Skip to main content

Advertisement

Log in

Coupling input–output analysis with multiobjective linear programming models for the study of economy–energy–environment–social (E3S) trade-offs: a review

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The study of the interactions between the economy (at national, global and local levels), the energy sector and the corresponding impacts on the environment inherently involves multiple axes of evaluation of distinct policies. Input–output (IO) analysis offers a consistent framework for developing multiobjective models for assessing the trade-offs associated with those policies. The analytical framework of IO analysis enables to model the interactions between the whole economy and the energy sector, thus identifying the energy required for the provision of goods and services in an economy and also quantifying the corresponding pollutant emissions. This paper is aimed at reviewing the different modelling approaches available in the scientific literature based on coupling IO analysis with multiobjective models, which can be particularly useful for policy makers to assess the trade-offs between the economy–energy–environment–social pillars of sustainable development, particularly relevant in the current sluggish economic context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acaravci, A., & Ozturk, I. (2010). On the relationship between energy consumption, CO\(_{2}\) emissions and economic growth in Europe. Energy, 35(12), 5412–5420.

    Article  Google Scholar 

  • Akkemika, K. A., & Göksal, K. (2012). Energy consumption-GDP nexus: Heterogeneous panel causality analysis. Energy Economics, 34(4), 865–873.

    Article  Google Scholar 

  • Al-mulali, U., & Sab, C. (2012). The impact of energy consumption and CO\(_{2}\) emission on the economic growth and financial development in the Sub Saharan African countries. Energy, 39(1), 180–186.

    Article  Google Scholar 

  • Alves, M. J., Antunes, C. H., & Clímaco, J. (1997). An experimental comparison of MOLP interactive approaches based on a regional planning model. In J. Clímaco (Ed.), Multicriteria analysis (pp. 428–439). Berlin: Springer.

    Chapter  Google Scholar 

  • Amagai, H., & Leung, P. (1991). The trade-off between economic and environmental objectives in Japan’s power sector. The Energy Journal, 12(4), 95–104.

    Article  Google Scholar 

  • Antunes, C. H., & Oliveira, C. (2014). Multi-objective optimization and multi-criteria analysis models and methods for problems in the energy sector. In M. Ehrgott, J. R. Figueira, & S. Greco (Eds.), Multiple criteria decision analysis: state of the art surveys (2nd ed.). Berlin: Springer. (forthcoming).

    Google Scholar 

  • Antunes, C. H., Oliveira, C., & Clímaco, J. (2002). A study of the interactions between the energy system and the economy using TRIMAP. In D. Bouyssou, E. Jacquet-Lagrèze, P. Perny, R. Slowinski, D. Vanderpooten, & P. Vincke (Eds.), Aiding decisions with multiple criteria (pp. 407–427). New York: Springer.

    Chapter  Google Scholar 

  • Aviso, K. B., Tan, R. R., Culaba, A. B., & Cruz, J. B, Jr. (2011). Fuzzy input–output model for optimizing eco-industrial supply chains under water footprint constraints. Journal of Cleaner Production, 19(2–3), 187–196.

    Article  Google Scholar 

  • Benayoun, R., De Montgolfier, J., Tergny, J., & Larichev, O. (1971). Linear programming and multiple objective functions: STEP method (STEM). Mathematical Programming, 1(3), 366–375.

    Article  Google Scholar 

  • Bickneel, K., Ball, R., Cullen, R., & Bigsby, H. (1998). New methodology for the ecological footprint with an application to the New Zealand economy. Ecological Economics, 27(2), 149–160.

    Article  Google Scholar 

  • Borges, A. R., & Antunes, C. H. (2003). A fuzzy multiple objective decision support model for energy-economy planning. European Journal of Operational Research, 145(2), 304–316.

    Article  Google Scholar 

  • Brown, G. G., & Graves, G. W. (1975). Elastic programming: A new approach to large-scale mixed integer, nonlinear optimization. In ORSA/TIMS National Meeting, November 17–19. Las Vegas, USA.

  • Buckley, J. J. (1989). Fuzzy input–output analysis. European Journal of Operational Research, 39(1), 54–60.

    Article  Google Scholar 

  • Carvalho, A. L., Antunes, C. H., Freire, F., & Henriques, C. O. (2013). A multi-objective interactive approach to assess economic–energy–environment trade-offs in Brazil. In Proceedings of the 1st International Congress on Energy and Environment: Bringing together Economics and Engineering, May 9–10. Porto, Portugal.

