Skip to main content
Log in

A novel probabilistic formulation for locating and sizing emergency medical service stations

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The paper proposes a novel probabilistic model with chance constraints for locating and sizing emergency medical service stations. In this model, the chance constraints are approximated as second-order cone constraints to overcome computational difficulties for practical applications. The proposed approximations associated with different estimation accuracy of the stochastic nature are meaningful on a practical uncertainty environment. Then, the model is transformed into a conic quadratic mixed-integer program by employing a conic transformation. The resulting model can be efficiently addressed by a commercial optimization package. A special case is also considered and a class of valid inequalities is introduced to improve computational efficiency. Lastly, computational experiences on real data and randomly generated data are reported to illustrate the validity of the program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aly, A. A., & White, J. A. (1978). Probabilistic formulation of the emergency service location problem. The Journal of the Operational Research Society, 29(12), 1167–1179.

    Google Scholar 

  • Aringhieri, R., Carello, G., & Morale, D. (2013). Supporting decision making to improve the performance of an italian emergency medical service. Annals of Operations Research pp 1–18.

  • Atamtürk, A., & Narayanan, V. (2008). Polymatroids and mean-risk minimization in discrete optimization. Operations Research Letters, 36(5), 618–622.

    Article  Google Scholar 

  • Baptista, S., & Oliveira, R. C. (2012). A case study on the application of an approximated hypercube model to emergency medical systems management. Central European Journal of Operations Research, 20(4), 559–581.

    Article  Google Scholar 

  • Baron, O., Milner, J., & Naseraldin, H. (2011). Facility location: A robust optimization approach. Production and Operations Management, 20(5), 772–785.

    Article  Google Scholar 

  • Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Beraldi, P., Bruni, M. E., & Conforti, D. (2004). Designing robust emergency medical service via stochastic programming. European Journal of Operational Research, 158(1), 183–193.

    Article  Google Scholar 

  • Beraldi, P., & Bruni, M. E. (2009). A probabilistic model applied to emergency service vehicle location. European Journal of Operational Research, 196(1), 323–331.

    Article  Google Scholar 

  • Bonami, P., & Lejeune, M. (2009). An exact solution approach for portfolio optimization problems under stochastic and integer constraints. Operations research, 57(3), 650–670.

    Article  Google Scholar 

  • Brotcorne, L., Laporte, G., & Semet, F. (2003). Ambulance location and relocation models. European Journal of Operational Research, 147(3), 451–463.

    Article  Google Scholar 

  • Chanta, S., Mayorga, M., & McLay, L. (2011). Improving emergency service in rural areas: a bi-objective covering location model for ems systems. Annals of Operations Research pp 1–27.

  • Coskun, N., & Erol, R. (2010). An optimization model for locating and sizing emergency medical service stations. Journal of medical systems, 34(1), 43–49.

    Article  Google Scholar 

  • Daskin, M. S. (1983). A maximum expected covering location model: formulation, properties and heuristic solution. Transportation Science, 17(1), 48–70.

    Article  Google Scholar 

  • Davoudpour, H., Mortaz, E., & Hosseinijou, S. (2014). A new probabilistic coverage model for ambulances deployment with hypercube queuing approach. The International Journal of Advanced Manufacturing Technology, 70(5–8), 1157–1168.

    Article  Google Scholar 

  • Edmonds, J. (1970). Submodular functions, matroids, and certain polyhedra. Combinatorial Structures and Their Applications pp 69–87.

  • Essen, J. T., Hurink, J. L., Nickel, S., & Reuter, M. (2013). Models for ambulance planning on the strategic and the tactical level.

  • Galvão, R. D., & Morabito, R. (2008). Emergency service systems: The use of the hypercube queueing model in the solution of probabilistic location problems. International Transactions in Operational Research, 15(5), 525–549.

    Article  Google Scholar 

  • Geroliminis, N., Karlaftis, M. G., & Skabardonis, A. (2009). A spatial queuing model for the emergency vehicle districting and location problem. Transportation Research Part B: Methodological, 43(7), 798–811.

