Skip to main content
Log in

Sourcing decision under disruption risk with supply and demand uncertainty: A newsvendor approach

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Multi-sourcing is considered as a common practice to hedge against supply disruption risk. In this context, this paper proposes two models for optimal order allocation in newsvendor setting, where both supply and demand are uncertain. The first model considers a risk neutral decision maker who maximizes the total expected profit under disruption risk. The second one is for a risk averse decision maker who does so under service level constraints. Analytical closed form solutions for both the models are derived. To overcome the computational complexity of the exact optimal solution, two algorithms are developed to generate optimal order quantity and the corresponding set of suppliers. The solutions with exact optimization algorithms and the proposed ones are illustrated and compared with numerical examples. The results show that the proposed algorithms give the exact optimal solution while being tractable. Finally, a case study is used to illustrate the applicability of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Source: various reports from Government of Odisha,

    http://www.dowrorissa.gov.in/HistoryofFLOOD/HistoryofFLOOD.pdf;

    http://www.orissa.gov.in/disaster/src/ANNUAL_REP_04-05/Annual_Report_200910.pdf;

    http://www.orissa.gov.in/disaster/src/ANNUAL_REP_04-05/ANNUAL_REPORT201112.pdf;

    http://www.imd.gov.in/section/hydro/distrainfall/orissa.html

References

  • Agrawal, N., & Nahmias, S. (1997). Rationalization of the supplier base in the presence of yield uncertainty. Production and Operations Management, 6(3), 291–308.

    Article  Google Scholar 

  • Anupindi, R., & Akella, R. (1993). Diversification under supply uncertainty. Management Science, 39(8), 944–963.

    Article  Google Scholar 

  • Awasthi, A., Chauhan, S. S., Goyal, S. K., & Proth, J. M. (2009). Supplier selection problem for a single manufacturing unit under stochastic demand. International Journal of Production Economics, 117(1), 229–233.

    Article  Google Scholar 

  • Berger, P. D., Gerstenfeld, A., & Zeng, A. Z. (2004). How many suppliers are best? A decision-analysis approach. Omega, 32(1), 9–15.

    Article  Google Scholar 

  • Blackhurst, J., Craighead, C. W., Elkins, D., & Handfield, R. B. (2005). An empirically derived agenda of critical research issues for managing supply-chain disruptions. International Journal of Production Research, 43(19), 4067–4081.

    Article  Google Scholar 

  • Burke, G. J., & Vakharia, A. J. (2004). Supply chain management. The Internet Encyclopedia. New York: Wiley.

    Google Scholar 

  • Burke, G. J., Carrillo, J. E., & Vakharia, A. J. (2007). Single versus multiple supplier sourcing strategies. European Journal of Operational Research, 182(1), 95–112.

    Article  Google Scholar 

  • Chaturvedi, A., & Martínez-de-Albéniz, V. (2011). Optimal procurement design in the presence of supply risk. Manufacturing & Service Operations Management, 13(2), 227–243.

    Article  Google Scholar 

  • Chopra, S., Reinhardt, G., & Mohan, U. (2007). The importance of decoupling recurrent and disruption risks in a supply chain. Naval Research Logistics (NRL), 54(5), 544–555.

    Article  Google Scholar 

  • Costantino, N., & Pellegrino, R. (2010). Choosing between single and multiple sourcing based on supplier default risk: A real options approach. Journal of Purchasing and Supply Management, 16(1), 27–40.

    Article  Google Scholar 

  • Chen, W., Feng, Q., & Seshadri, S. (2013). Sourcing from suppliers with random yield for price-dependent demand. Annals of Operations Research, 208(1), 557–579.

    Article  Google Scholar 

  • Christopher, M., & Lee, H. (2004). Mitigating supply chain risk through improved confidence. International Journal of Physical Distribution & Logistics Management, 34(5), 388–396.

    Article  Google Scholar 

  • Dada, M., Petruzzi, N. C., & Schwarz, L. B. (2007). A newsvendor’s procurement problem when suppliers are unreliable. Manufacturing & Service Operations Management, 9(1), 9–32.