  • Chang, S.-L., & Juang, M.-C. (1998). Decision analysis on CO\(_{2}\) reduction for industrial and energy sectors—an FMOLP approach. In Proceedings of the conference on East Asian environmental and resource economics and policy. Institute of Economics, March 2–3. Taipei, Taiwan. http://www.seeds.usp.br/pir/arquivos/congressos/IAEE2005/program/pdf/CS17-3%20Ssu-li%20Chang.pdf. Accessed April 07, 2014.

  • Chen, T. (2001). The impact of mitigating CO\(_{2}\) emissions on Taiwan’s economy. Energy Economics, 23(2), 141–151.

    Article  Google Scholar 

  • Chinneck, J. W., & Dravnieks, E. W. (1991). Locating minimal infeasible constraint sets in linear programs. ORSA Journal on Computing, 3(2), 157–168.

    Article  Google Scholar 

  • Cho, C.-J. (1999). The economic–energy–environmental policy problem: An application of the interactive multiobjective decision method for Chungbuk Province. Journal of Environmental Management, 56(2), 119–131.

    Article  Google Scholar 

  • Ciaschini, M. (1988). Input–output analysis: An introduction. In M. Ciaschini (Ed.), Input–output analysis—Current developments (pp. 1–16). London: Chapman and Hall.

    Google Scholar 

  • Clímaco, J., & Antunes, C. H. (1987). TRIMAP—A tricriteria interactive linear programming package. Foundations of Control Engineering, 12(3), 101–119.

    Google Scholar 

  • Clímaco, J., & Antunes, C. H. (1989). Implementation of an user friendly software package—A guided tour of TRIMAP. Mathematical and Computer Modelling, 12(10–11), 1299–1309.

    Article  Google Scholar 

  • Clímaco, J., Antunes, C. H., & Alves, M. J. (1997). From TRIMAP to SOMMIX—Building effective interactive MOLP computational tools. In G. Fandel & T. Gal (Eds.), Multiple criteria decision making (pp. 285–296). Berlin: Springer.

    Chapter  Google Scholar 

  • Cristóbal, J. R. (2012). A goal programming model for environmental policy analysis: Application to Spain. Energy Policy, 43, 303–307.

    Article  Google Scholar 

  • Daly, H. (1968). On economics as a life science. The Journal of Political Economy, 76(3), 392–406.

    Article  Google Scholar 

  • Dantzig, G. B. (1963). Linear programming and extensions. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Dorfman, R. P., Samuelson, A., & Solow, R. M. (1958). Linear programming and economic analysis. New York: Dover.

    Google Scholar 

  • Duchin, F. (1998). Structural economics—Measuring change in technology, lifestyles, and the environment. Washington, DC: Island Press.

    Google Scholar 

  • Duchin, F., & Steenge, A. (1999). Input–output analysis, technology and the environment. In J. van den Bergh (Ed.), Handbook of environmental and resource economics (pp. 1037–1059). Cheltenham: Edward Elgar.

    Google Scholar 

  • Ebiefung, A., & Kostreva, M. (1993). The generalized Leontief input–output model and its application to the choice of new technology. Annals of Operations Research, 44(2), 161–172.

    Article  Google Scholar 

  • Fallahi, F. (2011). Causal relationship between energy consumption (EC) and GDP: A Markov-switching (MS) causality. Energy, 36(7), 4165–4170.

    Article  Google Scholar 

  • Fan, Y., Zhang, X., & Zhu, L. (2010). Estimating the macroeconomic costs of CO\(_{2}\) emission reduction in China based on multi-objective programming. Advances in Climate Change Research, 1(1), 27–33.

    Article  Google Scholar 

  • Gay, P., & Proops, J. (1993). Carbon-dioxide production by the UK economy: An input–output assessment. Applied Energy, 44(2), 113–130.

    Article  Google Scholar 

  • Gutmanis, I. (1975). Input–output models in economic and environmental policy analysis. Proceedings of the IEEE, 63(3), 431–437.

    Article  Google Scholar 

  • Hawdon, D., & Pearson, P. (1995). Input–output simulations of energy, environment, economy interactions in the UK. Energy Economics, 17(1), 73–86.