    Article  Google Scholar 

  • Geroliminis, N., Kepaptsoglou, K., & Karlaftis, M. G. (2011). A hybrid hypercube-genetic algorithm approach for deploying many emergency response mobile units in an urban network. European Journal of Operational Research, 210(2), 287–300.

    Article  Google Scholar 

  • Haneveld, W., & van der Vlerk, M. (2006). Integrated chance constraints: reduced forms and an algorithm. Computational Management Science, 3(4), 245–269.

    Article  Google Scholar 

  • Hong, X., Lejeune, M. A., Noyan, N. (2014). Stochastic network design for disaster preparedness. IIE Transactions (just-accepted):00–00.

  • Iannoni, A. P., Morabito, R., & Saydam, C. (2008). A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways. Annals of Operations Research, 157(1), 207–224.

    Article  Google Scholar 

  • Iannoni, A. P., Morabito, R., & Saydam, C. (2009). An optimization approach for ambulance location and the districting of the response segments on highways. European Journal of Operational Research, 195(2), 528–542.

    Article  Google Scholar 

  • Iannoni, A., Morabito, R., & Saydam, C. (2010). Optimizing large scale emergency medical system operations on highways using the hypercube queuing model. Socio-Economic Planning Sciences.

  • Jain, A. (2007). Value of capacity pooling in supply chains with heterogeneous customers. European journal of operational research, 177(1), 239–260.

    Article  Google Scholar 

  • Jia, H., Ordonez, F., & Dessouky, M. (2007). A modeling framework for facility location of medical services for large-scale emergencies. IIE Transactions, 39(1), 41–55.

    Article  Google Scholar 

  • Klein Haneveld, W. (1986). Duality in stochastic linear and dynamic programming. In: Lecture notes in economics and mathematical systems, Vol 274.

  • Kou, G., & Wu, W. (2014). Multi-criteria decision analysis for emergency medical service assessment. Annals of Operations Research pp 1–16.

  • Lejeune, M. A. (2013). Probabilistic modeling of multiperiod service levels. European Journal of Operational Research, 230(2), 299–312.

    Article  Google Scholar 

  • Li, X., Zhao, Z., Zhu, X., & Wyatt, T. (2011). Covering models and optimization techniques for emergency response facility location and planning: a review. Mathematical Methods of Operations Research, 74(3), 281–310.

    Article  Google Scholar 

  • Marianov, V., & ReVelle, C. (1995). Siting emergency services. Facility Location: a survey of applications and methods, 1, 199–223.

    Article  Google Scholar 

  • Marianov, V., & ReVelle, C. (1996). The queueing maximal availability location problem: a model for the siting of emergency vehicles. European Journal of Operational Research, 93(1), 110–120.

    Article  Google Scholar 

  • McLay, L. A. (2009). A maximum expected covering location model with two types of servers. IIE Transactions, 41(8), 730–741.

    Article  Google Scholar 

  • Murali, P., Ordóñez, F., & Dessouky, M. M. (2012). Facility location under demand uncertainty: Response to a large-scale bio-terror attack. Socio-Economic Planning Sciences, 46(1), 78–87.

    Article  Google Scholar 

  • Noyan, N. (2010). Alternate risk measures for emergency medical service system design. Annals of Operations Research pp 1–31.

  • Ozbay, K., Iyigun, C., Baykal-Gursoy, M., & Xiao, W. (2013). Probabilistic programming models for traffic incident management operations planning. Annals of Operations Research, 203(1), 389–406.

    Article  Google Scholar 

  • Popescu, I. (2005). A semidefinite programming approach to optimal-moment bounds for convex classes of distributions. Mathematics of Operations Research pp 632–657.

  • Prekopa, A., Vizvari, B., & Badics, T. (1998). Programming under probabilistic constraint with discrete random variable. In: F. Giannessi, S. Komlósi & T. Rapcsák (Eds.), New trends in mathematical programming, (pp. 235–255). Springer.

  • Rajagopalan, H. K., & Saydam, C. (2009). A minimum expected response model: Formulation, heuristic solution, and application. Socio-Economic Planning Sciences, 43(4), 253–262.

