Skip to main content
Log in

The 1-Center and 1-Highway problem revisited

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we extend the Rectilinear 1-center problem as follows: given a set \(S\) of \(n\) demand points in the plane, simultaneously locate a facility point \(f\) and a rapid transit line (i.e. highway) \(h\) that together minimize the expression \(\max _{p\in S}T_{h}(p,f)\), where \(T_{h}(p,f)\) denotes the travel time between \(p\) and \(f\). A point of \(S\) uses \(h\) to reach \(f\) if \(h\) saves time: every point \(p\in S\) moves outside \(h\) at unit speed under the \(L_1\) metric, and moves along \(h\) at a given speed \(v>1\). We consider two types of highways: (1) a turnpike in which the demand points can enter/exit the highway only at the endpoints; and (2) a freeway problem in which the demand points can enter/exit the highway at any point. We solve the location problem for the turnpike case in \(O(n^2)\) or \(O(n\log n)\) time, depending on whether or not the highway’s length is fixed. In the freeway case, independently of whether the highway’s length is fixed or not, the location problem can be solved in \(O(n\log n)\) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abellanas, M., Hurtado, F., Sacristán, V., Icking, C., Ma, L., Klein, R., et al. (2003). Voronoi diagram for services neighboring a highway. Information Processing Letters, 86(5), 283–288.

    Article  Google Scholar 

  • Ahn, H.-K., Alt, H., Asano, T., Bae, S. W., Brass, P., Cheong, O., et al. (2009). Constructing optimal highways. International Journal of Foundations of Computer Science, 20(1), 3–23.

    Article  Google Scholar 

  • Aichholzer, O., Aurenhammer, F., & Palop, B. (2004). Quickest paths, straight skeletons, and the city voronoi diagram. Discrete & Computational Geometry, 31(1), 17–35.

    Article  Google Scholar 

  • Aloupis, G., Cardinal, J., Collette, S., Hurtado, F., Langerman, S., O’Rourke, J., et al. (2010). Highway hull revisited. Computational Geometry & Theoretical Applications, 43(2), 115–130.

    Article  Google Scholar 

  • Bae, S. W., Korman, M. & Tokuyama, T. (2009a). All farthest neighbors in the presence of highways and obstacles. In Proceedings of the 3rd international workshop on algorithms and computation, WALCOM’09, Heidelberg, pp 71–82.

  • Bae, S. W., Kim, J.-H., & Chwa, K.-Y. (2009b). Optimal construction of the city voronoi diagram. International Journal of Computational Geometry & Applications, 19(2), 95–117.

  • Battaudatta, R., & Rajan, S. P. (1988). Mixed planar/network facility location problems. Computers & Operations Research, 15, 61–67.

    Article  Google Scholar 

  • Bespamyatnikh, S., & Kirkpatrick, D. G. (1999). Rectilinear 2-center problems. In Proceedings of 11th Canadian conference on computational geometry, pp. 68–71.

  • Bespamyatnikh, S., & Segal, M. (1999). Rectilinear static and dynamic discrete 2-center problems. In Proceedings of the 6th international workshop on algorithms and data structures, WADS ’99, London, pp. 276–287.

  • Cardinal, J., Collette, S., Hurtado, F., Langerman, S., & Palop, B. (2008). Optimal location of transportation devices. Computational Geometry & Theoretical Applications, 41, 219–229.

    Article  Google Scholar 

  • Carrizosa, E., & Rodríguez-Chía, A. M. (1997). Weber problems with alternative transportation systems. European Journal of Operational Research, 97(1), 87–93.

    Article  Google Scholar 

  • Díaz-Báñez, J. M., Korman M., Pérez-Lantero, P., & Ventura, I. (2011). The 1-center and 1-highway problem. In A. Márquez, P. Ramos, & J. Urrutia (Eds.), EGC, Volume 7579 of LNCS, pp. 155–165. Berlin: Springer.

