Skip to main content
Log in

Mean-field analysis of hybrid Markov population models with time-inhomogeneous rates

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider a hybrid extension of population continuous time Markov chains (PCTMC)—a class of Markov processes capturing interactions between large groups of identically behaved agents. We augment the discrete state space of a PCTMC with continuous variables that evolve as integrals over the population vector and that can simultaneously provide feedback to the rates of transitions in the PCTMC. Additionally, we include time-inhomogeneous rate parameters, which can be used to incorporate real measurement data into the models. We extend mean-field techniques for PCTMCs and show how to derive a system of integral equations that approximate the evolution of means and higher-order moments of populations and continuous variables in a hybrid PCTMC. We prove first- and second-order convergence results that justify the approximations. We use a moment closure based on the normal distribution which improves the accuracy of the moment approximation in case of proportional control where transition rates depend on the amount a continuous variable is above or below a fixed threshold. We demonstrate how this framework is suitable for modelling feedback from globally-accumulated quantities in a large scale system, such as energy consumption, total cost or temperature in a data centre. We present a model of a many server system with temperature management and external workload that varies with time. We show how to use real data to represent the workload within the framework. We use stochastic simulation to validate the example and an earlier example of a hypothetical heterogeneous computing cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Assuming that \(\mathbb {X}\) is finite then the arguments of Sect. 2 guarantee that, over finite intervals of time, the process \((\varvec{X}(t),\varvec{\mathcal {Y}}(t))\) is bounded to remain in some compact set, and then the boundedness requirement for the functions \(h\) need only be honoured on this set.

  2. Note that it is then only strictly necessary for the theorem below that \(\varvec{f}, \,f_c\) and \(\varvec{g}\) are defined on \(\mathbb {S} \times [0,t_f]\) rather than on the whole of \(\mathbb {R}^{N+M} \times \mathbb {R}_+\).

  3. Informally, this is ‘uniform convergence in distribution over \([0,t_f]\)’.

References

  • Anderson, D. F. (2007). A modified next reaction method for simulating chemical systems with time dependent propensities and delays. The Journal of chemical physics, 127(21), 214,107. doi:10.1063/1.2799998.

    Article  Google Scholar 

  • Bakhshi, R., Endrullis, J., Endrullis, S., Fokkink, W., & Haverkort, B. (2010). Automating the mean-field method for large dynamic gossip networks. International Conference on Quantitative Evaluation of Systems pp. 241–250. doi:10.1109/QEST.2010.38.

  • Billingsley, P. (1968). Convergence of probability measures. New York: Wiley.

    Google Scholar 

  • Bortolussi, L. (2012). Hybrid behaviour of Markov population models. http://arxiv.org/abs/1211.1643.

  • Bortolussi, L., Galpin, V., & Hillston, J. (2011). HYPE with stochastic events. Proceedings in Theoretical Computer Science, 57, 120–133. doi:10.4204/EPTCS.57.9.

    Article  Google Scholar 

  • Bortolussi, L., & Hayden, R. A. (2013). Bounds on the deviation of discrete-time markov chains from their mean-field model. Performance Evaluation, 70(10), 736–749. doi:10.1016/j.peva.2013.08.012.

    Article  Google Scholar 

  • Cain, M. (1994). The moment-generating function of the minimum of bivariate normal random variables. The American Statistician, 48(2), 124–125. doi:10.1080/00031305.1994.10476039.

    Google Scholar 

  • Chaintreau, A., Le Boudec, J. Y., & Ristanovic, N. (2009). The age of gossip: Spatial mean field regime. Performance Evaluation Review, 37(1), 109–120. doi:10.1145/2492101.1555363.

    Google Scholar 

  • Coddington, E. A., & Levinson, N. (1955). Theory of ordinary differential equations. New York: McGraw-Hill Book Company.

    Google Scholar 

  • Davis, M. H. A. (1993). Markov models and optimization. Boca Raton: Chapman & Hall.

    Book  Google Scholar 

  • de Souzae Silva, E., & Gail, R. (1998). An algorithm to calculate transient distributions of cumulative rate and impulse based reward. Communications in Statistics, 14(3), 509–536. doi:10.1080/15326349808807486.

    Google Scholar 

  • Ethier, S. N., & Kurtz, T. G. (2005). Markov processes: Characterization and convergence. New York: Wiley.

    Google Scholar 

  • Gast, N., & Bruno, G. (2010). A mean field model of work stealing in large-scale systems. In: SIGMETRICS, vol. 38, p. 13. ACM Press, New York (2010). doi:10.1145/1811039.1811042.

  • Gillespie, C. S. (2009). Moment-closure approximations for mass-action models. IET Systems Biology, 3(1), 52–58.