    Article  Google Scholar 

  • Hendrickson, C., Lave, L., & Matthews, H. (2006). Environmental life cycle assessment of goods and services: An input–output approach. Washington, DC: Resources for the Future Press.

    Google Scholar 

  • Hristu-Varsakelis, D., Karagianni, S., Pempetzoglou, M., & Sfetsos, A. (2010). Optimizing production with energy and GHG emission constraints in Greece: An input–output analysis. Energy Policy, 38(3), 1566–1577.

    Article  Google Scholar 

  • Hristu-Varsakelis, D., Karagianni, S., Pempetzoglou, M., & Sfetsos, A. (2012). Optimizing production in the Greek economy: Exploring the interaction between greenhouse gas emissions and solid waste via input–output analysis. Economic Systems Research, 24(1), 57–75.

    Article  Google Scholar 

  • Hsu, G. J. Y., & Chou, F.-Y. (2000). Integrated planning for mitigating CO\(_{2}\) emissions in Taiwan: A multi-objective programming approach. Energy Policy, 28(8), 519–523.

    Article  Google Scholar 

  • Hsu, G. J. Y., Leung, P., & Ching, C. (1987). A multiobjective programming and interindustry model for energy-economic planning in Taiwan. Energy Systems and Policy, 11, 185–204.

    Google Scholar 

  • Isard, W., Choguill, C., Kissin, J., Seyfarth, R., Tatlock, R., Basset, K., et al. (1972). Ecologic-economic analysis for regional development: Some initial explorations with particular reference to recreational resource use and environmental planning. New York: The Free Press.

    Google Scholar 

  • Jerrel, M. E. (1996). Application of interval computation to regional economic input–output models. In R. B. Kearfortt & V. Kreinovich (Eds.), Applications of interval computations, applied optimization (pp. 133–142). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Jerrel, M. E. (1997). Interval arithmetic for input–output models with inexact data. Computational Economics, 10(1), 89–100.

    Article  Google Scholar 

  • Jing, D., & Chun-you, W. (2007). Multiobjective optimization model for industrial ecosystem based on input–output analysis: A case study of combined heat and power plant eco-industrial park. In Proceedings of the 14th international conference on management science and engineering, August 20–22. Harbin, P.R. China. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4422027. Accessed April 07, 2014.

  • Kananen, I., Korhonen, P., Wallenius, J., & Wallenius, H. (1990). Multiple objective analysis of input-output models for emergency management. Operations Research, 38(2), 193–201.

    Article  Google Scholar 

  • Kazantzev, S. V. (1985). Financial restrictions in optimizing dynamic input–output model. In I. Tchijov & L. Tomaszewicz (Eds.), Lecture notes in economics and mathematical systems (pp. 91–97). Berlin: Springer.

    Google Scholar 

  • Kondo, Y., & Takase, K. (2003). Waste input–output analysis of sustainable consumption. In Proceedings of the 1st international workshop on sustainable consumption in Japan. Society for Non-Traditional Technology, May 19–20. Tokyo, Japan. http://www.aist-riss.jp/old/lca/ci/activity/project/sc/report/030319_document/S3-2-Kondo.pdf. Accessed April 07, 2014.

  • Kondo, Y., & Nakamura, S. (2005). Waste input–output linear programming model with its application to eco-efficiency analysis. Economic Systems Research, 17(4), 393–408.

    Article  Google Scholar 

  • Kravtsov, M., & Pashkevich, A. (2004). A multicriteria approach to optimization of the gross domestic product. Automation and Remote Control, 65(2), 337–345.

    Article  Google Scholar 

  • Lai, T., To, W., Lo, W., Choy, Y., & Lam, K. (2011). The causal relationship between electricity consumption and economic growth in a Gaming and Tourism Center: The case of Macao SAR, the People’s Republic of China. Energy, 36(2), 1134–1142.

    Article  Google Scholar 

  • Lane, M. N. (1970). Goal programming and satisficing models in economic analysis. Ph.D. Dissertation. Austin: University of Texas.

  • Lenzen, M. (2001). A generalized input–output multiplier calculus for Australia. Economic System Research, 13(1), 65–92.

    Article  Google Scholar 

  • Leontief, W. (1970). Environmental repercussions and the economic structure: An input–output approach. In W. Leontief (Ed.), Input–output economics (pp. 241–260). New York: Oxford University Press.