    Article  Google Scholar 

  • Federgruen, A., & Yang, N. (2008). Selecting a portfolio of suppliers under demand and supply risks. Operations Research, 56(4), 916–936.

    Article  Google Scholar 

  • Federgruen, A., & Yang, N. (2009). Optimal supply diversification under general supply risks. Operations Research, 57(6), 1451–1468.

    Article  Google Scholar 

  • Gürler, Ü., & Parlar, M. (1997). An inventory problem with two randomly available suppliers. Operations Research, 45(6), 904–918.

    Article  Google Scholar 

  • Khouja, M. (1999). The single-period (news-vendor) problem: Literature review and suggestions for future research. Omega, 27(5), 537–553.

    Article  Google Scholar 

  • Kleindorfer, P. R., & Saad, G. H. (2005). Managing disruption risks in supply chains. Production and operations management, 14(1), 53–68.

    Article  Google Scholar 

  • Knemeyer, A. M., Zinn, W., & Eroglu, C. (2009). Proactive planning for catastrophic events in supply chains. Journal of Operations Management, 27(2), 141–153.

    Article  Google Scholar 

  • Minner, S. (2003). Multiple-supplier inventory models in supply chain management: A review. International Journal of Production Economics, 81, 265–279.

    Article  Google Scholar 

  • Meena, P. L., Sarmah, S. P., & Sarkar, A. (2011). Sourcing decisions under risks of catastrophic event disruptions. Transportation research part E: Logistics and transportation review, 47(6), 1058–1074.

    Article  Google Scholar 

  • Norrman, A., & Jansson, U. (2004). Ericsson’s proactive supply chain risk management approach after a serious sub-supplier accident. International Journal of Physical Distribution & Logistics Management, 34(5), 434–456.

    Article  Google Scholar 

  • Oke, A., & Gopalakrishnan, M. (2009). Managing disruptions in supply chains: A case study of a retail supply chain. International Journal of Production Economics, 118(1), 168–174.

    Article  Google Scholar 

  • Parlar, M., & Wang, D. (1993). Diversification under yield randomness in inventory models. European Journal of Operational Research, 66(1), 52–64.

    Article  Google Scholar 

  • Qin, Y., Wang, R., Vakharia, A. J., Chen, Y., & Seref, M. M. (2011). The newsvendor problem: Review and directions for future research. European Journal of Operational Research, 213(2), 361–374.

    Article  Google Scholar 

  • Ruiz-Torres, A. J., & Mahmoodi, F. (2007). The optimal number of suppliers considering the costs of individual supplier failures. Omega, 35(1), 104–115.

    Article  Google Scholar 

  • Sarkar, A., & Mohapatra, P. K. (2009). Determining the optimal size of supply base with the consideration of risks of supply disruptions. International Journal of Production Economics, 119(1), 122–135.

    Article  Google Scholar 

  • Sawik, T. (2011). Selection of supply portfolio under disruption risks. Omega, 39(2), 194–208.

    Article  Google Scholar 

  • Schmitt, A. J., & Snyder, L. V. (2012). Infinite-horizon models for inventory control under yield uncertainty and disruptions. Computers & Operations Research, 39(4), 850–862.

    Article  Google Scholar 

  • Silver, E., Pyke, D., & Peterson, R. (1998). Inventory management and production planning and scheduling. New York: Wiley.

    Google Scholar 

  • Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451–488.

    Article  Google Scholar 

  • Tang, C., & Tomlin, B. (2008). The power of flexibility for mitigating supply chain risks. International Journal of Production Economics, 116(1), 12–27.

    Article  Google Scholar 

  • Tomlin, B., & Wang, Y. (2005). On the value of mix flexibility and dual sourcing in unreliable newsvendor networks. Manufacturing & Service Operations Management, 7(1), 37–57.

    Article  Google Scholar 

  • Tomlin, B. (2006). On the value of mitigation and contingency strategies for managing supply chain disruption risks. Management Science, 52(5), 639–657.