    Article  Google Scholar 

  • ReVelle, C. (1989). Review, extension and prediction in emergency service siting models. European Journal of Operational Research, 40(1), 58–69.

    Article  Google Scholar 

  • ReVelle, C., & Hogan, K. (1989). The maximum availability location problem. Transportation Science, 23(3), 192–200.

    Article  Google Scholar 

  • Schrijver, A. (2003). Combinatorial optimization: polyhedra and efficiency (Vol. 24). Berlin: Springer.

    Google Scholar 

  • Silva, F., & Serra, D. (2007). Locating emergency services with different priorities: the priority queuing covering location problem. Journal of the Operational Research Society, 59(9), 1229–1238.

    Article  Google Scholar 

  • Snyder, L. (2006). Facility location under uncertainty: A review. IIE Transactions, 38(7), 547–564.

    Article  Google Scholar 

  • Takeda, R. A., Widmer, J. A., & Morabito, R. (2007). Analysis of ambulance decentralization in an urban emergency medical service using the hypercube queueing model. Computers & Operations Research, 34(3), 727–741.

    Article  Google Scholar 

  • Toro-Díaz, H., Mayorga, M. E., Chanta, S., & McLay, L. A. (2013). Joint location and dispatching decisions for emergency medical services. Computers & Industrial Engineering, 64(4), 917–928.

    Article  Google Scholar 

  • Wolsey, L., & Nemhauser, G. (1999). Integer and Combinatorial Optimization. Wiley Series in Discrete Mathematics and Optimization: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hai Zhang.

Appendices

The proof of Theorem 1

Proof

\(D_j=\sum _{i\in I}d_iX_{ij}\) and it follows probability distribution with mean \(\mu ^T \bar{X}_j\) and variance \(\bar{X}_j^T \varSigma \bar{X}_j\).

(1) For arbitrary random variable \(d_i\), applying the following inequality (Popescu 2005)

$$\begin{aligned} \fancyscript{P}(D_j> N_j)\le \left\{ \begin{array}{ll} \frac{\bar{X}_j^T \varSigma \bar{X}_j}{\bar{X}_j^T\varSigma _j \bar{X}_j+(N_j-\mu ^T \bar{X}_j)^2}, &{}\quad if N_j-\mu ^T \bar{X}_j> 0,\\ 1,&{}\quad otherwise, \end{array}\right. \end{aligned}$$

we obtain

$$\begin{aligned} 1-\fancyscript{P}(D_j\le N_j)&\le \frac{\bar{X}_j^T \varSigma _j \bar{X}_j}{\bar{X}_j^T\varSigma _j \bar{X}_j+(N_j-\mu ^T \bar{X}_j)^2},\\ \fancyscript{P}(D_j\le N_j)&\ge 1-\frac{\bar{X}_j^T \varSigma _j \bar{X}_j}{\bar{X}_j^T\varSigma _j \bar{X}_j+(N_j-\mu ^T \bar{X}_j)^2}. \end{aligned}$$

Therefore,

$$\begin{aligned} 1-\frac{\bar{X}_j^T \varSigma _j \bar{X}_j}{\bar{X}_j^T\varSigma _j \bar{X}_j+(N_j-\mu ^T \bar{X}_j)^2}\ge \alpha \end{aligned}$$

is sufficient for constraint (9) to hold. The expression above can be rewritten as

$$\begin{aligned}&\alpha \bar{X}_j^T\varSigma _j \bar{X}_j\le (N_j-\mu ^T \bar{X}_j)^2 (1-\alpha ),\\&\mu ^T \bar{X}_j+\sqrt{\frac{\alpha }{1-\alpha }}\sqrt{\bar{X}_j^T \varSigma _j \bar{X}_j}\le N_j,\\&\mu ^T \bar{X}_j+\sqrt{\frac{\alpha }{1-\alpha }}\parallel \varSigma _j^{\frac{1}{2}} \bar{X}_j\parallel _2 \le N_j. \end{aligned}$$

