Skip to main content

Advertisement

Log in

A scheduling model of logistics service supply chain based on the time windows of the FLSP’s operation and customer requirement

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In the scheduling problem of logistics service supply chain (LSSC), the uncertainties of the functional logistics service provider’s (FLSP’s) operation time and customer requirement time will directly influence the logistics service integrator’s (LSI’s) time scheduling plan. In this paper, we explored the influences of time windows of the FLSP’s operation and customer requirement on the scheduling decision. A multi-objective programming model of the LSSC time scheduling is established, aiming to minimize total order operation cost of the LSSC, minimize the difference between the total expected operation time and customer requirement time, and maximize the satisfaction of functional logistics service providers. To simplify the model solution, this multi-objective model is changed into a single-objective model with ideal point method. In the following numerical analysis for a specific example, genetic algorithm is applied. The influences of some relevant parameters on the scheduling performance are discussed. Firstly, with the increases of FLSPs’ operation time range and the postponement proportionality coefficient of customer requirement time, the optimal scheduling performance of LSSC will increase and then tend to be stable. Secondly, the customer requirement time could not be compressed too much and have a minimum in order to obtain a feasible solution. Thirdly, the time windows of the FLSP’s operation and customer requirement have significant interactions. The time window of customer requirement will expand with the increase of the time window of the FLSP’s operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alfred, L. G., & Mohamad, Y. J. (2008). Managerial and economic impacts of reducing delivery variance in the supply chain. Applied Mathematical Modelling, 32(10), 2149–2161.

  • Bhatnagar, R., Mehta, P., & Teo, C. C. (2011). Coordination of planning and scheduling decisions in global supply chains with dual supply modes. International Journal of Production Economics, 131, 473–482.

    Article  Google Scholar 

  • Calvete, H. I., Galé, C., Oliveros, M. J., & Belén, S. V. (2007). A goal programming approach to vehicle routing problems with soft time windows. European Journal of Operational Research, 177(13), 1720–1733.

    Article  Google Scholar 

  • Chandra, C., & Grabis, J. (2004). Managing logistics for mass customization: The new production frontier. In Proceedings of the 6th Biannual World Automation Congress—Image processing, biomedicine, multimedia, financial engineering and manufacturing—International Forum on Multimedia Image Processing, IFMIP (WAC ’04) (pp. 335–340).

  • Chen, Z. L., & Hall, N. G. (2007). Supply chain scheduling: Conflict and cooperation in assembly systems. Operations Research, 55(6), 1072–1089.

    Article  Google Scholar 

  • Chen, H. K., Hsueh, C. F., & Chang, M. S. (2009). Production scheduling and vehicle routingwith timewindows for perishable food products. Computers & Operations Research, 36, 2311–2319.

    Article  Google Scholar 

  • Choy, K. L., Li, C. L., So, S. C. K., Lau, H., Kwok, S. K., & Leung, D. (2007). Managing uncertainty in logistics service supply chain. International Journal of Risk Assessment and Management, 7(1), 19–22.

    Article  Google Scholar 

  • Da Silveira, G., Borenstein, D., & Fogliatto, F. S. (2001). Mass customization: Literature review and research directions. International Journal of Production Economics, 72, 1–13.

    Article  Google Scholar 

  • Dmitry, I., & Boris, S. (2013). Dynamic co-ordinated scheduling in the supply chain under a process modernization. International Journal of Production Research, 51(9), 2680–2697.

    Article  Google Scholar 

  • Feng, Y. X., Zheng, B., Tan, J. R., & Wei, Z. (2009). An exploratory study of the general requirement representation model for product configuration in mass customization mode. International Journal of Advanced Manufacture Technology, 40(3), 785–796.

    Article  Google Scholar 

  • Fogliatto, F. S., Silveira, G. J. C. Da, & Borenstein, D. (2012). The mass customization decade: An updated review of the literature. International Journal of Production Economics., 138(1), 14–25.

    Article  Google Scholar 

  • Garg, D., Narahari, Y., & Viswanadham, N. (2006). Achieving sharp deliveries in supply chains through variance pool allocation. European Journal of Operational Research, 171(1), 227–254.

    Article  Google Scholar 

  • Giovanni, D. L., Massi, G., & Pezzella, F. (2013). An adaptive genetic algorithm for large-size open stack problems. International Journal of Production Research., 51(3), 682–697.

