ∪ {j}), ∀(C,D ∪ {j}) ∈ P (J ), ∀j ∈ J







(5)

µ−(C,D) ≤ µ−(C,D ∪ {j}), ∀(C,D ∪ {j}) ∈ P (J ), ∀j ∈ J ,

µ−(C,D) ≥ µ−(C ∪ {j} ,D), ∀(C ∪ {j} ,D) ∈ P (J ), ∀j ∈ J







(6)

Let us observe that (5) are equivalent to the constraint

µ+(C,D) ≤ µ+(E,F ), for all (C,D), (E,F ) ∈ P (J ) such that C ⊆ E and D ⊇ F,
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while (6) are equivalent to the constraint

µ−(C,D) ≤ µ−(E,F ), for all (C,D), (E,F ) ∈ P (J ) such that C ⊇ E and D ⊆ F.

The interpretation of the functions µ+ and µ− is the following. Given the pair (a, b) ∈ A × A, let us

consider (C,D) ∈ P (J ) where C is the set of criteria expressing a preference of a over b and D the set of

criteria expressing a preference of b over a. In this situation, µ+(C,D) represents the importance of criteria

from C when criteria from D are opposing them, and µ−(C,D) represents the importance of criteria from

D opposing C. Consequently, µ̂(C,D) represents the balance of the importance of C supporting a and D

supporting b.

Given (a, b) ∈ A × A, the bipolar Choquet integral of PB(a, b) with respect to the bicapacity µ̂ can be

written as follows

ChB(PB(a, b), µ̂) =

∫ 1

0
µ̂({j ∈ J : PB

j (a, b) > t}, {j ∈ J : PB
j (a, b) < −t})dt,

while the bipolar comprehensive positive preference of a over b and the comprehensive negative preference

of a over b with respect to the bicapacity µ̂ are respectively:

ChB+(PB(a, b), µ̂) =

∫ 1

0
µ+({j ∈ J : PB

j (a, b) > t}, {j ∈ J : PB
j (a, b) < −t})dt,

ChB−(PB(a, b), µ̂) =

∫ 1

0
µ−({j ∈ J : PB

j (a, b) > t}, {j ∈ J : PB
j (a, b) < −t})dt,

where µ+ and µ− have been defined before.

From an operational point of view, the bipolar aggregation of PB(a, b) can be computed as follows: for

all the criteria j ∈ J , the absolute values of these preferences should be re-ordered in a non-decreasing way,

as follows: |PB
(1)(a, b)| ≤ |PB

(2)(a, b)| ≤ . . . ≤ |PB
(j)(a, b)| ≤ . . . ≤ |PB

(n)(a, b)|.

The bipolar Choquet integral of PB(a, b) with respect to the bicapacity µ̂ can now be determined:

ChB(PB(a, b), µ̂) =
∑

j∈J>

|PB
(j)(a, b)|

[

µ̂
(

C(j)(a, b),D(j)(a, b)
)

− µ̂
(

C(j+1)(a, b),D(j+1)(a, b)
)

]

(7)

where PB(a, b) =
[

PB
j (a, b), j ∈ J

]

, J> = {j ∈ J : |PB
(j)(a, b)| > 0}, C(j)(a, b) = {i ∈ J> : PB

i (a, b) ≥

|PB
(j)(a, b)|}, D(j)(a, b) = {i ∈ J > : −PB

i (a, b) ≥ |PB
(j)(a, b)|} and C(n+1)(a, b) = D(n+1)(a, b) = ∅.

We give also the following definitions:
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ChB+(PB(a, b), µ+) =
∑

j∈J>

|PB
(j)(a, b)|

[

µ+
(

C(j)(a, b),D(j)(a, b)
)

− µ+
(

C(j+1)(a, b),D(j+1)(a, b)
)

]

, (8)

ChB−(PB(a, b), µ−) =
∑

j∈J>

|PB
(j)(a, b)|

[

µ−
(

C(j)(a, b),D(j)(a, b)
)

− µ−
(

C(j+1)(a, b),D(j+1)(a, b)
)

]

. (9)

ChB(PB(a, b), µ̂) gives the comprehensive preference of a over b and it is equivalent to π(a, b) − π(b, a) =

PC(a, b) in the classical PROMETHEE method while ChB+(PB(a, b), µ+) and ChB−(PB(a, b), µ−) give,

respectively, how much a outranks b (considering the reasons in favor of a) and how much a is outranked

by b (considering the reasons against a).

From the definitions above, it is straightforward proving that, for all a, b ∈ A,

ChB(PB(a, b), µ̂) = ChB+(PB(a, b), µ+) − ChB−(PB(a, b), µ−) (10)

Using equations (7), (8) and (9), we can define for each alternative a ∈ A the bipolar positive flow, the

bipolar negative flow and the bipolar net flow as follows:

φB+(a) =
1

m− 1

∑

b∈A\{a}

ChB+(PB(a, b), µ+) (11)

φB−(a) =
1

m− 1

∑

b∈A\{a}

ChB−(PB(a, b), µ−) (12)

φB(a) =
1

m− 1

∑

b∈A\{a}

ChB(PB(a, b), µ̂) (13)

By equation (10), it follows that φB(a) = φB+(a) − φB−(a) for each a ∈ A.

Analogously to the classical PROMETHEE I and II methods, using the positive, the negative and the

net bipolar flows we propose the bipolar PROMETHEE I and the bipolar PROMETHEE II methods. Given

a pair of alternatives (a, b) ∈ A×A, the bipolar PROMETHEE I method defines a partial order on the set

of alternatives A considering a preference (PI
B), an indifference (II

B) and an incomparability (RI
B) relation

defined as follows:
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aPI
Bb iff























ΦB+(a) ≥ ΦB+(b),

ΦB−(a) ≤ ΦB−(b),

ΦB+(a) − ΦB−(a) > ΦB+(b) − ΦB−(b)

aII
Bb iff







ΦB+(a) = ΦB+(b),

ΦB−(a) = ΦB−(b)

aRI
Bb otherwise

Given a pair of alternatives (a, b) ∈ A × A, the bipolar PROMETHEE II method provides, instead, a

complete order on the set of alternatives A, defining the a preference (PII
B ) and an indifference (III

B )

relations as follows: aP II
B b iff ΦB(a) > Φ(b), while aIIIB b iff ΦB(a) = ΦB(b).