    Article  Google Scholar 

  • Tomlin, B., & Wang, Y. (2012). The handbook of integrated risk management in global supply chains. Operational strategies for managing supply chain disruption risk (pp. 79–101). New York: Wiley.

    Google Scholar 

  • Treleven, M., & Bergman Schweikhart, S. (1988). A risk/benefit analysis of sourcing strategies: Single vs. multiple sourcing. Journal of Operations Management, 7(3), 93–114.

    Article  Google Scholar 

  • Xanthopoulos, A., Vlachos, D., & Iakovou, E. (2012). Optimal newsvendor policies for dual-sourcing supply chains: A disruption risk management framework. Computers & Operations Research, 39(2), 350–357.

    Article  Google Scholar 

  • Yang, S., Yang, J., & Abdel-Malek, L. (2007). Sourcing with random yields and stochastic demand: A newsvendor approach. Computers & Operations Research, 34(12), 3682–3690.

    Article  Google Scholar 

  • Yang, G., & Qian, C. (2008). The optimal number of suppliers considering the quantity discount and supplier failure. In IEEE International Conference on Service Operations and Logistics, and Informatics, 2008. IEEE/SOLI 2008. (Vol. 2, pp. 2327–2329).

  • Yu, H., Zeng, A. Z., & Zhao, L. (2009). Single or dual sourcing: Decision-making in the presence of supply chain disruption risks. Omega, 37(4), 788–800.

    Article  Google Scholar 

  • Wu, D. D., Kefan, X., Gang, C., & Ping, G. (2010). A risk analysis model in concurrent engineering product development. Risk Analysis, 30(9), 1440–1453.

    Article  Google Scholar 

  • Wu, D., & Olson, D. L. (2008). Supply chain risk, simulation, and vendor selection. International Journal of Production Economics, 114(2), 646–655.

    Article  Google Scholar 

  • Wu, D. D., Olson, D. L., & Birge, J. R. (2011). Introduction to special issue on “Enterprise risk management in operations”. International Journal of Production Economics, 134(1), 1–2.

    Article  Google Scholar 

  • Wu, D., & Olson, D. L. (2010a). Enterprise risk management: Coping with model risk in a large bank. Journal of the Operational Research Society, 61(2), 179–190.

    Article  Google Scholar 

  • Wu, D. D., & Olson, D. (2010b). Enterprise risk management: A DEA VaR approach in vendor selection. International Journal of Production Research, 48(16), 4919–4932.

    Article  Google Scholar 

  • Wu, D., Wu, D. D., Zhang, Y., & Olson, D. L. (2013). Supply chain outsourcing risk using an integrated stochastic-fuzzy optimization approach. Information Sciences, 235, 242–258.

    Article  Google Scholar 

  • http://www.dowrorissa.gov.in/HistoryofFLOOD/HistoryofFLOOD.pdf. Accessed on 27th November, 2013.

  • http://www.orissa.gov.in/disaster/src/ANNUAL_REP_0405/Annual_Report_2009-10.pdf. Accessed on 27th November, 2013.

  • http://www.orissa.gov.in/disaster/src/ANNUAL_REP_0405/ANNUAL_REPORT2011-12.pdf. Accessed on 27th November, 2013.

  • http://www.imd.gov.in/section/hydro/distrainfall/orissa.html. Accessed on \(27^{{\rm th}}\) November, 2013.

  • http://en.wikipedia.org/wiki/1999_Odisha_cyclone. Accessed on \(24^{{\rm th}}\) November, 2013.

Download references

Acknowledgments

The authors would like to thank the editors and the anonymous reviewers for their constructive comments and suggestions, which have improved the quality and presentation of this paper. We would also like to thank all the resource persons, who have facilitated in our data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritee Ray.