    Article  Google Scholar 

  • Guiffridaa, A. L., & Jaberb, M. Y. (2008). Managerial and economic impacts of reducing delivery variance in the supply chain. Applied Mathematical Modelling, 32(10), 2149–2161.

    Article  Google Scholar 

  • Gupta, A., & Maranas, C. D. (2000). A two-stage modeling and solution framework for multi-site midterm planning under demand uncertainty. Industrial Engineering in Chemical Research, 39(10), 3799–3813.

    Article  Google Scholar 

  • Gupta, A., & Maranas, C. D. (2003). Managing demand uncertainty in supply chain planning. Computer and Chemical Engineering, 27(8), 1219–1225.

    Article  Google Scholar 

  • Hall, N. G., & Potts, C. N. (2003). Supply chain scheduling: Batching and delivery. Operations Research, 51(4), 566–584.

    Article  Google Scholar 

  • Hsieh, C. C., & Wu, C. H. (2008). Capacity allocation, ordering, and pricing decisions in a supply chain with demand and supply uncertainties. European Journal of Operational Research, 184(2), 667–684.

    Article  Google Scholar 

  • Jury, G., & Matteo, K. (2013). Product and process modularity: Improving flexibility and reducing supplier failure risk. International Journal of Production Research, 51(19), 5757–5770.

    Article  Google Scholar 

  • Kaminsky, P., & Kaya, O. (2008). Scheduling and due-date quotation in a make-to-order supply chain. Naval Research Logistics, 55(5), 444–458.

    Article  Google Scholar 

  • Kwon, O., PaulIm, G., & Chang, L. K. (2007). MACE-SCM: A multi-agent and case-based reasoning collaboration mechanism for supply chain management under supply and demand uncertainties. Expert Systems with Applications, 33(3), 690–705.

    Article  Google Scholar 

  • Lee, C. Y., Piramuthu, S., & TsaiY, K. (1997). Job shop scheduling with a genetic algorithm and machine learning. International Journal of Production Research, 35(4), 1171–1191.

    Article  Google Scholar 

  • Li, D. C., Chang, F. M., & Chang, S. C. (2010). The relationship between affecting factors and mass-customisation level: The case of a pigment company in Taiwan. International Journal of Production Research, 48(18), 5385–5395.

    Article  Google Scholar 

  • Liao, C. J., & Shyu, C. H. (1991). An analytical determination of lead time with normal demand. International Journal of Operations and Production Management, 11(9), 72–78.

    Article  Google Scholar 

  • Liu, W. H., Ji, J. H., & Zhou, L. (2008). An order allocation model in two-echelon logistics service supply chain. Journal of Shanghai Jiaotong University, 42(9), 1524–1533.

    Google Scholar 

  • Liu, W. H., Mo, Y. M., Yang, Y., & Ye, Z. (2014) Decision Model of Customer Order Decoupling Point on Multiple Customer Demands inLogistics Service Supply Chain. Production Planning & Control. (In Press, doi:10.1080/09537287.2013.879747).

  • Liu, W. H., Xu, X. C., Ren, Z. X., & Peng, Y. (2011). An emergency order allocation model based on multi-provider in two-echelon logistics service supply chain. Supply Chain Management: An international Journal, 16(6), 391–400.

    Article  Google Scholar 

  • Liu, W. H., Yang, Y., Li, X., Xu, H. T., & Xie, D. (2012). A time scheduling model of logistics service supply chain with mass customized logistics service. Discrete Dynamics in Nature and Society. Article ID 482978.

  • Low, C. Y., Li, R. K., & Chang, C. M. (2013). Integrated scheduling of production and delivery with time windows. International Journal of Production Research, 51(3), 897–909.

    Article  Google Scholar 

  • Mauro, A. C. D., & D’Urso, D. (2013). A human experiment on inventory decisions under supply uncertainty. International Journal of Production Economics, 142(1), 61–73.

    Article  Google Scholar 

  • Mejía, G., Montoya, C., Cardona, J., & Castro, A. (2012). Petri nets and genetic algorithms for complex manufacturing systems scheduling. International Journal of Production Research, 50(3), 791–803.