3.1 Symmetry conditions

Because ChB(PB(a, b), µ̂) is equivalent to π(a, b)−π(b, a) = PC(a, b) in the classical PROMETHEE method,

it is reasonable expecting that, for all a, b ∈ A, ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂). The following

Proposition gives conditions to satisfy such a requirement:

Proposition 3.1. ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂) for all possible a, b, iff µ̂(C,D) =

−µ̂(D,C) for each (C,D) ∈ P (J ).

Proof. Let us prove that if µ̂(C,D) = −µ̂(D,C) for each (C,D) ∈ P (J ), then ChB(PB(a, b), µ̂) =

−ChB(PB(b, a), µ̂). As noticed, PB
j (a, b) = −PB

j (b, a) for all j ∈ J , and consequently |PB
(j)(a, b)| =

| − PB
(j)(b, a)| = |PB

(j)(b, a)| for all j ∈ J .

From this, it follows that:

(α) C(j)(a, b) = {i ∈ J > : PB
i (a, b) ≥ |PB

(j)(a, b)|} = {i ∈ J > : −PB
i (b, a) ≥ |PB

(j)(b, a)|} =

= D(j)(b, a);

(β) D(j)(a, b) = {i ∈ J> : −PB
i (a, b) ≥ |PB

(j)(a, b)|} = {i ∈ J > : PB
i (b, a) ≥ |PB

(j)(b, a)|} =

= C(j)(b, a).

From (α) and (β) we have that

(γ) ChB(PB(a, b), µ̂) =

=
∑

j∈J>

|PB
(j)(a, b)|

[

µ̂(C(j)(a, b),D(j)(a, b)) − µ̂(C(j+1)(a, b),D(j+1)(a, b))
]

=

=
∑

j∈J>

|PB
(j)(b, a)|

[

µ̂(D(j)(b, a), C(j)(b, a)) − µ̂(D(j+1)(b, a), C(j+1)(b, a))
]

.
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Since µ̂(C,D) = −µ̂(D,C), ∀(C,D) ∈ P (J ), from (γ) we have that,

(δ) ChB(PB(b, a), µ̂) =

=
∑

j∈J>

|PB
(j)(b, a)|

[

µ̂(C(j)(b, a),D(j)(b, a)) − µ̂(C(j+1)(b, a),D(j+1)(b, a))
]

=

=
∑

j∈J>

|PB
(j)(b, a)|

[

− µ̂(D(j)(b, a), C(j)(b, a)) + µ̂(D(j+1)(b, a), C(j+1)(b, a))
]

= −ChB(PB(a, b), µ̂).

Let us now prove that if ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂), then µ̂(C,D) = −µ̂(D,C). Let us

consider the pair (a, b) such that,

PB
j (a, b) =























1 if j ∈ C

−1 if j ∈ D

0 otherwise

(14)

In this case we have that ChB(PB(a, b), µ̂) = µ̂(C,D) and ChB(PB(b, a), µ̂) = µ̂(D,C). Thus if

ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂), by (iv) we obtain that µ̂(C,D) = −µ̂(D,C) and the proof is

concluded.

Analogously, because ChB+(PB(a, b), µ+) represents how much a outranks b and ChB−(PB(b, a), µ−) repre-

sents how much b is outranked by a, it is reasonable expecting that ChB+(PB(a, b), µ+)=ChB−(PB(b, a), µ−).

Sufficient and necessary conditions to get this equality are given by the following Proposition.

Proposition 3.2. ChB+(PB(a, b), µ+) = ChB−(PB(b, a), µ−) for all possible a, b, iff µ+(C,D) =

µ−(D,C) for each (C,D) ∈ P (J ).

Proof. Analogous to Proposition 3.1.

Reminding equation (10), the Corollary follows.

Corollary 3.1. ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂) for all possible a, b, if µ+(C,D) = µ−(D,C)

for each (C,D) ∈ P (J ).

Proof. This can be seen as a Corollary both of Proposition 3.1 and Proposition 3.2. In fact,

• µ+(C,D) = µ−(D,C) for each (C,D) ∈ P (J ) implies that µ̂(C,D) = −µ̂(D,C) for each (C,D) ∈

P (J ), and by Proposition 3.1, it follows the thesis.

• µ+(C,D) = µ−(D,C) for each (C,D) ∈ P (J ) implies that ChB+(PB(a, b), µ+) = ChB−(PB(b, a), µ−)

(by Proposition 3.2) and from this it follows obviously the thesis by equation (10).
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3.2 The 2-additive decomposable bipolar PROMETHEE methods

As seen in the previous section, the use of the bipolar Choquet integral is based on a bicapacity which

assigns numerical values to each element P (J ). Let us remark that the number of elements of P (J ) is 3n.

This means that the definition of a bicapacity requires a rather huge and unpractical number of parameters.

Moreover, the interpretation of these parameters is not always simple for the DM. Therefore, the use of the

bipolar Choquet integral in real-world decision-making problems requires some methodology to assist the

DM in assessing the preference parameters (bicapacities). Several studies dealing with the determination of

the relative importance of criteria were proposed in MCDA (see e.g. [19]). The question of the interaction

between criteria was also studied in the context of MAUT methods [17].

In the following we consider only the 2-additive bicapacities [10, 7], being a particular class of bicapacities.

3.3 Defining a manageable and meaningful bicapacity measure

According to [14], we give the following decomposition of the functions µ+ and µ− previously defined:

Definition 3.1.