    Google Scholar 

  • Leontief, W. (1973). National income, economic structure, and environmental externalities. In W. Leontief (Ed.), Input–output economics (pp. 261–272). New York: Oxford University Press.

    Google Scholar 

  • Leontief, W. (1985). Input–output analysis. In W. Leontief (Ed.), Input–output economics (pp. 19–40). New York: Oxford University Press.

    Google Scholar 

  • Leontief, W., & Duchin, F. (1986). The future impact of automation on workers. New York: Oxford University Press.

    Google Scholar 

  • Leontief, W., & Ford, D. (1972). Air pollution and the economic structure: Empirical results of input–output computations. In W. Leontief (Ed.), Input–output economics (pp. 273–293). New York: Oxford University Press.

    Google Scholar 

  • Leung, P., & Hsu, G. (1984). An integrated energy planning model for Hawaii. Energy Economics, 6(2), 117–121.

    Article  Google Scholar 

  • Lin, C. (2011). Identifying lowest-emission choices and environmental pareto frontiers for wastewater treatment wastewater treatment input–output model based linear programming. Journal of Industrial Ecology, 15(3), 367–380.

    Article  Google Scholar 

  • Lipinski, C. (1985). Changes of output capacity utilization by structural changes of material inputs. In I. Tchijov & L. Tomaszewicz (Eds.), Lecture notes in economics and mathematical systems (pp. 99–106). Berlin: Springer.

    Google Scholar 

  • Luptáčik, M., & Böhm, B. (1994). An environmental input–output model with multiple criteria. Annals of Operations Research, 54(1), 119–127.

    Article  Google Scholar 

  • Luptáčik, M., & Böhm, B. (2010). Efficiency analysis of a multisectoral economic system. Central European Journal of Operations Research, 18(4), 609–619.

    Article  Google Scholar 

  • Mahlberg, B., & Luptáčik, M. (2014). Eco-efficiency and eco-productivity change over time in a multisectoral economic system. European Journal of Operational Research, 234(3), 885–897.

    Article  Google Scholar 

  • Manetti, G. (2011). The quality of stakeholder engagement in sustainability reporting: Empirical evidence and critical points. Corporate Social Responsibility and Environmental Management, 18(2), 110–122.

    Article  Google Scholar 

  • Miller, R., & Blair, P. (2009). Input–output analysis: Foundations and extensions. New York: Cambridge University Press.

    Book  Google Scholar 

  • Moulik, T. K., Dholakia, B. H., Dholakia, R. H., Ramani, K. V., & Shukla, P. R. (1992). Energy planning in India: The relevance of regional planning for natural policy. Energy Policy, 20(9), 836–846.

    Article  Google Scholar 

  • Muller, F. (1979). Energy and environment in interregional input–output models (Vol. 15). Berlin: Springer.

    Google Scholar 

  • Murty, K. G., Kabadi, S. N., & Chandrasekarn, R. (2000). Infeasibility analysis for linear systems, a survey. The Arabian Journal for Science and Engineering, 25(1C), 3–18.

    Google Scholar 

  • Ni, J., Zhong, D., Huang, Y., & Wang, H. (2001). Total waste-load control and allocation based on input–output analysis for Shenzhen, South China. Journal of Environmental Management, 61(1), 37–49.

    Article  Google Scholar 

  • Oliveira, C., & Antunes, C. H. (2002). An input–output model for decision support in energy-economy planning—A multiobjective interactive approach. Journal of Systems Analysis Modelling Simulation, 42(5), 769–790.

    Article  Google Scholar 

  • Oliveira, C., & Antunes, C. H. (2004). A multiple objective model to deal with economy–energy–environment interactions. European Journal of Operational Research, 153(2), 370–385.

    Article  Google Scholar 

  • Oliveira, C., & Antunes, C. H. (2007). Multiple objective linear programming models with interval coefficients—An illustrated overview. European Journal of Operational Research, 181(3), 1434–1463.

    Article  Google Scholar 

  • Oliveira, C., & Antunes, C. H. (2009). An interactive method of tackling uncertainty in interval multiple objective linear programming. Journal of Mathematical Sciences, 161(6), 854–866.

    Article  Google Scholar 

  • Oliveira, C., & Antunes, C. H. (2011). A multi-objective multi-sectoral economy–energy–environment model: Application to Portugal. Energy, 36(5), 2856–2866.

