Skip to main content
Log in

Certainty equivalent measures of risk

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We study a framework for constructing coherent and convex measures of risk that is inspired by infimal convolution operator, and which is shown to constitute a new general representation of these classes of risk functions. We then discuss how this scheme may be effectively applied to obtain a class of certainty equivalent measures of risk that can directly incorporate preferences of a rational decision maker as expressed by a utility function. This approach is consequently employed to introduce a new family of measures, the log-exponential convex measures of risk. Conducted numerical experiments show that this family can be a useful tool for modeling of risk-averse preferences in decision making problems with heavy-tailed distributions of uncertain parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective risk aversion. Journal of Banking and Finance, 26(7), 1487–1503.

    Article  Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228.

    Article  Google Scholar 

  • Ben-Tal, A., & Teboulle, M. (2007). An old-new concept of convex risk measures: An optimized certainty equivalent. Mathematical Finance, 17(3), 449–476.

    Article  Google Scholar 

  • Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer.

    Google Scholar 

  • Bullen, P. S., Mitrinović, D. S., & Vasić, P. M. (1988). Means and their inequalities., volume 31 of Mathematics and its Applications (East European Series) Dordrecht: D. Reidel Publishing Co. translated and revised from the Serbo-Croatian.

    Book  Google Scholar 

  • Cooke, R. M., & Nieboer, D. (2011). Heavy-tailed distributions: Data, diagnostics, and new developments. Resources for the Future Discussion Paper (pp. 11–19).

  • Dana, R.-A. (2005). A representation result for concave Schur concave functions. Mathematical Finance, 15(4), 613–634.

    Article  Google Scholar 

  • De Giorgi, E. (2005). Reward-risk Portfolio selection and stochastic dominance. Journal of Banking and Finance, 29(4), 895–926.

    Article  Google Scholar 

  • Delbaen, F. (2002). Coherent risk measures on general probability spaces. In K. Sandmann & P. J. Schönbucher (Eds.), Advances in finance and stochastics: Essays in honour of Dieter Sondermann (pp. 1–37). Berlin: Springer.

    Chapter  Google Scholar 

  • Duffie, D., & Pan, J. (1997). An overview of value-at-risk. Journal of Derivatives, 4, 7–49.

    Article  Google Scholar 

  • Fishburn, P. C. (1977). Mean-risk analysis with risk associated with below-target returns. The American Economic Review, 67(2), 116–126.

    Google Scholar 

  • Föllmer, H., & Schied, A. (2002). Convex measures of risk and trading constraints. Finance Stochastics, 6(4), 429–447.

    Article  Google Scholar 

  • Frittelli, M., & Rosazza Gianin, E. (2005). Law invariant convex risk measures. In Advances in mathematical economics (Vol. 7, pp. 33–46). Tokyo: Springer.

  • Hardy, G. H., Littlewood, J. E., & Pólya, G. (1952). Inequalities (2nd ed.). Cambridge: University Press.

    Google Scholar 

  • Iaquinta, G., Lamantia, F., Massab, I., & Ortobelli, S. (2009). Moment based approaches to value the risk of contingent claim portfolios. Annals of Operations Research, 165(1), 97–121.

    Article  Google Scholar 

  • Jorion, P. (1997). Value at risk: The new benchmark for controlling market risk. New York: McGraw-Hill.

    Google Scholar 

  • Kousky, C., & Cooke, R. M. (2009). The unholy trinity: Fat tails, tail dependence, and micro-correlations. Resources for the Future Discussion Paper (pp. 09–36).

  • Kreinovich, V., Chiangpradit, M., & Panichkitkosolkul, W. (2012). Efficient algorithms for heavy-tail analysis under interval uncertainty. Annals of Operations Research, 195(1), 73–96.

    Article  Google Scholar 

  • Krokhmal, P., Zabarankin, M., & Uryasev, S. (2011). Modeling and optimization of risk. Surveys in Operations Research and Management Science, 16(2), 49–66.

    Article  Google Scholar 

  • Krokhmal, P. A. (2007). Higher moment coherent risk measures. Quantitative Finance, 7(4), 373–387.

    Article  Google Scholar 

  • Kusuoka, S. (2001). On law invariant coherent risk measures. In Advances in mathematical economics (Vol. 3, pp. 83–95). Tokyo: Springer.

  • Kusuoka, S. (2013). A remark on Malliavin calculus: uniform estimates and localization. Journal of Mathematical Science, the University of Tokyo, 19(4), 533–558.

    Google Scholar 

  • Levy, H. (1998). Stochastic dominance. Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • McCord, M., & Neufville, R. (1986). “Lottery Equivalents”: Reduction of the certainty effect problem in utility assessment. Management Science, 32(1), 56–60.

    Article  Google Scholar 

  • Ogryczak, W., & Ruszczyński, A. (2001). On consistency of stochastic dominance and mean-semideviation models. Mathematical Programming, 89, 217–232.

    Article  Google Scholar 

  • Pflug, G. C. (2006). Subdifferential representations of risk measures. Mathematical Programming Series B, 108(2–3), 339–354.

    Article  Google Scholar 

  • Prékopa, A. (1995). Stochastic programming. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Randolph, J. (1952). Calculus. New York: Macmillan.

    Google Scholar 

  • Rockafellar, R. T. (1997). Convex analysis. Princeton landmarks in mathematics Princeton, NJ: Princeton University Press (reprint of the 1970 original, Princeton Paperbacks).

  • Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–41.

    Article  Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking and Finance, 26(7), 1443–1471.

    Article  Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2013). The fundamental risk quadrangle in risk management, optimization and statistical estimation. Surveys in Operations Research and Management Science, 18(12), 33–53.

    Article  Google Scholar 

  • Rothschild, M., & Stiglitz, J. (1970). Increasing risk I: A definition. Journal of Economic Theory, 2(3), 225–243.

    Article  Google Scholar 

  • Vinel, A., & Krokhmal, P. (2014). Mixed integer programming with a class of nonlinear convex constraints. Working paper.

  • von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior (1953rd ed.). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wilson, R. (1979). Auctions of shares. The Quarterly Journal of Economics, 93(4), 675–689.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Air Force Office of Scientific Research Grant FA9550-12-1-0142 and National Science Foundation Grant EPS1101284. In addition, support by the Air Force Research Laboratory Mathematical Modeling and Optimization Institute is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo A. Krokhmal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinel, A., Krokhmal, P.A. Certainty equivalent measures of risk. Ann Oper Res 249, 75–95 (2017). https://doi.org/10.1007/s10479-015-1801-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1801-0

Keywords

Navigation