• µ+(C,D) =
∑

j∈C

a+({j}, ∅) +
∑

{j,k}⊆C

a+({j, k}, ∅) +
∑

j∈C, k∈D

a+({j}, {k})

• µ−(C,D) =
∑

j∈D

a−(∅, {j}) +
∑

{j,k}⊆D

a−(∅, {j, k}) +
∑

j∈C, k∈D

a−({j}, {k})

The interpretation of each a±(·) is the following:

• a+({j}, ∅), represents the power of criterion gj by itself; this value is always non negative;

• a+({j, k}, ∅), represents the interaction between gj and gk, when they are in favor of the preference

of a over b; when its value is zero there is no interaction; on the contrary, when the value is positive

there is a synergy effect when putting together gj and gk; a negative value means that the two criteria

are redundant;

• a+({j}, {k}), represents the power of criterion gk against criterion gj , when criterion gj is in favor of

a over b and gk is against to the preference of a over b; this leads always to a reduction or no effect on

the value of µ+ since this value is always non-positive.

An analogous interpretation can be applied to the values a−(∅, {j}), a−(∅, {j, k}), and a−({j}, {k}).

In what follows, for the sake of simplicity, we will use a+j , a+jk, a+
j|k instead of a+({j}, ∅), a+({j, k}, ∅) and

a+({j}, {k}), respectively and a−j , a−jk, a−
j|k instead of a−(∅, {j}), a−(∅, {j, k}) and a−({j}, {k}), respectively.

In this way, the bicapacity µ̂, decomposed using µ+ and µ− of Definition 3.1, has the following expression:
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µ̂(C,D) = µ+(C,D) − µ−(C,D) =

=
∑

j∈C

a+j −
∑

j∈D

a−j +
∑

{j,k}⊆C

a+jk −
∑

{j,k}⊆D

a−jk +
∑

j∈C, k∈D

a+
j|k −

∑

j∈C, k∈D

a−
j|k

We call such a bicapacity µ̂, a 2-additive decomposable bicapacity . (An analogous decomposition has been

proposed directly for µ̂ without considering µ+ and µ− in [8]).

Considering these decompositions for the functions µ+ and µ−, the monotonicity conditions (5), (6) and the

boundary conditions (3), (4) have to be expressed in function of the parameters a+j , a+jk, a+
j|k

, a−j , a−jk, a−
j|k

as follows:

Monotonicity conditions

1) µ+(C,D) ≤ µ+(C ∪ {j},D), ∀ j ∈ J , ∀(C ∪ {j},D) ∈ P (J )

⇔ a+j +
∑

k∈C

a+jk +
∑

k∈D

a+
j|k ≥ 0, ∀ j ∈ J , ∀(C ∪ {j},D) ∈ P (J )

2) µ+(C,D) ≥ µ+(C,D ∪ {j}), ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J )

⇔
∑

k∈C

a+
k|j ≤ 0, ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J )

being already satisfied because a+
k|j ≤ 0, ∀k, j ∈ J , k 6= j.

3) µ−(C,D) ≤ µ−(C,D ∪ {j}), ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J )

⇔ a−j +
∑

k∈D

a−jk +
∑

k∈C

a−
k|j ≥ 0, ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J )

4) µ−(C,D) ≥ µ−(C ∪ {j},D), ∀ j ∈ J , ∀(C ∪ {j},D) ∈ P (J )

⇔
∑

k∈D

a−
j|k ≤ 0, ∀ j ∈ J , ∀(C ∪ {j},D) ∈ P (J )

being already satisfied because a−
j|k ≤ 0, ∀j, k ∈ J , j 6= k.

Conditions 1), 2), 3) and 4) ensure the monotonicity of the bi-capacity, µ̂, on J , obtained as the difference

of µ+ and µ−, that is,
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∀ (C,D), (E,F ) ∈ P (J ) such that C ⊇ E, D ⊆ F, µ̂(C,D) ≥ µ̂(E,F ).

Boundary conditions

1. µ+(J , ∅) = 1, i.e.,
∑

j∈J

a+j +
∑

{j,k}⊆J

a+jk = 1

2. µ−(∅,J ) = 1, i.e.,
∑

j∈J

a−j +
∑

{j,k}⊆J

a−jk = 1

3.4 The 2-additive bipolar Choquet integral

The following theorem gives an expression of ChB+(x, µ+) and ChB−(x, µ−) considering a 2-additive de-

composable bicapacity µ.

Theorem 3.1. Given a 2-additive decomposable bicapacity µ̂, then for all x ∈ R
n

1. ChB+(x, µ+) =
∑

j∈J ,xj>0

a+j xj +
∑

j,k∈J ,j 6=k,xj,xk>0

a+jk min{xj , xk} +
∑

j,k∈J ,j 6=k,xj>0,xk<0

a+
j|k min{xj ,−xk}

2. ChB−(x, µ−) = −
∑

j∈J ,xj<0

a−j xj −
∑

j,k∈J ,j 6=k,xj,xk<0

a−jk max{xj , xk} −
∑

j,k∈J ,j 6=k,xj>0,xk<0

a−
j|k max{−xj , xk}

Proof. We shall prove only part 1. Proof of part 2. can be obtained analogously.

If the bicapacity µ̂ is 2−additive decomposable, then

ChB+(x, µ+) =
∑

j∈J>

|x(j)|
[

µ+(C(j),D(j)) − µ+(C(j+1),D(j+1))
]

=

=
∑

j∈J>

|x(j)|
[(

∑

k∈J>,xk≥|x(j)|

a+k −
∑

k∈J>,xk≥|x(j+1)|

a+k

)

+

+
(

∑

h,k∈J>,h 6=k,xh,xk≥|x(j)|

a+hk −
∑

h,k∈J>,h 6=k,xh,xk≥|x(j+1)|

a+hk

)

+

+
(

∑

h,k∈J>,h 6=k,xh,−xk≥|x(j)|

a+
h|k −

∑

h,k∈J>,h 6=k,xh,−xk≥|x(j+1)|

a−
h|k

)]

Let us remark that,

a)
(

∑

k∈J>,xk≥|x(j)|

a+k −
∑

k∈J>,xk≥|x(j+1)|

a+k

)

=



























∑

k∈J>,xk=|x(j)|

a+k if |x(j)| < |x(j+1)|

0 otherwise
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b)
(

∑

k∈J>,−xk≥|x(j)|

a−k −
∑

k∈J>,−xk≥|x(j+1)|

a−k

)

=



























∑

k∈J>,−xk=|x(j)|

a−k if |x(j)| < |x(j+1)|

0 otherwise

c)
(

∑

h,k∈J>,h 6=k,
xh,xk≥|x(j)|

a+hk −
∑

h,k∈J>,h 6=k,
xh,xk≥|x(j+1)|

a+hk

)

=



























∑

h,k∈J>,h 6=k,
min{xh,xk}=|x(j)|

a+hk if |x(j)| < |x(j+1)|

0 otherwise

Considering a) − c) we get that:

χ) =
∑

j∈J>,
|x(j)|<|x(j+1)|

|x(j)|
[

∑

k∈J>,xk=|x(j)|

a+k +
∑

h,k∈J>,h 6=k,
min{xh,xk}=|x(j)|

a+hk +
∑

h,k∈J>,h 6=k,
min{xh,−xk}=|x(j)|

a+
h|k

]

and from this it follows the thesis.