Appendices

Appendix

Proof of Proposition 1

The expected profit function for two supplier case takes the following form:

$$\begin{aligned}&\sum _{b\in B} \bigg [{\prod _{i=1}^2 {(b_i p_i +(1-b_i )(1-p_i ))} }\bigg ] (\int \limits _o^m {\left\{ {sx-<Q_{eff} ,C>+r(m-x)} \right\} } f(x)dx \nonumber \\&\quad +\int \limits _m^\infty {\left\{ {sm-<Q_{eff} ,C>-k(x-m)} \right\} } f(x)dx) \end{aligned}$$
(6)

Applying first order condition with respect to \(Q_{1}\) to the above equation, setting to zero and with further algebraic manipulation, we obtain the following equation.

$$\begin{aligned}&(1-p_1 )(1-p_2 )F(Q_1 +Q_2 )+p_1 (1-p_2 )y_1 F(y_1 Q_1 +Q_2 )\nonumber \\&\quad +(1-p_1 )p_2 F(Q_1 +y_2 Q_2 ) +p_1 p_2 y_1 F(y_1 Q_1 +y_2 Q_2 )\nonumber \\&=\left[ {1-p_1 \left( {1-y_1 } \right) } \right] \frac{(s-c_1 +k)}{(s-r+k)} \end{aligned}$$
(7)

This can be rewritten as;

$$\begin{aligned}&\sum _{b\in B} {\left[ \prod _{i=1}^2 (b_i p_i +(1-b_i )(1-p_i ))\right] \left[ \prod _{i=1}^2 (y_i b_i l_i +(1-b_i l_i ) )\right] [F(m(b,Q,y))]} \nonumber \\&=\left[ {1-p_1 \left( {1-y_1 } \right) } \right] \frac{(s-c_1 +k)}{(s-r+k)}\nonumber \\&\hbox {where }l_i =1\hbox { if }i=j,\hbox { otherwise }l_i =0,\hbox { in this case }j=1 \end{aligned}$$
(8)

Similar form will also be obtained, if the partial derivatives with respect to the other variables are considered. In general, for \(n\) variable problem, we can have \(n\) such equations of the following form:

$$\begin{aligned}&\sum _{b\in B} \left[ \prod _{i=1}^n (b_i p_i +(1-b_i )(1-p_i ))\right] \left[ \prod _{i=1}^n (y_i b_i l_i +(1-b_i l_i ) )\right] [F(m(b,Q,y))] \nonumber \\&=\left[ {1-p_j \left( {1-y_j } \right) } \right] \frac{(s-c_j +k)}{(s-r+k)}\nonumber \\&\hbox {where }l_i =1\hbox { if }i=j,\hbox { otherwise }l_i =0 \end{aligned}$$
(9)

The second order condition for two supplier case leads to a set of four equations each of which can be generalized in the following form:

$$\begin{aligned}&(-(s-r+k)) \Big [\sum _{b\in B} \Big [\prod _{i=1}^n (b_i p_i +(1-b_i )(1-p_i ))\Big ]\nonumber \\&\times \Big [\prod _{i=1}^n (y_i b_i l_i +(1-b_i l_i ) )\prod _{j=1}^n (y_j b_j l_j +(1-b_j l_j ) )\Big ][f(m(b,Q,y))]\Big ] \end{aligned}$$
(10)

where \(l_i =1\) if the function is first differentiated with respect to ith variable otherwise \(l_i =0;l_j =1\)if the function is first differentiated with respect to jth variable otherwise \(l_j =0;\)

For example when \(n=2\),

$$\begin{aligned}&\frac{\partial G^{2}\left( {Q_1 ,Q_2 ,...Q_n } \right) }{\partial Q_1 ^{2}}=(-\left( {s-r+k} \right) ) \nonumber \\&\quad \times \left[ {\begin{array}{l} \left( {1-p_1 } \right) \left( {1-p_2 } \right) f\left( {Q_1 +Q_2 } \right) +p_1 \left( {1-p_2 } \right) y_1 ^{2}f\left( {y_1 Q_1 +Q_2 } \right) \\ \quad +p_2 \left( {1-p_1 } \right) f\left( {Q_1 +y_2 Q_2 } \right) +p_1 p_2 y_1 ^{2}f\left( {y_1 Q_1 +y_2 Q_2 } \right) \\ \end{array}} \right] \end{aligned}$$
(11)