    Article  Google Scholar 

  • Mele, F. D., Guill’en, G., Espuña, A., & Puigjaner, L. (2007). An agent-based approach for supply chain retrofitting under uncertainty. Computers and Chemical Engineering, 31(5), 722–735.

    Article  Google Scholar 

  • Milind, D., Geismar, H. N., Hall, N. G, Chelliah, S. (2006). Supply chain scheduling: distribution systems. Production and Operations Management, 15(2), 243–261.

  • Nabil, M. (2010). Dependence of lead time on batch size studied by a system dynamics model. International Journal of Production Research., 24(18), 5523–5532.

    Google Scholar 

  • Nasri, F., Affisco, J. F., & Paknejad, M. J. (1990). Setup cost reduction in an inventory model with finite-range stochastic lead times. International Journal of Production Research., 28(1), 199–212.

    Article  Google Scholar 

  • Oryang, L. Y., & Chuang, B. R. (2000). A periodic review inventory model involving variable lead time with a service level constrain. International Journal of Production Research, 31(10), 1209–1215.

    Google Scholar 

  • Petkov, S. B., & Maranas, C. D. (1997). Multiperiod planning and scheduling of multipurpose batch plants under demand uncertainty. Industrial and Engineering Chemistry Research, 36(11), 4864–4881.

    Article  Google Scholar 

  • Philip, H., & Amos, H. C. G. (2011). Dynamic implications of customer order decoupling point positioning. Journal of Manufacturing Technology Management, 22(8), 1032–1042.

    Article  Google Scholar 

  • Pine, I. I., Joseph, B., & Stan, D. (1993). Mass customization: The new frontier in business competition. Boston: Harvard Business School Press.

    Google Scholar 

  • Sarabian, M., & Lee, L. S. (2010). A modified partially mapped multi-crossover genetic algorithm for two-dimensional bin packing problem. Journal of Mathematics & Statistics, 6(2), 157–162.

    Article  Google Scholar 

  • Schütz, P., Tomasgard, A., & Ahmed, S. (2009). Supply chain design under uncertainty using sample average approximation and dual decomposition. European Journal of Operational Research., 199(2), 409–419.

    Article  Google Scholar 

  • Selvarajah, E., & Steiner, G. (2009). Approximation algorithms for the supplier’s supply chain scheduling problem to minimize delivery and inventory holding costs. Operations Research, 57(2), 426–438.

    Article  Google Scholar 

  • Shao, X. F. (2013). Integrated product and channel decision in mass customization. IEEE Transactions on Engineering Management, 60(1), 30–45.

    Article  Google Scholar 

  • Spinler, S., & Huchzermeier, A. (2006). The valuation of options on capacity with cost and demand uncertainty. European Journal of Operational Research, 171(3), 915–934.

    Article  Google Scholar 

  • Taleizadeh, A. A., Niaki, S. T. A., Shafii, N., Meibodi, R. G., & Jabbarzadeh, A. (2010). A particle swarm optimization approach for constraint joint single buyer-single vendor inventory problem with changeable lead time and (r, Q) policy in supply chain. International Journal of Advanced Manufacturing Technology, 51, 1209–1223.

    Article  Google Scholar 

  • Tang, D. J., & Chen, J. (2009). Identification of postponement point in service delivery process: A description model. In Service systems and service management, ICSSSM, ’09. 6th international conference (pp. 335–339).

  • Vander Vorst, J. G. A. J., & Beulens, A. J. M. (2002). Indentifying sources of uncertainty to generate supply chain redesign strategies. International Journal of Physical Distribution and Logistics Management, 32(6), 409–30.

    Article  Google Scholar 

  • Wang, H. (2013). Defects tracking in mass customization production using defects tracking matrix combined with principal component analysis. International Journal of Production Research, 51(6), 1852–1868.

    Article  Google Scholar 

  • Wang, Y., & Lin, Jie. (2008). Supply chain model based on multi-CODP in mass dynamic customization. International Conference on Information Management, Innovation Management and Industrial Engineering, 2, 252–255.

    Google Scholar 

  • Welborn, C. (2009). Customization index: Evaluating the flexibility of operations in a mass customization environment. The Icfai University Journal of Operations Management, 8(2), 6–15.

    Google Scholar 

  • Wu, D. J., Kleindorfer, P. R., & Zhang, J. E. (2002). Optimal bidding and contracting strategies for capital-intensive goods. European Journal of Operational Research, 137(3), 657–676.