In the following, we provide the symmetry conditions of Propositions 3.1 and 3.2 in function of the

parameters a+j , a−j , a+jk, a−jk, a+
j|k and a−

j|k.

Proposition 3.3. Given a 2-additive decomposable bicapacity µ̂, then µ̂(C,D) = −µ̂(D,C) for each (C,D) ∈

P (J ) iff

1. for each j ∈ J , a+j = a−j ,

2. for each {j, k} ⊆ J , a+jk = a−jk,

3. for each j, k ∈ J , j 6= k, a+
j|k − a−

j|k = a−
k|j − a+

k|j.

Proof. First, let us prove that

(a) µ̂(C,D) = −µ̂(D,C)

implies 1., 2. and 3. For each j ∈ J ,

(b) µ̂({j}, ∅) = a+j and µ̂(∅, {j}) = −a−j

From (a) and (b) we have,

a+j = µ̂({j}, ∅) = −µ̂(∅, {j}) = a−j
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which is 1.

For each {j, k} ⊆ J we have that,

(c) µ̂({j, k}, ∅) = a+j + a+k + a+jk and µ̂(∅, {j, k}) = −a−j − a−k − a−jk

Being µ̂({j, k}, ∅) = −µ̂(∅, {j, k}), and being a+j = a−j and a+k = a−k by 1., we have that for each

{j, k} ⊆ J , a+jk = a−jk, i.e. 2.

For all j, k ∈ J with j 6= k, we have:

µ̂({j}, {k}) = a+j − a−k + a+
j|k − a−

j|k

µ̂({k}, {j}) = a+k − a−j + a+
k|j − a−

k|j

Being µ̂({j}, {k}) = −µ̂({k}, {j}) and having proved that a+j = a−j ,∀j, we obtain that a+
j|k − a−

j|k =

−a+
k|j + a−

k|j i.e. 3.

It is straightforward to prove that 1., 2., and 3. imply µ̂(C,D) = −µ̂(D,C).

Corollary 3.2. Given a 2-additive decomposable bicapacity µ̂, ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂) for

all a, b ∈ A iff

1. for each j ∈ J , a+j = a−j ,

2. for each {j, k} ⊆ J , a+jk = a−jk,

3. for each j, k ∈ J , j 6= k, a+
j|k − a−

j|k = a−
k|j − a+

k|j.

Proof. It follows by Propositions 3.3 and 3.1.

Proposition 3.4. Given a 2-additive decomposable bicapacity µ̂, then µ+(C,D) = µ−(D,C) for each

(C,D) ∈ P (J ) iff

1. for each j ∈ J , a+j = a−j ,

2. for each {j, k} ⊆ J , a+jk = a−jk,

3. for each j, k ∈ J , j 6= k, a+
j|k = a−

k|j.

Proof. Analogous to Proposition 3.3.

Corollary 3.3. Given a 2-additive decomposable bicapacity µ̂, ChB+(PB(a, b), µ+) = ChB−(PB(b, a), µ−)

for all a, b ∈ A iff
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1. for each j ∈ J , a+j = a−j ,

2. for each {j, k} ⊆ J , a+jk = a−jk,

3. for each j, k ∈ J , j 6= k, a+
j|k = a−

k|j.

Proof. It follows by Propositions 3.4 and 3.2.

Because the first two conditions of Proposition 3.1 are the same of the first two conditions of Proposition

3.2, but the third condition of Proposition 3.2 implies the third one of Proposition 3.1, in order to get both

ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂) and ChB+(PB(a, b), µ+) = ChB−(PB(b, a), µ−) for all a, b ∈ A, we

impose that shoul be fulfilled the conditions in Proposition 3.2.

4 Assessing the preference information

On the basis of the considered 2-additive decomposable bicapacity µ̂, and holding the symmetry condition

in Corollary 3.3, we propose the following methodology which simplifies the assessment of the preference

information.

We consider the following information provided by the DM and their representation in terms of linear

constraints:

1. Comparing pairs of actions locally or globally. The constraints represent some pairwise comparisons on

a set of training actions. Given two actions a and b, the DM may prefer a to b, b to a or be indifferent

to both:

(a) the linear constraint associated with aPb (a is locally preferred to b) is:

ChB(PB(a, b), µ̂) > 0;

(b) the linear constraints associated with aPIb (a is preferred to b with respect to the bipolar

PROMETHEE I method) are:

ΦB+(a) ≥ ΦB+(b),

ΦB−(a) ≤ ΦB−(b),

ΦB+(a) − ΦB−(a) > ΦB+(b) − ΦB−(b),
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(c) the linear constraint associated with aPIIb (a is preferred to b with respect to the bipolar

PROMETHEE II method) is:

ΦB(a) > ΦB(b)

(d) the linear constraint associated with aIb (a is locally indifferent to b) is:

ChB(PB(a, b), µ̂) = 0

(e) the linear constraints associated with aIIb (a is indifferent to b with respect to the bipolar

PROMETHEE I method) are:

ΦB+(a) = ΦB+(b),

ΦB−(a) = ΦB−(b),







(f) the linear constraint associated with aIIIb (a is indifferent to b with respect to the bipolar

PROMETHEE II method) is:

ΦB(a) = ΦB(b)

