Skip to main content
Log in

A multiple attribute group decision making framework for the evaluation of lean practices at logistics distribution centers

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In recent years, to adapt rapidly to changing market environments and outdo the competition more companies and organizations have adopted lean management practices. One problem that has arisen in these companies and organizations is the need to develop methods to accurately evaluate the lean practices performance. This study proposes a multiple attribute group decision making (MAGDM) framework to facilitate such evaluations. It deals with the consensus process and selection process for MAGDM problems based on the 2-tuple linguistic computation model. The similarity degree and consensus for the linguistic decision matrix are defined using an Euclidian distance function. An algorithm describing the consensus reaching process is presented and its properties analyzed. The entropy method is generalized to a linguistic setting to derive the importance weights for the attributes. One of the main ideas behind the entropy method is that attributes with quite different values are considered more important and therefore have higher weights. Finally, the developed MAGDM framework is applied to a lean practices evaluation problem for a commercial tobacco company’s logistics distribution centers in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguarón, J., Escobar, M. T., & Moreno-Jiménez, J. M. (2014). The precise consistency consensus matrix in a local AHP-group decision making context. Annals of Operations Research,. doi:10.1007/s10479-014-1576-8.

    Google Scholar 

  • Alonso, S., Chiclana, F., Herrera, F., Herrera-Viedma, E., Alcalá-Fdez, J., & Porcel, C. (2008). A consistency-based procedure to estimate missing pairwise preference values. International Journal of Intelligent Systems, 23, 155–175.

    Article  Google Scholar 

  • Alonso, S., Pérez, I. J., Cabrerizo, F. J., & Herrera-Viedma, E. (2013). A linguistic consensus model for web 2 communities. Applied Soft Computing, 13, 149–157.

    Article  Google Scholar 

  • Anvari, A., Zulkifli, N., & Yusuff, R. M. (2013). A dynamic modeling to measure lean performance within lean attributes. International Journal of Advanced Manufacturing Technology, 66, 663–677.

    Article  Google Scholar 

  • Azevedo, S. G., Govindan, K., Carvalho, H., & Cruz-Machado, V. (2012). An integrated model to assess the leanness and agility of the automotive industry. Resources, Conservation and Recycling, 66, 85–94.

    Article  Google Scholar 

  • Bachman, G., & Narici, L. (2000). Functional analysis. New York: Courier Dover Publications.

    Google Scholar 

  • Bayou, M. E., & De Korvin, A. (2008). Measuring the leanness of manufacturing systems–a case study of Ford Motor Company and General Motors. Journal of Engineering and Technology Management, 25, 287–304.

    Article  Google Scholar 

  • Bilbao-Terol, A., Jiménez, M., & Arenas-Parra, M. (2014). A group decision making model based on goal programming with fuzzy hierarchy: an application to regional forest planning. Annals of Operations Research,. doi:10.1007/s10479-014-1633-3.

    Google Scholar 

  • Cabrerizo, F. J., Moreno, J. M., Pérez, I. J., & Herrera-Viedma, E. (2010). Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft Computing, 14, 451–463.

    Article  Google Scholar 

  • Cabrerizo, F. J., Herrera-Viedma, E., & Pedrycz, W. (2013). A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts. European Journal of Operational Research, 230, 624–633.

    Article  Google Scholar 

  • Cai, F. L., Liao, X. W., & Wang, K. L. (2012). An interactive sorting approach based on the assignment examples of multiple decision makers with different priorities. Annals of Operations Research, 197, 87–108.

    Article  Google Scholar 

  • Chiclana, F., Herrera-Viedma, E., Alonso, S., & Herrera, F. (2009). Cardinal consistency of reciprocal preference relations: a characterization of multiplicative transitivity. IEEE Transactions on Fuzzy Systems, 17, 14–23.

    Article  Google Scholar 

  • Chiclana, F., Tapia Garcia, J. M., Del Moral, M. J., & Herrera-Viedma, E. (2013). A statistical comparative study of different similarity measures of consensus in group decision making. Information Sciences, 221, 110–123.