    Article  Google Scholar 

  • Yang, D., Dong, M., & Chang, X. K. (2012). A dynamic constraint satisfaction approach for configuring structural products under mass customization. Engineering Application of Artificial Inteligence, 25(8), 1723–1737.

    Article  Google Scholar 

  • Yang, H. H., & Wang, S. W. (2011). Solving the 0/1 knapsack problem using rough sets and genetic algorithms. Journal of the Chinese Institute of Industrial Engineers., 28(5), 360–369.

    Article  Google Scholar 

  • Yang, B., & Yang, Y. (2010). Postponement in supply chain risk management: A complexity perspective. International Journal of Production Research, 48(7), 1901–1912.

    Article  Google Scholar 

  • Yao, J., & Liu, L. (2009). Optimization analysis of supply chain scheduling in mass customization. International Journal of Production Economics, 117(1), 197–211.

    Article  Google Scholar 

  • You, F., & Grossmann, I. E. (2008). Design of responsive supply chains under demand uncertainty. Computers and Chemical Engineering, 32, 3090–3111.

    Article  Google Scholar 

  • Zhou, Z., Che, A., & Yan, P. A. (2012). Mixed integer programming approach for multi-cyclic robotic flowshop scheduling with time window constraints. Applied Mathematical Modelling, 36, 3621–3629.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Grant No. 71372156), supported by Humanity and Social Science Youth foundation of Ministry of Education of China (Grant No. 2013YJC630098), sponsored by China State Scholarship Fund and Independent Innovation Foundation of Tianjin University. The reviewers’ comments are also highly appreciated.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Liu.

Appendix: Integration deployment process of objective \(Z_1 \)

Appendix: Integration deployment process of objective \(Z_1 \)

(1) When \(T_i^{\exp } <a_i\) or \(T_i^{\exp } >b_i ,f_{2i} = T_i^{ext} \times C_i^{ext} =| {E( {t_i } )-T_i^{\exp } } |\times C_i^{ext} =C_i^{ext} | {\frac{a_i +b_i }{2}-T_i^{\exp } } |, f_{3i} =T_i^{ext} \times P_i =| {E( {t_i } )-t_i } |\times P_i =\frac{P_i (b_i -a_i )}{4}\).

(2) When \(a_i \le T_i^{\exp } \le b_i , f_{2i} =0, f_{3i} =T_i^{ext} \times P_i =| {T_i^{\exp } -t_i } |\times P_i =\frac{( {T_i^{\exp } -a_i } )^{2}}{2}\times \frac{P_i }{b_i -a_i }+\frac{( {b_i -T_i^{\exp } } )^{2}}{2}\times \frac{P_i }{b_i -a_i}\).

Similarly,

(1) When \(T_{ij}^{\exp } <a_{ij}\) or \(T_{ij}^{\exp } > b_{ij} ,f_{5i} = T_{ij}^{ext} \times C_{ij}^{ext} =| {E( {t_{ij}})-T_{ij}^{\exp } } |\times C_{ij}^{ext} =C_{ij}^{ext} | {\frac{a_{ij} +b_{ij} }{2}-T_{ij}^{\exp } } |, f_{6i} =T_{ij}^{ext} \times P_{ij} =| {E( {t_{ij} } )-t_{ij} } |\times P_{ij} =\frac{P_{ij} (b_{ij} -a_{ij} )}{4}\).

(2) When \(a_{ij} \le T_{ij}^{\exp } \le b_{ij} , f_{5i} =0, f_{6i} = T_{ij}^{ext} \times P_{ij} = | {T_{ij}^{\exp } -t_{ij} } |\times P_{ij} = \frac{( {T_{ij}^{\exp } -a_{ij} } )^{2}}{2}\times \frac{P_{ij} }{b_{ij} -a_{ij} }+ \frac{( {b_{ij} -T_{ij}^{\exp } } )^{2}}{2}\times \frac{P_{ij} }{b_{ij} -a_{ij}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Yang, Y., Wang, S. et al. A scheduling model of logistics service supply chain based on the time windows of the FLSP’s operation and customer requirement. Ann Oper Res 257, 183–206 (2017). https://doi.org/10.1007/s10479-015-1794-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1794-8

Keywords

Navigation