2. Comparison of the intensity of preferences between pairs of actions. The constraints represent some

pairwise comparisons between pairs of alternatives on a set of training actions. Given four actions a,

b, c and d:

(a) the linear constraints associated with (a, b)P(c, d) (the local preference of a over b is larger than

the local preference of c over d) is:

ChB(PB(a, b), µ̂) > ChB(PB(c, d), µ̂)

(b) the linear constraints associated with (a, b)I(c, d) (the local preference of a over b is the same of

local preference of c over d) is:

ChB(PB(a, b), µ̂) = ChB(PB(c, d), µ̂)

3. Importance of criteria. A partial ranking over the set of criteria J may be provided by the DM:

(a) criterion gj is more important than criterion gk, which leads to the constraint aj > ak;

(b) criterion gj is equally important to criterion gk, which leads to the constraint aj = ak.
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4. The sign of interactions. The DM may be able, for certain cases, to provide the sign of some inter-

actions. For example, if there is a synergy effect when criterion gj interacts with criterion gk, the

following constraint should be added to the model: ajk > 0.

5. Interaction between pairs of criteria. The DM can provide some information about interaction between

criteria:

a) if the DM feels that interaction between gj and gk is greater than the interaction between gp and

gq, the constraint should be defined as follows: |ajk| > |apq| where in particular:

• if both couples of criteria are synergic then: ajk > apq,

• if both couples of criteria are redundant then: ajk < apq,

• if (j, k) is a couple of synergic criteria and (p, q) is a couple of redundant criteria, then:

ajk > −apq,

• if (j, k) is a couple of redundant criteria and (p, q) is a couple of synergic criteria, then:

−ajk > apq.

b) if the DM feels that the strength of the interaction between gj and gk is the same of the strength

of the interaction between gp and gq, the constraint will be the following: |ajk| = |apq| and in

particular:

• if both couples of criteria are synergic or redundant then: ajk = apq,

• if one couple of criteria is synergic and the other is redundant then: ajk = −apq,

6. The power of the opposing criteria. Concerning the power of the opposing criteria several situations

may occur. For example:

a) when the opposing power of gk is larger than the opposing power of gh, with respect to gj,

which expresses a positive preference, we can define the following constraint: a+
j|k < a+

j|h (because

a+
j|h ≤ 0 and a−

j|h ≤ 0 for all j, k with j 6= k);

b) if the opposing power of gk, expressing negative preferences, is larger with gj rather than with

gh, the constraint will be a+
j|k < a+

h|k.

4.1 A linear programming model

All the constraints presented in the previous section along with the symmetry, boundary and monotonicity

conditions can now be put together and form a system of linear constraints. Strict inequalities can be

converted into weak inequalities by adding a variable ε. It is well-know that such a system has a feasible
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solution if and only if when maximizing ε, its value is strictly positive [17]. Considering constraints given

by Corollary 3.3 for the symmetry condition, the linear programming model can be stated as follows (where

jPk means that criterion gj is more important than criterion gk; the remaining relations have a similar

interpretation):

Max ε

ChB(PB(a, b), µ̂) ≥ ε if aPb, ChB(PB(a, b), µ̂) = 0 if aIb,

ΦB+(a) ≥ ΦB+(b),

ΦB−(a) ≤ ΦB−(b),

ΦB+(a) −ΦB−(a) ≥ ΦB+(b) − ΦB−(b) + ε



















if aPI
B
b

ΦB+(a) = ΦB+(b),

ΦB−(a) = ΦB−(b)







if aII
B
b

ΦB(a) ≥ ΦB(b) + ε if aPII
B b ΦB(a) = ΦB(b) if aIII

B b

ChB(PB(a, b), µ̂) ≥ ChB(PB(c, d), µ̂) + ε if (a, b)P(c, d), ChB(PB(a, b), µ̂) = ChB(PB(c, d), µ̂) if (a, b)I(c, d),

aj − ak ≥ ε if jPk, aj = ak if jIk,

|ajk| − |apq | ≥ ε if {j, k}P{p, q}, (see point 5.a) of the previous subsection )

|ajk| = |apq| if {j, k}I{p, q}, (see point 5.b) of the previous subsection )

ajk ≥ ε if there is synergy between criteria j and k,

ajk ≤ −ε if there is redundancy between criteria j and k,

ajk = 0 if criteria j and k are not interacting,

Power of the opposing criteria of the type 6:

a+
j|k

− a+
j|p

≥ ε, a−
j|k

− a−
j|p

≥ ε,

a+
j|k

− a+
p|k

≥ ε, a−
j|k

− a−
p|k

≥ ε,

Symmetry conditions (Proposition 3.3):

a+
j|k

= a−
k|j

, ∀ j, k ∈ J , j 6= k

Boundary and monotonicity conditions:

∑

j∈J

aj +
∑

{j,k}⊆J

ajk = 1,

aj ≥ 0 ∀ j ∈ J , a+
j|k

, a−
j|k

≤ 0 ∀ j, k ∈ J ,

aj +
∑

k∈C

ajk +
∑

k∈D

a+
j|k

≥ 0, ∀ j ∈ J , ∀(C ∪ {j},D) ∈ P (J ),

aj +
∑

k∈D

ajk +
∑

h∈C

a−
h|j

≥ 0, ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J ).



























































































































































































































































































































EAR

4.2 Restoring PROMETHEE

The condition which allows to restore the classical PROMETHEE methods is the following:

1. ∀j, k ∈ J , ajk = a+
j|k = a−

j|k = 0.

If Condition 1. is not satisfied and the following condition holds

2. ∀j, k ∈ J , a+
j|k = a−

j|k = 0,
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then the comprehensive preference of a over b is calculated as the difference between the Choquet integral

of the positive preferences and the Choquet integral of the negative preferences, with a common capacity µ

on J for the positive and the negative preferences, i.e. there exists µ : 2J → [0, 1], with µ(∅) = 0, µ(J ) = 1,

and µ(A) ≤ µ(B) for all A ⊆ B ⊆ J , such that

ChB(PB(a, b), µ̂) =

∫ 1

0
µ({j ∈ J : PB

j (a, b) > t})dt−

∫ 1

0
µ({j ∈ J : PB

j (a, b) < −t})dt.