    Article  Google Scholar 

  • Cil, I., & Turkan, Y. S. (2013). An ANP-based assessment model for lean enterprise transformation. International Journal of Advanced Manufacturing Technology, 64, 1113–1130.

    Article  Google Scholar 

  • Dong, Y. C., Xu, Y. F., & Li, H. Y. (2008). On consistency measures of linguistic preference relations. European Journal of Operational Research, 189, 430–444.

    Article  Google Scholar 

  • Dong, Y. C., Xu, Y. F., & Yu, S. (2009). Computing the numerical scale of the linguistic term set for the 2-tuple fuzzy linguistic representation model. IEEE Transactions on Fuzzy Systems, 17(6), 1366–1378.

  • Dong, Y. C., Xu, Y. F., Li, H. Y., & Feng, B. (2010). The OWA-based consensus operator under linguistic representation models using position indexes. European Journal of Operational Research, 203, 455–463.

    Article  Google Scholar 

  • Dong, Y. C., Zhang, G. Q., Hong, W. C., & Yu, S. (2013). Linguistic computational model based on 2-tuples and intervals. IEEE Transactions on Fuzzy Systems, 26, 1006–1018.

    Article  Google Scholar 

  • Dong, Y. C., Li, C. C., Xu, Y. F., & Gu, X. (2014). Consensus-based group decision making under multi-granular unbalanced 2-tuple linguistic preference relations. Group Decision and Negotiation,. doi:10.1007/s10726-014-9387-5.

    Google Scholar 

  • Doolen, T. L., & Hacker, M. E. (2005). A review of lean assessment in organizations: An exploratory study of lean practices by electronics manufacturers. Journal of Manufacturing Systems, 24, 55–67.

    Article  Google Scholar 

  • Forno, A. J. D., Pereira, F. A., Forcellini, F. A., & Kipper, L. M. (2014). Value stream mapping: A study about the problems and challenges found in the literature from the past 15 years about application of Lean tools. International Journal of Advanced Manufacturing Technology, 72, 779–790.

    Article  Google Scholar 

  • Fu, C., & Yang, S. L. (2012). An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval valued group consensus requirements. European Journal of Operational Research, 223(1), 167–176.

    Article  Google Scholar 

  • Hajmohammad, S., Vachon, S., Klassen, R. D., & Gavronski, I. (2013). Lean management and supply management: Their role in green practices and performance. Journal of Cleaner Production, 39, 312–320.

    Article  Google Scholar 

  • Herrera, F., & Martínez, L. (2000). A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Transactions on Fuzzy Systems, 8(6), 746–752.

    Article  Google Scholar 

  • Herrera, F., Herrera-Viedma, E., & Martínez, L. (2008). A fuzzy linguistic methodology to deal with unbalanced linguistic term sets. IEEE Transactions on Fuzzy Systems, 16, 354–370.

    Article  Google Scholar 

  • Herrera, F., Alonso, S., Chiclana, F., & Herrera-Viedma, E. (2009). Computing with words in decision making: Foundations, trends and prospects. Fuzzy Optimization and Decision Making, 8(4), 337–364.

    Article  Google Scholar 

  • Herrera-Viedma, E., Cabrerizo, F. J., Kacprzyk, J., & Pedrycz, W. (2014). A review of soft consensus models in a fuzzy environment. Information Fusion, 17, 4–13.

    Article  Google Scholar 

  • Herrera-Viedma, E., & López-Herrera, A. G. (2007). A model of an information retrieval system with unbalanced fuzzy linguistic information. International Journal of Intelligent Systems, 22, 1197–1214.

    Article  Google Scholar 

  • Herrera-Viedma, E., Martínez, L., Mata, F., & Chiclana, F. (2005). A consensus support systems model for group decision making problems with multigranular linguistic preference relations. IEEE Transactions on Fuzzy Systems, 13, 644–658.

    Article  Google Scholar 

  • Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making-methods and applications: A state-of-the-art survey. New York: Springer-Verlag.