    Article  Google Scholar 

  • Gomez-Gardenes, J., Reinares, I., Arenas, A., & Floria, L. M. (2012). Evolution of cooperation in multiplex networks. Scientific Reports, 2, 620. doi:10.1038/srep00620.

    Article  Google Scholar 

  • Guenther, M.C., Stefanek, A., & Bradley, J.T. (2012). Moment closures for performance models with highly non-linear rates. In: Computer Performance Engineering 9th European Workshop, EPEW 2012, Munich, Germany, July 30, 2012 (pp. 32–47). Munich: Springer. doi:10.1007/978-3-642-36781-6_3.

  • Hasenauer, J., Wolf, V., Kazeroonian, A., & Theis, F.J. (2013). Method of conditional moments (MCM) for the Chemical easter equation: A unified framework for the method of moments and hybrid stochastic-deterministic models. Journal of Mathematical Biology. doi:10.1007/s00285-013-0711-5. http://www.ncbi.nlm.nih.gov/pubmed/23918091,

  • Hayden, R. A., & Bradley, J. T. (2010). A fluid analysis framework for a Markovian process algebra. Theoretical Computer Science, 411(22–24), 2260–2297. doi:10.1016/j.tcs.2010.02.001.

    Article  Google Scholar 

  • Hayden, R. A., Bradley, J. T., & Clark, A. (2013). Performance specification and evaluation with unified stochastic probes and fluid analysis. IEEE Transactions on Software Engineering, 39(1), 97–118. doi:10.1109/TSE.2012.1.

    Article  Google Scholar 

  • Hayden, R. A., Stefanek, A., & Bradley, J. T. (2012). Fluid computation of passage-time distributions in large Markov models. Theoretical Computer Science, 413(1), 106–141. doi:10.1016/j.tcs.2011.07.017.

    Article  Google Scholar 

  • Hillston, J. (2005). Fluid flow approximation of PEPA models. In: QEST, pp. 33–42. doi:10.1109/QEST.2005.12.

  • Horton, G., Kulkarni, V. G., Nicol, D. M., & Trivedi, K. S. (1998). Fluid stochastic Petri nets: Theory, applications, and solution techniques. European Journal of Operational Research, 105(1), 184–201. doi:10.1016/S0377-2217(97)00028-3.

    Article  Google Scholar 

  • Kallenberg, O. (2002). Foundations of modern probability. Berlin: Springer.

    Book  Google Scholar 

  • Khadim, U. (2006). A comparative study of process algebras for hybrid systems. Computer Science Report 06–23, Technische Universiteit Eindhoven.

  • Klebaner, F. C. (2006). Introduction to stochastic calculus with applications (2nd ed.). London: Imperial College Press.

    Google Scholar 

  • Lewis, T. G. (2009). Network science: Theory and applications. London: Wiley.

    Book  Google Scholar 

  • Liu, Z., Chen, Y., Bash, C., Wierman, A., Gmach, D., Wang, Z., et al. (2012). Renewable and cooling aware workload management for sustainable data centers. ACM SIGMETRICS Performance Evaluation Review, 40(1), 175. doi:10.1145/2318857.2254779.

    Article  Google Scholar 

  • Martin, A. (2000). Workload characterization of the 1998 World Cup Web Site. Tech. Rep. 3. IEEE Network. doi:10.1109/65.844498.

  • Noël, P. A., Brummitt, C. D., & D’Souza, R. M. (2013). Controlling self-organizing dynamics on networks using models that self-organize. Physical Review Letters, 111, 078701. doi:10.1103/PhysRevLett.111.078701.

    Article  Google Scholar 

  • Rawson, A., Pfleuger, J., & Cader, T. (2007). Data Center Power Efficiency Metrics: PUE and DCiE. The Green Grid (2007).

  • Silva, M., Júlvez, J., Mahulea, C., & Vázquez, C. R. (2011). On fluidization of discrete event models: observation and control of continuous Petri nets. Discrete Event Dynamic Systems, 21(4), 427–497. doi:10.1007/s10626-011-0116-9.

    Article  Google Scholar 

  • Stefanek, A., Hayden, R. A., & Bradley, J. T. (2010). A new tool for the performance analysis of massively parallel computer systems. Electronic Proceedings in Theoretical Computer Science,. doi:10.4204/EPTCS.28.11.

    Google Scholar 

  • Stefanek, A., Hayden, R.A., & Bradley, J.T. (2011). Fluid Analysis of Energy Consumption using Rewards in Massively Parallel Markov Models. In: Computing, p. 121. ACM Press (2011). doi:10.1145/1958746.1958767.

  • Stefanek, A., Hayden, R.A., & Bradley, J.T. (2011). GPA - A Tool for Fluid Scalability Analysis of Massively Parallel Systems. In: QEST, pp. 147–148. IEEE (2011). doi:10.1109/QEST.2011.26.