We shall call this type of aggregation of preferences, the symmetric Choquet integral PROMETHEE method.

If neither 1. nor 2. are satisfied, but the following condition holds

3. ∀j, k ∈ J , a+
j|k = a−

k|j,

then we have the Bipolar PROMETHEE methods.

4.3 A constructive learning preference information elicitation process

The previous Conditions 1.-3. suggest a proper way to deal with the linear programming model in order to

assess the interactive bipolar criteria coefficients. Indeed, it is very wise trying before to elicit weights con-

cordant with the classical PROMETHEE method. If this is not possible, one can consider a PROMETHEE

method which aggregates positive and negative preferences using the Choquet integral. If this is not possi-

ble, one can consider the bipolar symmetric PROMETHEE method. If, by proceeding in this way, we are

not able to represent the DM’s preferences, then we can take into account a more sophisticated aggregation

procedure by using the bipolar PROMETHEE method. This way to progress from the simplest to the most

sophisticated model can be outlined in a four steps procedure as follows:

1. Solve the linear programming problem

Max ε = ε1

EAR

ajk = a+
j|k = a−

j|k = 0, ∀j, k ∈ J







E1

(15)

adding to EAR
the constraint related to the previous Condition 1. If E1 is feasible and ε1 > 0, then the

obtained preferential parameters are concordant with the classical PROMETHEE method. Otherwise,

2. Solve the linear programming problem
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Max ε = ε2

EAR

a+
j|k = a−

j|k = 0, ∀j, k ∈ J







E2

(16)

adding to EAR
the constraint related to the previous Condition 2. If E2 is feasible and ε2 > 0, then

the information is concordant with the symmetric Choquet integral PROMETHEE method having a

unique capacity for the negative and the positive part. Otherwise,

3. Solve the linear programming problem

Max ε = ε3

EAR

(17)

If E3 is feasible and ε3 > 0, then the information is concordant with the bipolar PROMETHEE

method. Otherwise,

4. We can try to help the DM by providing some information about inconsistent judgments, when it is

the case, by using a similar constructive learning procedure proposed in [18]. In fact, in the linear

programming model some of the constraints cannot be relaxed, that is, the basic properties of the

model (symmetry, boundary and monotonicity conditions). The remaining constraints can lead to an

infeasible linear system which means that the DM provided inconsistent information about her/his

preferences. The methods proposed in [18] can then be used in this context, providing to the DM

some useful information about inconsistent judgments.

5 ROR and Bipolar PROMETHEE methods

In the above sections we dealt with the problem of finding a bicapacity restoring preference information

provided by the DM in case where multiple criteria evaluations are aggregated by Bipolar PROMETHEE

method. Generally, there could exist more than one model (in our case the model will be a bicapacity, but

in other contexts it could be a utility function or an outranking relation) compatible with the preference

information provided by the DM on the training set of alternatives. Each compatible model restores the

preference information provided by the DM but two different compatible models could compare the other

alternatives not provided as examples by the DM in a different way. For this reason, the choice of one

of these models among those compatible could be considered arbitrary. In order to take into account not
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only one but the whole set of models compatible with the preference information provided by the DM,

we consider the ROR [16]. This approach considers the whole set of models compatible with preference

information provided by the DM building two preference relations: the weak necessary preference relation,

for which alternative a is necessarily weakly preferred to alternative b (and we write a %N b), if a is at least

as good as b for all compatible models, and the weak possible preference relation, for which alternative a is

possibly weakly preferred to alternative b (and we write a %P b), if a is at least as good as b for at least one

compatible model.

Considering the bipolar flows (11)-(13) and the comprehensive Choquet integral in equation (10), given the

alternatives a, b ∈ A, we say that a outranks b (or a is at least as good as b):

• locally, if ChB(PB(a, b), µ̂) ≥ 0;

• globally and considering the bipolar PROMETHEE I method, if ΦB+(a) ≥ ΦB+(b), ΦB−(a) ≤ ΦB−(b);

• globally and considering the bipolar PROMETHEE II method, if ΦB(a) ≥ ΦB(b).

To check if a is necessarily preferred to b, we look if it is possible that a does not outrank b. Locally, this

means that it is possible that there exists a bicapacity µ̂ such that ChB(PB(a, b), µ̂) < 0; globally, considering

the bipolar PROMETHEE I this means that ΦB+(a) < ΦB+(b) or ΦB−(a) > ΦB−(b), while considering the

bipolar PROMETHEE II this means that ΦB(a) < ΦB(b). Given the following set of constraints,

EAR

if one verifies the truth of global outranking:

if exploited in the way of the bipolar PROMETHEE II method, then:

ΦB(a) + ε ≤ ΦB(b)

if exploited in the way of the bipolar PROMETHEE I method, then:

ΦB+(a) + ε ≤ ΦB+(b) + 2M1 and ΦB−(a) + 2M2 ≥ ΦB−(b) + ε

where Mi ∈ {0, 1}, i = 1, 2, and
∑2

i=1 Mi ≤ 1

if one verifies the truth of local outranking:

ChB(PB(a, b), µ̂) + ε ≤ 0































































































































EN (a, b)

we say that a is weakly necessarily preferred to b if EN (a, b) is infeasible or ε∗ ≤ 0 where ε∗ = max ε s.t.

EN (a, b).

To check if a is possibly preferred to b, we check if it is possible that a outrank b for at least one bicapacity

µ̂. Locally, this means that there exists a bicapacity µ̂ such that ChB(PB(a, b), µ̂) ≥ 0; globally, considering
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PROMETHEE I this means that ΦB+(a) ≥ ΦB+(b) and ΦB−(a) ≤ ΦB−(b), while considering PROMETHEE

II this means that ΦB(a) ≥ ΦB(b). Given the following set of constraints,

EAR

if one verifies the truth of global outranking:

if exploited in the way of the bipolar PROMETHEE II method, then:

ΦB(a) ≥ ΦB(b)

if exploited in the way of the bipolar PROMETHEE I method, then:

ΦB+(a) ≥ ΦB+(b) and ΦB−(a) ≤ ΦB−(b)

if one verifies the truth of local outranking:

ChB(PB(a, b), µ̂) ≥ 0















































































































EP (a, b)

we say that a is weakly possibly preferred to b if EP (a, b) is feasible and ε∗ > 0 where ε∗ = max ε s.t.