    Book  Google Scholar 

  • Khanchanapong, T., Prjogo, D., Sohal, A. S., Cooper, B. K., Yeung, A. C. L., & Cheng, T. C. E. (2014). The unique and complementary effects of manufacturing technologies and lean practices on manufacturing operational performance. International Journal of Production Economics, 153, 191–203.

    Article  Google Scholar 

  • Martínez, L., & Herrera, F. (2012). An overview on the 2-tuple linguistic model for computing with words in decision making: Extensions, applications and challenges. Information Sciences, 207, 1–18.

    Article  Google Scholar 

  • Massanet, S., Riera, J. V., Torrens, J., & Herrera-Viedma, E. (2014). A new linguistic computational model based on discrete fuzzy numbers for computing with words. Information Sciences, 258, 277–290.

    Article  Google Scholar 

  • Mata, F., Martínez, L., & Herrera-Viedma, E. (2009). An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context. IEEE Transactions on Fuzzy Systems, 17, 279–290.

    Article  Google Scholar 

  • Mendel, J. M., & Wu, D. R. (2010). Perceptual computing: Aiding people in making subjective judgments. Hoboken: Wiley.

    Book  Google Scholar 

  • Modrak, V., & Seman, P. (2014). Handbook of research on design and management of lean production systems (1st ed.). Hershey: IGI Global.

    Book  Google Scholar 

  • Moyano-Fuentes, J., & Sacristán-Díaz, M. (2012). Learning on lean: A review of thinking and research. International Journal of Operations & Production Management, 32, 551–582.

    Article  Google Scholar 

  • Palomares, I., Rodríguez, R. M., & Martínez, L. (2013). An attitude-driven web consensus support system for heterogeneous group decision making. Expert Systems with Applications, 40, 139–149.

    Article  Google Scholar 

  • Palomares, I., Estrella, F. J., Martínez, L., & Herrera, F. (2014). Consensus under a fuzzy context: Taxonomy, analysis framework AFRYCA and experimental case of study. Information Fusion, 20, 252–271.

    Article  Google Scholar 

  • Palomares, I., Rodríguez, R. M., & Martínez, L. (2014). A semi-supervised multi-agent system Model to support consensus reaching processes. IEEE Transactions on Fuzzy Systems, 22, 762–777.

    Article  Google Scholar 

  • Pérez, I. J., Cabrerizo, & Herrera-Viedma, E. (2010). A mobile decision support system for dynamic group decision making problems. IEEE Transactions on Systems, Man and Cybernetics Part A Systems and Humans, 40, 1244–1256.

    Article  Google Scholar 

  • Pérez, I. J., Cabrerizo, F. J., Alonso, S., & Herrera-Viedma, E. (2014). A new consensus model for group decision making problems with non homogeneous experts. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44, 494–498.

    Article  Google Scholar 

  • Parreiras, R. O., Ekel, P., Martini, J. S. C., & Palhares, R. M. (2010). A flexible consensus scheme for multicriteria group decision making under linguistic assessments. Information Sciences, 180, 1075–1089.

    Article  Google Scholar 

  • Parreiras, R. O., Ekel, P., & Morais, D. C. (2012). Fuzzy set based consensus schemes for multicriteria group decision making applied to strategic planning. Group Decision and Negotiation, 180(7), 153–183.

    Article  Google Scholar 

  • Pedrycz, W., Ekel, P., & Parreiras, R. (2011). Fuzzy multicriteria decision-making: Models, methods and applications. Chichester: Wiley.

  • Powell, D., Alfnes, E., Strandhagen, J. O., & Dreyer, H. (2013). The concurrent application of lean production and ERP: Towards an ERP-based lean implementation process. Computers in Industry, 64, 324–335.

    Article  Google Scholar 

  • Roselló, L., Sánchez, M., Agell, N., Prats, F., & Mazaira, F. A. (2014). Using consensus and distances between generalized multi-attribute linguistic assessments for group decision-making. Information Fusion, 17, 83–92.