    Article  Google Scholar 

  • Oliveira, C., & Antunes, C. H. (2012). Interactions of economic growth, energy consumption and the environment in the context of the crisis—A study with uncertain data. Energy, 48, 415–422.

    Article  Google Scholar 

  • Oliveira, C., Coelho, D., & Silva, P. (2014). A prospective analysis of the employment impacts of energy efficiency retrofit investment in Portugal by 2020. International Journal of Sustainable Energy Planning and Management, 2, 81–92.

  • Oliveira, C., Coelho, D., & Antunes, C. H. (2015). A multi-objective input-output model to assess E4 impacts of building retrofitting measures to improve energy efficiency. Technological and Economic Development of Economy (forthcoming).

  • Oliveira, C., Coelho, D., Silva, P., & Antunes, C. H. (2013). How many jobs can the RES-E sectors generate in the Portuguese context? Renewable and Sustainable Energy Reviews, 21, 444–455.

    Article  Google Scholar 

  • Pao, H., & Fu, H. (2013). The causal relationship between energy resources and economic growth in Brazil. Energy Policy, 61, 793–801.

    Article  Google Scholar 

  • Peñate, D. R. S., & Peñate, C. M. L. (2003). Sam updating using multiobjective optimization techniques. In Proceedings of the 6th annual conference on global economic analysis, Scheveningen, June 12–14. The Hague, The Netherlands. https://www.gtap.agecon.purdue.edu/resources/download/1512.pdf. Accessed April 07, 2014.

  • Prasad, K. N., Swaminathan, A. M., & Parkar, R. G. (1996). Imported related inventory management in Indian economy. International Journal of Production Economics, 45(1–3), 215–222.

    Article  Google Scholar 

  • Quaddus, M. A., & Holzman, A. G. (1985). Interactive approach to macroeconomic planning with multiple objectives: Results of an experiment. In N. K. Jaiswal (Ed.), OR for developing countries (pp. 89–100). New Delhi: The Operational Research Society of India.

    Google Scholar 

  • Ravi, N., & Wendell, R. (1989). The tolerance approach to sensitivity analysis of matrix coefficients in linear programming. Management Science, 35(9), 1106–1119.

    Article  Google Scholar 

  • Rocco, C. M., & Guarata, N. (2002). The use of interval arithmetics as an alternative method to evaluate uncertainty in input-output models. In Proceedings of the 14th international conference on input–output techniques, October 10–15. Montreal, Canada. http://www.iioa.org/conferences/14th/files/Rocco_cr_nG_xiv_io_1.pdf. Accessed April 07, 2014.

  • Saboori, B., & Sulaiman, J. (2013). CO\(_{2}\) emissions, energy consumption and economic growth in Association of Southeast Asian Nations (ASEAN) countries: A cointegration approach. Energy, 55, 813–822.

    Article  Google Scholar 

  • Silva, P., Oliveira, C., & Coelho, D. (2013). Employment effects and renewable energy policies: Applying input–output methodology to Portugal. International Journal of Public Policy, 9(3), 147–166.

    Article  Google Scholar 

  • Suh, S. (2004). Functions, commodities and environmental impacts in an ecological-economic model. Ecological Economics, 48(4), 451–467.

    Article  Google Scholar 

  • Steuer, R. E. (1986). Multiple criteria optimization: Theory, computation and application. New York: Wiley.

    Google Scholar 

  • Stone, R. (1966). Mathematics in the social sciences, and other essays. Cambridge, MA: M.I.T. Press.

    Google Scholar 

  • Tan, R. R., Aviso, K. B., Barilea, I. U., Culaba, A. B., & Cruz, J. B, Jr. (2012). A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints. Applied Energy, 90(1), 154–160.

    Article  Google Scholar 

  • ten Raa, T. (1994). On the methodology of input–output analysis. Regional Science and Urban Economics, 24, 3–25.

    Article  Google Scholar 

  • ten Raa, T., & Mohnen, P. (1994). Neoclassical input–output analysis. Regional Science and Urban Economics, 24, 135–158.

    Article  Google Scholar 

  • ten Raa, T., & Steel, M. F. (1994). Revised stochastic analysis of an input–output model. Regional Science and Urban Economics, 24, 161–175.