EP (a, b).

6 Didactic Example

Inspired by an example in literature [9], let us consider the problem of evaluating High School students

according to their grades in Mathematics, Physics and Literature. In the following we suppose that the

Director is the DM, while we will cover the role of analyst helping and supporting the DM in (her)his

evaluations.

The Director thinks that scientific subjects (Mathematics and Physics) are more important than Literature.

However, when students a and b are compared, if a is better than b both at Mathematics and Physics but a

is much worse than b at Literature, then the Director has some doubts about the comprehensive preference

of a over b.

Mathematics and Physics are in some sense redundant with respect to the comparison of students, since

usually students which are good at Mathematics are also good at Physics. As a consequence, if a is better

than b at Mathematics, the comprehensive preference of the student a over the student b is stronger if a is

better than b at Literature rather than if a is better than b at Physics.

Let us consider the students whose grades (belonging to the range [0, 20]) are represented in Table 1 and

the following formulation of the preference of a over b with respect to each criterion gj , for all j = (M)

Mathematics, (Ph) Physics, (L) Literature.
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Students Mathematics Physics Literature

s1 16 16 16
s2 15 13 18
s3 19 18 14
s4 18 16 15
s5 15 16 17
s6 13 13 19
s7 17 19 15
s8 15 17 16

Table 1: Evaluations of the students

Pj(a, b) =























0 if gj(b) ≥ gj(a)

(gj(a) − gj(b))/4 if 0 < gj(a) − gj(b) ≤ 4

1 otherwise

From the values of the partial preferences Pj(a, b), we obtain the positive and the negative partial

preferences PB
j (a, b) with respect to each criterion gj, for j = M,Ph,L using the definition (1). Thus, to

each pair of students (si, sj) is associated a vector of three elements:

PB(si, sj) =
[

PB
M (si, sj), P

B
Ph(si, sj), P

B
L (si, sj)

]

; for example, to the pair of students (s1, s2) is associated

the vector PB(s1, s2) = [0.25, 0.75,−0.5].

Let us suppose that the Dean provides the following information regarding some pairs of students:

• student s1 is preferred to student s2 more than student s3 is preferred to student s4,

• student s7 is preferred to student s8 more than student s5 is preferred to student s6.

As explained in section 4, these two information are translated by the constraints:

ChB(PB(s1, s2), µ̂) > ChB(PB(s3, s4), µ̂), and ChB(PB(s7, s8), µ̂) > ChB(PB(s5, s6), µ̂)

Following the procedure described in section 4.3, at first we check if the classical PROMETHEE method

and the symmetric Choquet integral PROMETHEE method are able to restore the preference information

provided by the Dean; solving the optimization problems 15 and 16, we get ε1 < 0 and ε2 < 0 and therefore

neither the classical PROMETHEE method nor the symmetric Choquet integral PROMETHEE method

are able to explain the preference information provided by the Dean. Solving the optimization problem 17,

we get this time ε3 > 0; this means that the information provided by the Dean can be explained by the

Bipolar PROMETHEE method.

In order to better understand the problem at hand, we suggested to the Dean to use the ROR applied to
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the bipolar PROMETHEE method as discussed in the previous section. Using the first piece of preference

information, we get the necessary and possible preference relations shown in Table 2 at local level and

considering PROMETHEE II and PROMETHEE I. In Table 2(a), the value 1 in position (i, j) means that

si is necessarily locally preferred to sj while the viceversa corresponds to the value. Analogous meaning

have the values 1 and 0 in in Tables 2(b) and 2(c) respectively.

Table 2: Necessary preference relations after the first piece of preference information

(a) Local

s1 s2 s3 s4 s5 s6 s7 s8
s1 0 1 0 0 0 1 0 0
s2 0 0 0 0 0 0 0 0
s3 1 1 0 1 0 1 0 0
s4 0 1 0 0 0 0 0 0
s5 0 1 0 0 0 1 0 0
s6 0 0 0 0 0 0 0 0
s7 1 1 0 0 1 1 0 1
s8 0 1 0 0 1 1 0 0

(b) PROMETHEE II

s1 s2 s3 s4 s5 s6 s7 s8
s1 0 0 0 0 0 0 0 0
s2 0 0 0 0 0 0 0 0
s3 0 0 0 1 0 0 0 0
s4 0 0 0 0 0 0 0 0
s5 0 1 0 0 0 1 0 0
s6 0 0 0 0 0 0 0 0
s7 1 1 0 0 1 1 0 1
s8 0 0 0 0 0 0 0 0

(c) PROMETHEE I

s1 s2 s3 s4 s5 s6 s7 s8
s1 0 0 0 0 0 0 0 0
s2 0 0 0 0 0 0 0 0
s3 0 0 0 0 0 0 0 0
s4 0 0 0 0 0 0 0 0
s5 0 0 0 0 0 0 0 0
s6 0 0 0 0 0 0 0 0
s7 1 1 0 0 0 0 0 0
s8 0 0 0 0 0 0 0 0

Table 3: Possible preference relations after the first piece of preference information

(a) Local

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 0 1 1 1 0 1
s2 0 0 0 0 0 1 0 0
s3 1 1 0 1 1 1 1 1
s4 1 1 0 0 1 1 1 1
s5 1 1 1 1 0 1 0 0
s6 0 1 0 1 0 0 0 0
s7 1 1 1 1 1 1 0 1
s8 1 1 1 1 1 1 0 0

(b) PROMETHEE II

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 1 1 1 1 0 1
s2 1 0 1 1 0 1 0 1
s3 1 1 0 1 1 1 1 1
s4 1 1 0 0 1 1 1 1
s5 1 1 1 1 0 1 0 1
s6 1 1 1 1 0 0 0 1
s7 1 1 1 1 1 1 0 1
s8 1 1 1 1 1 1 0 0

(c) PROMETHEE I

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 1 1 1 1 0 1
s2 0 0 0 1 0 1 0 0
s3 1 1 0 1 1 1 1 1
s4 1 1 0 0 1 1 1 1
s5 1 1 1 1 0 1 0 1
s6 1 1 1 1 0 0 0 0
s7 1 1 1 1 1 1 0 1
s8 1 1 1 1 1 1 0 0

Looking at Tables 2, we underline that s7, s3 and s5 are surely the best among the eight students considered.