    Article  Google Scholar 

  • Seyedhosseini, S. M., Taleghani, A. E., Bakhsha, A., & Partovi, S. (2011). Extracting leanness criteria by employing the concept of balanced scorecard. Expert Systems with Applications, 38, 10454–10461.

    Article  Google Scholar 

  • Shah, R., & Ward, P. T. (2007). Defining and developing measures of lean production. Journal of Operations Management, 25, 785–805.

    Article  Google Scholar 

  • Spyridakos, A., & Yannacopoulos, D. (2014). Incorporating collective functions to multicriteria disaggregation Caggregation approaches for small group decision making. Annals of Operations Research,. doi:10.1007/s10479-014-1609-3.

    Google Scholar 

  • Vinodh, S., & Chintha, S. K. (2011). Leanness assessment using multi-grade fuzzy approach. International Journal of Production Research, 49, 431–445.

    Article  Google Scholar 

  • Vinodh, S., & Vimal, K. E. K. (2012). Thirty criteria based leanness assessment using fuzzy logic approach. International Journal of Advanced Manufacturing Technology, 60, 1185–1195.

    Article  Google Scholar 

  • Wang, J. H., & Hao, J. Y. (2006). A new version of 2-tuple fuzzy linguistic representation model for computing with words. IEEE Transactions on Fuzzy Systems, 14, 435–445.

    Article  Google Scholar 

  • Womack, J. P., & Jones, D. T. (1996). Lean thinking: Banish waste and create wealth in your corporation. New York: Simon and Schuster.

    Google Scholar 

  • Wu, D. R., & Mendel, J. M. (2010). Computing with words for hierarchical decision making applied to evaluating a weapon system. IEEE Transactions on Fuzzy Systems, 18(3), 441–460.

    Article  Google Scholar 

  • Xu, Z. S. (2009). An automatic approach to reaching consensus in multiple attribute group decision making. Computers & Industrial Engineering, 56(4), 1369–1374.

    Article  Google Scholar 

  • Xu, J. P., & Wu, Z. B. (2011). A discrete consensus support model for multiple attribute group decision making. Knowledge-Based Systems, 24(8), 1196–1202.

    Article  Google Scholar 

  • Wu, Z. B., & Xu, J. P. (2012). Consensus reaching models of linguistic preference relations based on distance functions. Soft Computing, 16, 577–589.

    Article  Google Scholar 

  • Xu, J. P., & Wu, Z. B. (2013). A maximizing consensus approach for alternative selection based on uncertain linguistic preference relations. Computers & Industrial Engineering, 64, 999–1008.

    Article  Google Scholar 

  • Xu, J. P., Wu, Z. B., & Zhang, Y. (2014). A consensus based method for multi-criteria group decision making under uncertain linguistic setting. Group Decision and Negotiation, 23(1), 127–148.

    Article  Google Scholar 

  • Yan, H. B., Huynh, V., & Nakamori, Y. (2012). A group nonadditive multiattribute consumer-oriented Kansei evaluation model with an application to traditional crafts. Annals of Operations Research, 195, 325–354.

    Article  Google Scholar 

  • Zadeh, L. A. (1975). The concept of a linguistic variable and its applications to approximate reasoning. Information Sciences, 8, 199–249.

    Article  Google Scholar 

  • Zhou, B. (2012). Lean principles, practices, and impacts a study on small and medium-sized enterprises (SMEs). Annals of Operations Research,. doi:10.1007/s10479-012-1177-3.

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the editors and the anonymous referees for their constructive comments and suggestions that lead to an improved version of this paper. This research was supported by National Natural Science Foundation of China (Grant No. 71301110) and the Humanities and Social Sciences Foundation of the Ministry of Education (Grant No. 13XJC630015) and also supported by Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20130181120059, 20130181110063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuping Xu.

Appendix

Appendix

Proof of Theorem 1.

