Skip to main content
Log in

Lumping and reversed processes in cooperating automata

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Performance evaluation of computer software or hardware architectures may rely on the analysis of a complex stochastic model whose specification is usually given in terms of a high level formalism such as queueing networks, stochastic Petri nets, stochastic automata or Markovian process algebras. Compositionality is a key-feature of many of these formalisms and allows the modeller to combine several (simple) components to form a complex architecture. However, although these formalisms lead to relative compact specifications of possibly complex models, the derivation of the performance indices may be computationally very time and space consuming since the set of possible states of the model tends to grow exponentially (or even faster) with the number of components. In this paper we focus on models with underlying continuous time Markov chains (CTMCs) and we introduce a notion of typed lumpability, which gives sufficient conditions under which a lumping of the process can be derived, allowing the exact computation of marginal stationary probabilities of the cooperating components. The peculiarity of our method relies on the fact that lumping is applied at the component-level rather than to the CTMC underlying the joint process, thus reducing both the memory requirements and the computational cost of the subsequent solution of the model. Moreover, we investigate the properties of the lumping of reversed automata and we prove that, if these are reversible, a conditional product-form solution of their cooperation with other non-blocking automata can be derived. Although conditional product-forms have been previously investigated by other authors with the aim of approximating non-product-form models, the contribution of this paper consists in giving sufficient conditions for this approach to yield exact results and providing examples to support the modeller’s intuition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Valmari, A., & Franceschinis, F. (2010). Simple O (m logn) time markov chain lumping. In Proceedings of the International Conference TACAS, Paphos, Cyprus, pp 38–52.

  • Baarir, S., Beccuti, M., Dutheillet, C., Franceschinis, G., & Haddad, S. (2011). Lumping partially symmetrical stochastic models. Performance Evaluation, 68(1), 21–44.

    Article  Google Scholar 

  • Baier, C., Haverkort, B., Hermanns, H., & Katoen, J. (2003). Model-checking algorithms for continuous-time Markov chains. IEEE Transactions on Software Engineering, 29(7), 524–541.

    Article  Google Scholar 

  • Baier, C., Katoen, J. P., Hermanns, H., & Wolf, V. (2005). Comparative branching-time semantics for Markov chains. Information and Computer, 200(2), 149–214.

    Article  Google Scholar 

  • Balsamo, S., & Iazeolla, G. (1982). An extension of Norton’s theorem for queueing networks. IEEE Trans on Software Engineers, SE–8, 298–305.

    Article  Google Scholar 

  • Balsamo, S., & Marin, A. (2007). Queueing networks. In M. Bernardo & J. Hillston (Eds.), Formal methods for performance evaluation (pp. 34–82). Heidelberg: LNCS, Springer.

    Chapter  Google Scholar 

  • Balsamo, S., & Marin, A. (2011) Performance engineering with product-form models: Efficient solutions and applications. In In proceedings of ICPE 2011, ACM, Karlsruhe, Germany (pp. 437–448).

  • Balsamo, S., & Marin, A. (2013). Separable solutions for Markov processes in random environments. European Journal of Operational Research, 229(2), 391–403.

    Article  Google Scholar 

  • Balsamo, S., Dei Rossi, G., & Marin, A. (2012a). Cooperating stochastic automata: Approximate lumping an reversed process. In Proceedings of 27th International Symposium on Computer and Information Sciences, ISCIS, Paris, FR, pp. 131–141.

  • Balsamo, S., Dei Rossi, G., & Marin, A. (2012b). Lumping and reversed processes in cooperating automata. In K. Al-Begain, D. Fiems, & J.M. Vincent (eds) Analytical and stochastic modeling techniques and applications, Springer, Berlin / Heidelberg, Lecture Notes in Computer Science, vol 7314, pp. 212–226.

  • Balsamo, S., Harrison, P. G., & Marin, A. (2012c). Methodological construction of product-form stochastic Petri-nets for performance evaluation. Journal of System and Software, 85(7), 1520–1539.

    Article  Google Scholar 

  • Balsamo, S., Dei Rossi, G., & Marin, A. (2013). Queueing networks and conditional product-forms. In Proceedings of Valuetools 2013, Turin, Italy, pp. 1–10.

  • Baskett, F., Chandy, K. M., Muntz, R. R., & Palacios, F. G. (1975). Open, closed, and mixed networks of queues with different classes of customers. Journal of the ACM, 22(2), 248–260.

    Article  Google Scholar 

  • Bravetti, M. (2003). Revisiting interactive Markov chains. Electronic Notes in Theoretical Computer Science, 68(5), 65–84.

    Article  Google Scholar 

  • Buchholz, P. (2004). Adaptive decomposition and approximation for the analysis of stochastic Petri nets. Performance Evaluation, 56, 23–52.

    Article  Google Scholar 

  • Buchholz, P. (2006). Bounding stationary results of tandem networks with MAP input and MAP service time distributions. In Proceedings of ACM SIGMETRICS/PERFORMANCE, Saint Malo, FR, pp. 191–202.

  • Buchholz, P. (2010). Product form approximations for communicating Markov processes. Performance Evaluation, 67(9), 797–815., special Issue: QEST 2008.

    Article  Google Scholar 

  • Burke, P. J. (1956). The output of a queueing system. Operations Research, 4(6), 699–704.

    Article  Google Scholar 

  • Chandy, K. M., Herzog, U., & Woo, L. (1975). Parametric analysis of queueing networks. IBM Journal of Research and Development, 1(1), 36–42.