In fact, s7 is necessarily preferred to five out of the other seven students both locally and considering the

bipolar PROMETHEE II method and, at the same time, (s)he is the only student being necessarily preferred

to some other student using the bipolar PROMETHEE I method. s3 is necessarily preferred to four out of the

other seven students locally, and (s)he is necessarily preferred to s4 considering the bipolar PROMETHEE II

method. At the same time, (s)he is locally possibly preferred to s7 (see Table 3). s5 is necessarily preferred

to s2 and s6 considering the bipolar PROMETHEE II method. In order to get a more insight on the problem

at hand, we suggest to the Dean to provide other information (s)he is sure about. For this reason, the Dean

states that, locally, s2 is preferred to s6 and s8 is preferred to s1.

Translating these preference information using the constraints ChB(PB(2, 6), µ̂) > 0 and ChB(PB(8, 1), µ̂) >

0, and computing again the necessary and possible preference relations locally and considering both the

bipolar PROMETHEE methods, we get the results shown in Tables 4 and 5. In these Tables, yellow cells

correspond to new information we have got using the second piece of information provided by the Dean.
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Table 4: Necessary preference relations after the second piece of preference information

(a) Local

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 0 0 0 1 0 0
s2 0 0 0 0 0 1 0 0
s3 1 1 0 1 1 1 0 1
s4 1 1 0 0 0 0 0 0
s5 0 1 0 0 0 1 0 0
s6 0 0 0 0 0 0 0 0
s7 1 1 0 1 1 1 0 1
s8 1 1 0 0 1 1 0 0

(b) PROMETHEE II

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 0 0 0 0 0 0 0
s2 0 0 0 0 0 0 0 0
s3 0 0 0 1 0 0 0 0
s4 0 0 0 0 0 0 0 0
s5 0 1 0 0 0 1 0 0
s6 0 0 0 0 0 0 0 0
s7 1 1 0 1 1 1 0 1
s8 0 0 0 0 0 0 0 0

(c) PROMETHEE I

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 0 0 0 0 0 0 0
s2 0 0 0 0 0 0 0 0
s3 0 0 0 0 0 0 0 0
s4 0 0 0 0 0 0 0 0
s5 0 0 0 0 0 0 0 0
s6 0 0 0 0 0 0 0 0
s7 1 1 0 1 0 0 0 1
s8 0 0 0 0 0 0 0 0

Table 5: Possible preference relations after the second piece of preference information

(a) Local

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 0 0 1 1 0 0
s2 0 0 0 0 0 1 0 0
s3 1 1 0 1 1 1 1 1
s4 1 1 0 0 1 1 0 1
s5 1 1 0 1 0 1 0 0
s6 0 0 0 1 0 0 0 0
s7 1 1 1 1 1 1 0 1
s8 1 1 0 1 1 1 0 0

(b) PROMETHEE II

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 1 1 1 1 0 1
s2 1 0 1 1 0 1 0 1
s3 1 1 0 1 1 1 1 1
s4 1 1 0 0 1 1 0 1
s5 1 1 1 1 0 1 0 1
s6 1 1 1 1 0 0 0 1
s7 1 1 1 1 1 1 0 1
s8 1 1 1 1 1 1 0 0

(c) PROMETHEE I

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 0 1 1 1 0 1
s2 0 0 0 1 0 1 0 0
s3 1 1 0 1 1 1 1 1
s4 1 1 0 0 1 1 0 1
s5 1 1 1 1 0 1 0 1
s6 0 1 1 1 0 0 0 0
s7 1 1 1 1 1 1 0 1
s8 1 1 1 1 1 1 0 0

In particular, in Tables 4 the cell in correspondence of the pair of students (si, sj) is yellow colored if si

was not necessarily preferred to sj after the first iteration, but si is necessarily preferred to sj after the

second iteration; in Tables 5, the cell in correspondence of the pair of students (si, sj) is yellow colored if si

was possibly preferred to sj after the first iteration but si is not possibly preferred to sj after the second

iteration anymore. Looking at Tables 4 and 5, the Dean is addressed to consider s7 as the best student. In

fact, also if s7 and s3 are locally necessarily preferred to all other six considered students, s7 is still the only

one being necessarily preferred to someone else considering the bipolar PROMETHEE I method. Besides,

looking at Tables 5, we get that s3 is the only student being possibly preferred to s7 locally and with respect

to PROMETHEE I and PROMETHEE II but, at the same time, everyone except s4, is possibly preferred

to s3 considering the bipolar PROMETHEE I method while four students (s5, s6, s7 and s8) are possibly

preferred to s3 with respect to the bipolar PROMETHEE I method.

7 Conclusions

In this paper we proposed a generalization of the classical PROMETHEE methods. A basic assumption

of PROMETHEE methods is the independence between criteria which implies that no interaction between

criteria is considered. In this paper we developed a methodology permitting to take into account interaction

between criteria (synergy, redundancy and antagonism effects) within PROMETHEE method by using the

bipolar Choquet integral. In this way we obtained a new method called the Bipolar PROMETHEE method.
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The Decision Maker (DM) can give directly the preferential parameters of the method; however, due to their

great number, it is advisable using some indirect procedure to elicit the preferential parameters from some

preference information provided by the DM.

Since, in general, there is more than one set of parameters compatible with these preference information,

we proposed to use the Robust Ordinal Regression (ROR) to consider the whole family of compatible sets

of preferential parameters. We believe that the proposed methodology can be successfully applied in many

real world problems where interacting criteria have to be considered; besides, in a companion paper, we

propose to apply the SMAA methodology to the classical and to the bipolar PROMETHEE methods (for a

survey on SMAA methods see [21]).
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