Proof

According to the strategy in Algorithm 1, we have

$$\begin{aligned} R_{p,h+1}=\left( r_{ij,h+1}^{(p)}\right) _{n\times m} , \end{aligned}$$

where

$$\begin{aligned} r_{ij,h+1}^{(p)}=\gamma r_{ij,h}^{(p)} \oplus (1-\gamma )r_{ij,h}. \end{aligned}$$

Furthermore, we have

$$\begin{aligned} \triangle ^{-1}(r_{ij,h})-\triangle ^{-1}(r_{ij,h+1})&= \sum \limits _{l=1}^t {\lambda _l \triangle ^{-1}\left( r_{ij,h}^{(l)} \right) } -\sum \limits _{l=1}^t {\lambda _l \triangle ^{-1}\left( r_{ij,h+1}^{(l)} \right) }\nonumber \\&= \lambda _p \left( \triangle ^{-1}\left( r_{ij,h}^{(p)} \right) -\triangle ^{-1}\left( r_{ij,h+1}^{(p)} \right) \right) \nonumber \\&= \lambda _p \left( \triangle ^{-1}\left( r_{ij,h}^{(p)} \right) -\left( \gamma \triangle ^{-1}\left( r_{ij,h}^{(p)} \right) +(1-\gamma )\triangle ^{-1}(r_{ij,h} )\right) \right) \nonumber \\&= \lambda _p (1-\gamma )\left( \triangle ^{-1}\left( r_{ij,h}^{(p)} \right) -\triangle ^{-1}(r_{ij,h} )\right) . \end{aligned}$$
(15)

Therefore

$$\begin{aligned}&\left| {\triangle ^{-1}\left( r_{ij,h+1}^{(p)} \right) -\triangle ^{-1}(r_{ij,h+1} )} \right| \\&\quad =\left| {\gamma \triangle ^{-1}\left( r_{ij,h}^{(p)} \right) +(1-\gamma )\triangle ^{-1}(r_{ij,h} )-\triangle ^{-1}(r_{ij,h+1} )} \right| \\&\quad =\left| {\gamma (\triangle ^{-1}\left( r_{ij,h}^{(p)} \right) -\triangle ^{-1}(r_{ij,h} ))+(\triangle ^{-1}(r_{ij,h} )-\triangle ^{-1}(r_{ij,h+1} ))} \right| \\&\quad =\left| {\gamma (\triangle ^{-1}\left( r_{ij,h}^{(p)} \right) -\triangle ^{-1}(r_{ij,h} ))+\lambda _p (1-\gamma )(\triangle ^{-1}\left( r_{ij,h}^{(p)} \right) -\triangle ^{-1}(r_{ij,h} ))} \right| \\&\quad =\left| {(\gamma +\lambda _p (1-\gamma ))\left( \triangle ^{-1}\left( r_{ij,h}^{(p)} \right) -\triangle ^{-1}(r_{ij,h} )\right) } \right| \\&\quad <\left| {\triangle ^{-1}\left( r_{ij,h}^{(p)} \right) -\triangle ^{-1}(r_{ij,h} )} \right| . \\ \end{aligned}$$

Since

$$\begin{aligned} d\left( r_{ij,h}^{(p)},r_{ij,h}\right) =\frac{\left| {\triangle ^{-1}\left( r_{ij,h}^{(p)} \right) -\triangle ^{-1}(r_{ij,h} )}\right| }{g}, \end{aligned}$$

we have

$$\begin{aligned} d\left( r_{ij,h+1}^{(p)},r_{ij,h+1} \right) <d\left( r_{ij,h}^{(p)},r_{ij,h}\right) . \end{aligned}$$
(16)

Consequently,

$$\begin{aligned} SD(R_{p,h+1},R_{h+1})<SD(R_{p,h},R_{h}). \end{aligned}$$

That is,

$$\begin{aligned} { GCI }(R_{p,h+1})>{ GCI }(R_{p,h}). \end{aligned}$$

This completes the proof for Theorem 1.\(\square \)

Proof of Theorem 2.

Proof

Suppose expert \(p\) has the minimum consensus index in the \(h\)th iteration,

$$\begin{aligned} { GCI }(R_{p,h} )=\min \limits _l \{{ GCI }(R_{l,h} )\}. \end{aligned}$$

We discuss two cases.