Please note that the above derivative is the product of \((-(s-r+k))\) which is always negative, and a positive term. All the elements of the Hessian matrix will be of this form. Therefore, the first order principal determinant of this matrix is in the following form.

$$\begin{aligned} \left| {D_1 } \right| =\frac{\partial G^{2}\left( {Q_1 ,Q_2 ,...Q_n } \right) }{\partial Q_1 ^{2}}\le 0 \end{aligned}$$

The second order principal determinant is given by,

$$\begin{aligned} \left| {D_2 } \right|&= \frac{\partial G^{2}\left( {Q_1 ,Q_2 ,...,Q_n } \right) }{\partial Q_1^2 }\frac{\partial G^{2}\left( {Q_1 ,Q_2 ,...,Q_n } \right) }{\partial Q_2^2 }-\left[ {\frac{\partial G^{2}\left( {Q_1 ,Q_2 ,...,Q_n } \right) }{\partial Q_1 \partial Q_2 }} \right] ^{2}\nonumber \\&= (-(s-r+k))^{2}\nonumber \\&\times \left[ {\begin{array}{l} p_1 \left( {1-p_1 } \right) \left( {1-p_2 } \right) ^{2}f\left( {Q_1 +Q_2 } \right) f\left( {y_1 Q_1 +Q_2 } \right) \left( {1-y_1 } \right) ^{2} \\ +p_2 \left( {1-p_1 } \right) ^{2}\left( {1-p_2 } \right) f\left( {Q_1 +Q_2 } \right) f\left( {Q_1 +y_2 Q_2 } \right) \left( {1-y_2 } \right) ^{2} \\ +p_1 p_2 \left( {1-p_1 } \right) \left( {1-p_2 } \right) f\left( {Q_1 +Q_2 } \right) f\left( {y_1 Q_1 +y_2 Q_2 } \right) \left( {y_1 -y_2 } \right) ^{2} \\ +p_1 p_2 \left( {1-p_1 } \right) \left( {1-p_2 } \right) f\left( {y_1 Q_1 +Q_2 } \right) f\left( {Q_1 +y_2 Q_2 } \right) \left( {1-y_1 y_2 } \right) ^{2} \\ +p_1^2 p_2 \left( {1-p_2 } \right) f\left( {y_1 Q_1 +Q_2 } \right) f\left( {y_1 Q_1 +y_2 Q_2 } \right) y_1^2 \left( {1-y_2^2 } \right) \\ +p_2^2 p_1 \left( {1-p_1 } \right) f\left( {Q_1 +y_2 Q_2 } \right) f\left( {y_1 Q_1 +y_2 Q_2 } \right) y_2^2 \left( {1-y_1^2 } \right) \\ \end{array}} \right] >0\nonumber \\ \end{aligned}$$
(12)

It may be noted that the second order determinant is the product of the square of a negative number (positive), and a positive term. Proceeding in this manner for specific cases of \(n\), it can be shown that the \(i{th}\) order principal determinant will have the form \(\left| {D_i } \right| =(-(s-r+k))^{i}\left[ {\hbox {a positive term}} \right] \), the sign of which will depend on the power ‘\(i\)’. Hence all the odd principal determinants are negative and the even ones are positive. Hence the function is proved to be negative definite and thus concave to the optimal order lot sizes.