    Google Scholar 

  • Urli, B., & Nadeau, R. (1992). An interactive method to multiobjective linear programming problems with interval coefficients. Information Systems and Operational Research, 30(2), 127–137.

    Article  Google Scholar 

  • Urli, B., & Nadeau, R. (2004). PROMISE/scenarios: An interactive method for multiobjective stochastic linear programming under partial uncertainty. European Journal of Operational Research, 155(2), 361–372.

    Article  Google Scholar 

  • Viet, V. Q. (1994). Practices in input–output table compilation. Regional Science and Urban Economics, 24(1), 27–54.

    Article  Google Scholar 

  • Victor, P. (1972). Pollution: Economics and environment. London: George Allen & Unwin Ltd.

    Book  Google Scholar 

  • Vogstad, K. O. (2009). Input–output analysis and linear programming. In S. Suh (Ed.), Handbook of input–output economics in industrial ecology. Eco-efficiency in industry and science (pp. 801–818). New York: Springer.

    Chapter  Google Scholar 

  • Voinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling and Software, 25(11), 1268–1281.

    Article  Google Scholar 

  • Warr, B., & Ayres, R. (2010). Evidence of causality between the quantity and quality of energy consumption and economic growth. Energy, 35(4), 1688–1693.

    Article  Google Scholar 

  • Wen, S., Xu, F., Wen, Z., & Lin, C. (2014). Robust linear optimization under matrix completion. Science China Mathematics, 57(4), 699–710.

    Article  Google Scholar 

  • West, G. R. (1986). A stochastic analysis of an input–output model. Econometrica, 54(2), 363–374.

    Article  Google Scholar 

  • Wilting, H. C. (2004). Exploring technology scenarios with an input–output model. In Proceedings of the international conference on input–output and general equilibrium: Data. Modelling and policy analysis, September 2–4. Brussels, Belgium. https://www.iioa.org/conferences/intermediate-2004/pdf/wilting.pdf. Accessed April 07, 2014.

  • You, F., Tao, L., Graziano, D. J., & Snyder, S. W. (2012). Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input–output analysis. AIChE Journal, 58(4), 1157–1180.

    Article  Google Scholar 

  • Zhang, H. X., Tang, H. W., & Lin, J. H. (2001). Research on application of multi-objective and dynamic input–output optimization model. Journal of Dalian University of Technology, 5, 514–517.

    Google Scholar 

  • Zhou, P., Fan, L. W., & Tang, H. W. (2006). On stability analysis of multiple objective dynamic input–output model. Applied Mathematics and Computation, 177(1), 79–84.

    Article  Google Scholar 

  • Zhou, P., Tang, H. W., Zhao, J., & Mao, H. J. (2004). Algorithm and application of Chinese macro-economic forecast model. Journal of Dalian University of Technology, 3, 342–346.

    Google Scholar 

  • Zionts, S., & Wallenius, J. (1976). An interactive programming method for solving the multiple criteria problem. Management Science, 22(6), 652–663.

    Article  Google Scholar 

  • Zionts, S., & Wallenius, J. (1983). An interactive multiple objective linear programming method for a class of underlying nonlinear value functions. Management Science, 29(5), 519–529.

    Article  Google Scholar 

  • Zou, Y., Wang, S., Mizunoya, T., Yabar, H., & Higano, Y. (2014a). Research on environmental tax with emphasis on developing renewable energy in Beijing, China. Journal of Sustainable Development, 7(2), 78–88.

    Article  Google Scholar 

  • Zou, Y., Song, J., Mizunoya, T., Yabar, H., & Higano, Y. (2014b). Research on environmental tax to affect the economic development and GHG mitigation in Beijing, China. Journal of Sustainable Development, 7(2), 78–88.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been developed under the Energy for Sustainability Initiative of the University of Coimbra and supported by the R&D Project EMSURE (Energy and Mobility for Sustainable Regions, CENTRO 07 0224 FEDER 002004). The authors also acknowledge the support of the Portuguese Science and Technology Foundation (FCT) through project PEst-OE/EEI/UI0308/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Coelho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, C., Coelho, D. & Antunes, C.H. Coupling input–output analysis with multiobjective linear programming models for the study of economy–energy–environment–social (E3S) trade-offs: a review. Ann Oper Res 247, 471–502 (2016). https://doi.org/10.1007/s10479-014-1773-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1773-5

Keywords

Navigation