(2) For symmetric random variables \(d_i\), the following inequalities are hold (Popescu 2005):

$$\begin{aligned} \fancyscript{P}(D_j> N_j)\le \left\{ \begin{array}{l@{\quad }l} \frac{1}{2}min\left[ 1,\frac{\bar{X}_j^T\varSigma _j \bar{X}_j}{(N_j-\mu ^T \bar{X}_j)^2}\right] , &{}\quad if N_j-\mu ^T \bar{X}_j> 0,\\ 1,&{}\quad otherwise. \end{array}\right. \\ \end{aligned}$$

Because \(\alpha \in [0.5, 1)\), the following inequalities are satisfied in order to hold constraint (9).

$$\begin{aligned} \fancyscript{P}(D_j\le N_j)\ge 1-\frac{1}{2}\frac{\bar{X}_j^T\varSigma _j \bar{X}_j}{(N_j-\mu ^T \bar{X}_j)^2}\ge \alpha .\\ \end{aligned}$$

Then,

$$\begin{aligned} \mu ^T\bar{X}_j+\sqrt{\frac{1}{2(1-\alpha )}}\parallel \varSigma ^{\frac{1}{2}} \bar{X}_j\parallel _2\le N_j. \end{aligned}$$

(3) For unimodal symmetric random variables \(d_i\), the following inequalities are hold (Popescu 2005):

$$\begin{aligned} \fancyscript{P}(D_j> N_j)\le \left\{ \begin{array}{l@{\quad }l} \frac{1}{2}min\left[ 1,\frac{4}{9}\frac{\bar{X}_j^T\varSigma _j \bar{X}_j}{(N_j-\mu ^T \bar{X}_j)^2}\right] , &{}if N_j-\mu ^T \bar{X}_j> 0,\\ 1,&{}otherwise. \end{array}\right. \\ \end{aligned}$$

Using the same approach as that of the symmetric random variable, we can show the result for the unimodal symmetric random variables:

$$\begin{aligned} \mu ^T\bar{X}_j+\sqrt{\frac{2}{9(1-\alpha )}}\parallel \varSigma ^{\frac{1}{2}}\bar{X}_j \parallel _2\le N_j. \end{aligned}$$

Constraint (10) is a second-order cone constraint since \(\parallel \varSigma _j^\frac{1}{2}\bar{X}_j\parallel _2\) is convex. \(\square \)

The proof of Property 1

Proof

The total number of emergency vehicles at EMS station \(j\) satisfies the following inequality

$$\begin{aligned} \sum _{i\in I_j}X_{ij}(\mu _i+\hat{\alpha }\sigma _i)\le \sum _{i\in I_j}X_{ij}\sum _{j^{'}\in J_i}n_{ij^{'}}=\sum _{i\in I_j}n_{ij}=N_j. \end{aligned}$$

By Cauchy inequality we know that \(cov(\xi \eta )\le [D(\xi )]^{\frac{1}{2}}[D(\eta )]^{\frac{1}{2}}\), then

$$\begin{aligned} \mu ^T \bar{X}_j+\hat{\alpha }\parallel \varSigma _j^{\frac{1}{2}}\bar{X}_j\parallel _2\le \mu ^T \bar{X}_j+\hat{\alpha }\sigma ^T\bar{X}_j \le N_j. \end{aligned}$$

\(\square \)

The computational results for three classes of the random MNCD

See Figs. 7, 8 and 9.

Fig. 7
figure 7

Number of EMS stations and emergency vehicles and optimal objective value: \(d_i\) is a arbitrary random variable

Fig. 8
figure 8

Number of EMS stations and emergency vehicles and optimal objective value: \(d_i\) is a symmetric random variable

Fig. 9
figure 9

Number of EMS stations and emergency vehicles and optimal objective value: \(d_i\) is an unimodal symmetric random variable

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZH., Li, K. A novel probabilistic formulation for locating and sizing emergency medical service stations. Ann Oper Res 229, 813–835 (2015). https://doi.org/10.1007/s10479-014-1758-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1758-4

Keywords

Navigation