Case A: \(l=p\). According to Theorem 1,

$$\begin{aligned} { GCI }(R_{p,h+1})>{ GCI }(R_{p,h}). \end{aligned}$$
(17)

It follows that

$$\begin{aligned} { GCI }(R_{p,h+1})>\min \limits _l \{{ GCI }(R_{l,h} )\}. \end{aligned}$$
(18)

Case B: \(l\ne p\). In this case, we have \({ GCI }(R_{l,h})>{ GCI }(R_{p,h} )\). This means that \(SD(R_{l,h},R_h)<SD(R_{p,h},R_h)\). That is, \(\exists \gamma _{l,h} \), \(0<\gamma _{l,h}<1\), such that

$$\begin{aligned} SD(R_{l,h},R_h )=\gamma _{l,h} SD(R_{p,h},R_h). \end{aligned}$$

Let \(\gamma _h =\max \limits _{l\ne p} \{\gamma _{l,h}\}\). From (15), we have

$$\begin{aligned}&(\triangle ^{-1}(r_{ij,h+1}^{(l)} )-\triangle ^{-1}(r_{ij,h+1} ))^2\nonumber \\&\quad ={\left[ \left( \triangle ^{-1}\left( r_{ij,h}^{(l)} \right) -\triangle ^{-1}(r_{ij,h}))+ \lambda _p (1-\gamma _h )(\triangle ^{-1}\left( r_{ij,h}^{(p)}\right) -\triangle ^{-1}(r_{ij,h})\right) \right] ^2}. \end{aligned}$$
(19)

Since \(R_{l,h+1} =R_{l,h} \), for \(l\ne p\), we have from the Minkowski’s inequality (Bachman and Narici 2000; Wu and Xu 2012) and (19)

$$\begin{aligned}&\sqrt{\frac{1}{nm}\sum \limits _{i=1}^{n} {\sum \limits _{j=1}^m {\frac{1}{g^2}\left( \triangle ^{-1}\left( r_{ij,h+1}^{(l)} \right) -\triangle ^{-1}(r_{ij,h+1} )\right) ^2} } } \\&\quad \le \sqrt{\frac{1}{nmg^2}\sum \limits _{i=1}^{n} {\sum \limits _{j=1}^m {\left( \triangle ^{-1}\left( r_{ij,h}^{(l)} \right) -\triangle ^{-1}(r_{ij,h} )\right) ^2} } }\\&\qquad +\sqrt{\frac{1}{nmg^2}(\lambda _p (1-\gamma _h ))^2\sum \limits _{i=1}^{n} {\sum \limits _{j=1}^m {\left( \triangle ^{-1}\left( r_{ij,h}^{(p)} \right) -\triangle ^{-1}(r_{ij,h} )\right) ^2} } } \\&\quad =SD(R_{l,h},R_h)+\lambda _p (1-\gamma _h )SD(R_{p,h},R_h )\\&\quad \le \gamma _h SD(R_{p,h},R_h )+\lambda _p (1-\gamma _h )SD(R_{p,h},R_h )<SD(R_{p,h},R_h). \end{aligned}$$

Therefore,

$$\begin{aligned} SD(R_{l,h+1},R_{h+1} )<SD(R_{p,h},R_h )=\max \limits _l \{SD(R_{l,h},R_h )\}. \end{aligned}$$

It follows that

$$\begin{aligned} { GCI }(R_{l,h+1})>{ GCI }(R_{p,h} )=\min \limits _l \{{ GCI }(R_{l,h} )\}. \end{aligned}$$

Summarizing both A and B cases, we have

$$\begin{aligned} \min \limits _l \{{ GCI }(R_{l,h+1} )\}>\min \limits _l \{{ GCI }(R_{l,h} )\},\quad \forall l=1,2,\ldots ,t. \end{aligned}$$

This completes the proof for Theorem 2.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Xu, J. & Xu, Z. A multiple attribute group decision making framework for the evaluation of lean practices at logistics distribution centers. Ann Oper Res 247, 735–757 (2016). https://doi.org/10.1007/s10479-015-1788-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1788-6

Keywords

Navigation