    Article  Google Scholar 

  • Chiola, G., Dutheillet, C., Franceschinis, G., & Haddad, S. (1993). Stochastic well-formed colored nets and symmetric modeling applications. IEEE Transactions on Computers, 42(11), 1343–1360.

    Article  Google Scholar 

  • Courtois, P. (1977). Decomposability. New York: Academic Press.

    Google Scholar 

  • Courtois, P. J., & Semal, P. (1984). Bounds for the positive eigenvectors of nonnegative matrices and for their approximations by decomposition. Journal of the ACM, 31(4), 804–825.

    Article  Google Scholar 

  • Derisavi, S. (2007). A symbolic algorithm for optimal Markov chain lumping. In Proceedings of TACAS 2007, LNCS 4424, Springer, pp. 139–154.

  • Derisavi, S., Hermanns, H., & Sanders, W. H. (2003). Optimal state-space lumping in Markov chains. Elsevier Information Processing Letters, 87(6), 309–315.

    Article  Google Scholar 

  • Derisavi, S., Kemper, P., & Sanders, W. (2004). Symbolic state-space exploration and numerical analysis of state-sharing composed models. Linear Algebra and its Applications, 386, 137–166.

    Article  Google Scholar 

  • Economou, A. (2005). Generalized product-form stationary distributions for Markov chains in random environment with queueing application. Advances in Applied Probability, 37, 185–211.

    Article  Google Scholar 

  • Fourneau, J.M., Plateau, B., & Stewart, W.J. (2007). Product form for stochastic automata networks. In Proceedings of Value Tools 2007 Conference, ICST, ICST, Brussels, Belgium, pp. 1–10.

  • Franceschinis, G., & Muntz, R. R. (1994). Bounds for quasi-lumpable Markov chains. Performance Evaluation, 20(1–3), 223–243.

    Article  Google Scholar 

  • Gelenbe, E. (1991). Product form networks with negative and positive customers. Journal of Applied Probability, 28(3), 656–663.

    Article  Google Scholar 

  • Gilmore, S., Hillston, J., & Ribaudo, M. (2001). An efficient algorithm for aggregating PEPA models. IEEE Trans on Software Engineers, 27(5), 449–464.

    Article  Google Scholar 

  • Harrison, P., & Hillston, J. (1995). Exploiting quasi-reversible structures in Markovian process algebra models. The Computer Journal, 38(7), 510–520.

    Article  Google Scholar 

  • Harrison, P. G. (2003). Turning back time in Markovian process algebra. Theoretical Computer Science, 290(3), 1947–1986.

    Article  Google Scholar 

  • Heindl, A. (2003). Decomposition of general queueing networks with MMPP inputs and customer losses. Performance Evaluation, 51(1–4), 117–136.

    Article  Google Scholar 

  • Hermanns, H. (2002). Interactive Markov chains: The quest for quantified quality. LNCS 2428, Springer.

  • Hillston, J. (1996). A compositional approach to performance modelling. Cambridge: Cambridge Press.

    Book  Google Scholar 

  • Hillston, J., & Thomas, N. (1998). A syntactical analysis of reversible PEPA models. In Proceedings 6th Process Algebra and Performance Modelling Workshop, Nice, FR, pp. 37–49.

  • Hillston, J., Marin, A., Piazza, C. & Rossi, S. (2013). Contextual lumpability. In Proceedings of Valuetools 2013, Turin, Italy, pp. 1–10.

  • Kelly, F. (1979). Reversibility and stochastic networks. New York: Wiley.

    Google Scholar 

  • Kemeny, J.G., & Snell, J.L. (1960). Finite Markov chains, D. Van Nostrand Company, inc., chap II.

  • Lavenberg, S. S. (1983). Computer performance modeling handbook. New York: Academic Press.

    Google Scholar 

  • Marin, A., Balsamo, S., & Harrison, P. (2012). Analysis of stochastic Petri nets with signals. Performance Evaluation, 85(7), 1520–1539.

    Google Scholar 

  • Molloy, M. K. (1982). Performance analysis using stochastic Petri nets. IEEE Transactions on Computers, 31(9), 913–917.

    Article  Google Scholar 

  • Muntz, R. R. (1972). Poisson departure processes and queueing networks. Technique Report IBM Research Report RC4145, Yorktown Heights, New York.

  • Neuts, M. F. (1981). Matrix geometric solutions in stochastic models. Baltimore, MD: John Hopkins.

    Google Scholar 

  • Plateau, B. (1985). On the stochastic structure of parallelism and synchronization models for distributed algorithms. SIGMETRICS Performance Evaluation Review, 13(2), 147–154.

    Article  Google Scholar 

  • Stewart, G. (1983). Computable error bounds for aggregated Markov chains. Journal of the ACM, 30(2), 271–285.

    Article  Google Scholar 

  • Stewart, W. J. (1994). Introduction to the numerical solution of Markov chains. UK: Princeton University Press.

    Google Scholar 

  • Thomas, N., & Gilmore, S. (1998). Applying quasi-separability to Markovian process algebra. In Proceedings of the Sixth International Work on Process Algebra for Performance Modelling. Nice, France, pp. 27–36.

  • Thomas, N., & Mitrani, I. (1995). Routing among different nodes where servers break down without losing jobs. In F. Baccelli, A. Jean-Marie, & I. Mitrani (Eds.), Quantitative methods in parallel systems, esprit basic research series (pp. 248–261). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Marin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balsamo, S., Dei Rossi, GL. & Marin, A. Lumping and reversed processes in cooperating automata. Ann Oper Res 239, 695–722 (2016). https://doi.org/10.1007/s10479-014-1694-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1694-3

Keywords

Navigation