  • Díaz-Báñez, J. M., Korman, M., Pérez-Lantero, P., & Ventura, I. (2013a). The 1-median and 1-highway problem. European Journal of Operational Research, 225(3), 552–557.

  • Díaz-Báñez, J. M., Korman, M., Pérez-Lantero, P., & Ventura, I. (2013b). Locating a single facility and a high-speed line. European Journal of Operational Research, 236(1), 69–77.

  • Díaz-Báñez, J. M., Mesa, J. A., & Schöbel, A. (2002). Continuous location of dimensional structures. European Journal of Operational Research, 152, 22–44.

    Article  Google Scholar 

  • Drezner, Z. (1987). On the rectangular \(p\)-center problem. Naval Research Logistics, 34(2), 229–234.

    Article  Google Scholar 

  • Drezner, Z., & Hamacher, H. W. (2002). Facility location—Applications and theory. Berlin: Springer.

    Book  Google Scholar 

  • Eppstein, D. (1997). Faster construction of planar two-centers. In Proceedings of the 8th annual ACM-SIAM symposium on discrete algorithms, SODA’97, pp. 131–138, Philadelphia, PA.

  • Espejo, I., & Rodríguez-Chía, A. M. (2011). Simultaneous location of a service facility and a rapid transit line. Computers & Operations Research, 38, 525–538.

    Article  Google Scholar 

  • Huang, P.-H., Tsai, Y. T., & Tang, C. Y. (2003). A fast algorithm for the alpha-connected two-center decision problem. Information Processing Letters, 85, 205–210.

    Article  Google Scholar 

  • Korman, M., & Tokuyama, T. (2008) Optimal insertion of a segment highway in a city metric. In Proceedings of the 14th international conference on computing and combinatorics (COCOON’08), LNCS, pp. 611–620.

  • Körner, M.-C., & Schöbel, A. (2010). Weber problems with high-speed lines. TOP, 18(1), 223–241.

    Article  Google Scholar 

  • Laporte, G., Mesa, J. A., & Ortega, F. A. (2000). Optimization methods for the planning of rapid transit systems. European Journal of Operational Research, 122, 1–10.

    Article  Google Scholar 

  • Mitchell, J. S. B. (1992). \({L}_1\) shortest paths among polygonal obstacles in the plane. Algorithmica, 8(1), 55–88.

    Article  Google Scholar 

  • Plastria, F. (1995). Continuous location problems. In Z. Drezner (Ed.), Facility location: A survey of applications and methods (pp. 225–262). Berlin: Springer.

    Chapter  Google Scholar 

  • Robert, J.-M., & Toussaint, G. (1990). Computational geometry and facility location. In Proceedings of the international conference on operations research and management science, pp. 11–15.

  • Toussaint, G. (1983). Solving geometric problems with the rotating calipers. In Proceedings of the IEEE MELECON’83, pp. 10–02.

  • Woeginger, G. J. (1998). A comment on a minmax location problem. Operations Research Letters, 23(1–2), 41–43.

    Article  Google Scholar 

Download references

Acknowledgments

J. M. Díaz-Báñez, P. Pérez-Lantero and I. Ventura were partially supported by the project FEDER MEC MTM2009-08652. J. M. Díaz-Báñez, M. Korman and I. Ventura were partially supported by ESF EUROCORES programme EuroGIGA, CRP ComPoSe: grant EUI-EURC-2011-4306. M. Korman was partially supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the European Union. P. Pérez-Lantero was partially supported by project Millennium Nucleus Information and Coordination in Networks ICM/FIC RC130003 (Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ventura.

Additional information

A preliminary version of this research appeared in the XIV Spanish Meeting on Computational Geometry (Díaz-Báñez et al. 2011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Báñez, J.M., Korman, M., Pérez-Lantero, P. et al. The 1-Center and 1-Highway problem revisited. Ann Oper Res 246, 167–179 (2016). https://doi.org/10.1007/s10479-015-1790-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1790-z

Keywords

Navigation