Appendix 2

Proof of Proposition 2

For the model \((P_\beta )\) to be a convex programming problem in \(Q_1,Q_2 ,...,Q_n \), the objective function to be maximized should be concave and service constraint function should be convex. The objective function \(G_\beta \left( {Q_1 ,Q_2 ,...Q_n } \right) \) is proved to be concave in \(Q_1 ,Q_2 ,...,Q_n \) as above. For the convexity of the service level constraint, hessian matrix \(\nabla ^{2}G_\beta \left( {Q_1 ,Q_2 ,...,Q_n } \right) \) should be calculated.

$$\begin{aligned}&G_\beta \left( {Q_1 ,Q_2 ,...Q_n } \right) \nonumber \\&\quad =\beta _0-1+\frac{1}{\mu }\left[ {\sum _{b\in B} \bigg [{\prod _{i=1}^n {(b_i p_i +(1-b_i )(1-p_i )} } )\bigg ]\left( \int \limits _m^\infty {(x-m)} f(x)dx\right) } \right] \\&\hbox {where, }m(b,Q,y)=\sum _{i=1}^n {y_i Q_i b_i +\sum _{i=1}^n {Q_i \left( {1-b_i } \right) } }\nonumber \end{aligned}$$
(13)

The first order principal determinant is given by,

$$\begin{aligned}&\left| {D_1 } \right| =\frac{\partial G_\beta ^{2}\left( {Q_1 ,Q_2 ,...Q_n } \right) }{\partial Q_1 ^{2}}\nonumber \\&=\left( {\frac{1}{\mu }} \right) \times \left[ {\begin{array}{l} \left( {1-p_1 } \right) \left( {1-p_2 } \right) f\left( {Q_1 +Q_2 } \right) +p_1 \left( {1-p_2 } \right) y_1 ^{2}f\left( {y_1 Q_1 +Q_2 } \right) \\ +p_2 \left( {1-p_1 } \right) f\left( {Q_1 +y_2 Q_2 } \right) +p_1 p_2y_1 ^{2}f\left( {y_1 Q_1 +y_2 Q_2 } \right) \\ \end{array}} \right] \quad \end{aligned}$$
(14)

Continuing the arguments as the proof of Proposition 1 and with simple algebraic manipulation for a specific ‘\(n\)’ it can be shown that the higher order principal determinants will have the form which is always positive.

$$\begin{aligned} \left| {D_i } \right| =\left( {\frac{1}{\mu }} \right) ^{i}\left[ {\hbox {a positive term}} \right] \end{aligned}$$

Hence, \(H\) is positive definite as its leading principal minors are positive. Therefore, function \(G_\beta \) is proved to positive definite and thus strictly convex. Thus, the model \(\left( {P_\beta } \right) \) is a convex programming problem. Corresponding Lagrangian relaxation problem as follows:

$$\begin{aligned} LP_\beta :MaxL_\beta \left( {Q_1 ,Q_2 ,...\lambda _\beta } \right) \end{aligned}$$

With

$$\begin{aligned}&L_\beta (Q_1 ,Q_2 ,\ldots \lambda _3 )=G(Q_1 ,Q_2 ,\ldots Q_n )-\lambda _\beta (\beta _o -\beta ) \nonumber \\&=\sum _{b\in B} \bigg [{\prod _{i=1}^n {(b_i p_i +(1-b_i )(1-p_i ))\bigg ]\bigg [\int \limits _o^m {\{sx-<Q_{eff} ,C>+r(m-x)\}f(x)dx} } } \nonumber \\&\quad +\int \limits _m^\infty {\{sm-<Q_{eff} ,C>-k(x-m)\}f(x)}\bigg ] \nonumber \\&\quad -\lambda _\beta \left\{ {\beta _0 -1+\frac{1}{\mu }\left[ {\sum _{b\in B} \bigg [{\prod _{i=1}^n {(b_i p_i +(1-b_i )(1-p_i ))\bigg ](\int \limits _m^\infty {(x-m)f(x)dx)} } } } \right] } \right\} \nonumber \\ \end{aligned}$$
(15)

The solution of the first order conditions of the Lagrangian relaxation problem gives the global maximum value for problem \(LP_\beta \) and subsequently to the problem \(P_\beta \). The first order conditions of the above equation leads to Eqns 4 and 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, P., Jenamani, M. Sourcing decision under disruption risk with supply and demand uncertainty: A newsvendor approach. Ann Oper Res 237, 237–262 (2016). https://doi.org/10.1007/s10479-014-1649-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1649-8

Keywords

Navigation