  • Stefanek, A., Hayden, R.A., Gonagle, M.M., & Bradley, J.T. (2012). Mean-Field Analysis of Markov Models with Reward Feedback. In: Analytical and Stochastic Modeling Techniques and Applications 19th International Conference, ASMTA 2012, Grenoble, France, June 4–6, 2012. Proceedings, pp. 193–211. Springer. doi:10.1007/978-3-642-30782-9_14.

  • Tang, Q., Gupta, S., & Varsamopoulos, G. (2008). Energy-efficient thermal-aware task scheduling for homogeneous high-performance computing data centers: A cyber-physical approach. IEEE Transactions on Parallel and Distributed Systems, 19(11), 1458–1472.

    Article  Google Scholar 

  • Telek, M., & Rácz, S. (1999). Numerical analysis of large Markov reward models. Performance Evaluation, 36–37(1–4), 95–114. doi:10.1016/S0166-5316(99)00032-2.

    Article  Google Scholar 

  • Tribastone, M., Gilmore, S., & Hillston, J. (2012). Scalable differential analysis of process algebra models. IEEE Transactions on Software Engineering, 38(1), 205–219. doi:10.1109/TSE.2010.82.

    Article  Google Scholar 

  • Whitt, W. (2002). Internet supplement to Stochastic-Process Limits (2002). http://www.columbia.edu/~ww2040/supplement.html. Accessed 10 July 2013.

Download references

Acknowledgments

Anton Stefanek, Richard A. Hayden and Jeremy T. Bradley are funded by EPSRC on the Analysis of Massively Parallel Stochastic Systems (AMPS) Project (Rference EP/G011737/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Stefanek.

Appendix: Parameters used in the examples

Appendix: Parameters used in the examples

Values of rate and initial population parameters used in the client–server example, Figs. 2, 3, 4, 5 and 6:

\({r_{ data }}\)

\({r_{ task }}\)

\({r_{ reset }}\)

\({r_{ on }}\)

\({r_{ off }}\)

\({r_{ heat }}\)

\({r_{ cool }}\)

\({t_{ thresh }}\)

\({n_{{ C }}}\)

\({n_{{ S }}}\)

\({n_{{ A }}}\)

0.6

0.2

0.1

0.2

0.2

0.2

0.4

30

40

30

20

Values of rate and initial population parameters used in the worked example, Figures 13, 14, 15:

\({n_{{ C }}}\)

\({n_{{ S }}}\)

\({n_{{ A }}}\)

\({r_{q,1}}\)

\({r_{q,2}}\)

\({r_{s,1}}\)

\({r_{s,2}}\)

\({r_{ reset }}\)

\({r_{ wakeup }}\)

 

20000

1000

100

0.2

0.5

0.2

0.2

0.2

0.3

 

\({r_{ on }}\)

\({r_{ off }}\)

\({t_0}\)

\({t_{ thresh }}\)

\({t_{ sleep }}\)

\({p_{A,s}}\)

\({p_{A,{ sl }}}\)

\({p_{A,1}}\)

\({p_{A,2}}\)

\({r_{ cool }}\)

0.2

0.2

25

20

23

10

1

30

37.5

0.026

The constants \(p_{B,\cdot }\) are set as the respective \(p_{A,\cdot }\) constants multiplied by \(1.7\) and the heat constants \(c_{\cdot , \cdot }\) are set as the corresponding \(p_{\cdot ,\cdot }\) constants multiplied by a conversion factor \(7.71\times 10^{-6}\).

Values of rate and initial population parameters used in the time-inhomogeneous worked example, Figures 17, 19, 20

\({n_{{ S }}}\)

\({n_{{ A }}}\)

\({\mu }\)

\({r_{ up }}\)

\({r_{ down }}\)

\({r_{ fail }}\)

\({r_{ on }}\)

\({r_{ off }}\)

\({t_0}\)

\({t_{ thresh }}\)

\({t_{ fail }}\)

150

50

50.0

10.0

5.0

1.0

2.0

0.5

25

25

35

\({p_{S}}\)

\({p_{{ idle }}}\)

\({p_{A}}\)

\({h_{ cool }}\)

\({h_S}\)

\({h_{ idle }}\)

1.0

0.2

0.2

5.0

1.0

0.1

We obtained the arrival rate \(\lambda (t)\) from the World Cup 98 data (Arlitt 2000) available at http://ita.ee.lbl.gov/html/contrib/WorldCup.html. For illustration purposes, we have rescaled the arrival rate by a factor of \(10^{-5}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanek, A., Hayden, R.A. & Bradley, J.T. Mean-field analysis of hybrid Markov population models with time-inhomogeneous rates. Ann Oper Res 239, 667–693 (2016). https://doi.org/10.1007/s10479-014-1664-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1664-9

Keywords

Navigation