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Abstract

This paper studies an allocation procedure for coalitional games
with veto players. The procedure is similar to the one presented by
Arin and Feltkamp (J Math Econ 43:855—870, 2007), which is based on
Dagan et al. (Games Econ Behav 18:55—72, 1997). A distinguished
player makes a proposal that the remaining players must accept or
reject, and conflict is solved bilaterally between the rejector and the
proposer. We allow the proposer to make sequential proposals over
several periods. If responders are myopic maximizers (i.e. consider
each period in isolation), the only equilibrium outcome is the serial rule
of Arin and Feltkamp (Eur J Oper Res 216:208—213, 2012) regardless
of the order of moves. If all players are fully rational, the serial rule
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still arises as the unique subgame perfect equilibrium outcome if the
order of moves is such that stronger players respond to the proposal
after weaker ones.

Keywords: game theory, veto players, bargaining, serial rule.
JEL classification: C71, C72, C78, D70.

1 Introduction

Consider a multilateral bargaining situation with one distinguished player
(the most senior creditor in the bankruptcy case, the chair of a committee,
the manager of a firm...). The distinguished player negotiates bilaterally
with each of the other players. Negotiations are constrained by a fairness or
justice principle that is commonly accepted in society and can be enforced
(possibly by an external court). Players are assumed to be selfish, hence
they only appeal to this principle when it is in their material interest to do
so. To what extent does the global agreement reflect the bilateral principle?
In Dagan et al. (1997) the answer is that the bilateral principle completely
determines the outcome: if a particular bankruptcy rule can be enforced
in the bilateral comparison between the proposer and each responder, the
outcome is the same bankruptcy rule applied to the case of n creditors.1

Dagan et al.’s paper focuses on bankruptcy games, hence their justice
principles are also restricted to this class. The question arises of what the
appropriate justice principle should be for general TU games. In this paper
we use the (restricted) standard solution of a reduced game between the two
players. The idea behind this principle is that each of the two players gains
(or loses) the same amount with respect to an alternative situation in which
the two players cannot cooperate with each other (unless this would result in
a negative payoff for one of the players, in which case this player gets zero).
Using this bilateral principle, Arin and Feltkamp (2007) studied the bar-

gaining procedure in another class of games with a distinguished player,

1The procedure in Dagan et al. (1997) is based on an earlier paper by Serrano (1995).
A variant of this procedure was later studied by Chang and Hu (2008).
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namely games with a veto player. A veto player is a player whose coopera-
tion is essential in order for a coalition to generate value. Games with a veto
player arise naturally in economic applications. Examples include a produc-
tion economy with one landowner and many landless peasants (Shapley and
Shubik (1967)), an innovator trading information about a technological in-
novation with several producers (Muto (1986), Muto et al. (1989), Driessen
et al. (1992)) and hierarchical situations where a top player’s permission is
necessary in order for a project to be developed (Gilles et al. 1992). Arin
and Feltkamp (2007) found that the equilibria of this bargaining procedure
are not always effi cient: the proposer may be strictly better-off by proposing
an allocation that does not exhaust the total available payoff.
In the present paper, we modify the above procedure by allowing the

proposer to make a fixed number of sequential proposals, so that players can
continue bargaining over the remainder if the first proposal did not exhaust
the value of the grand coalition. Each period results in a partial agreement,
and then a new TU game is constructed where the values of the coalitions
take into account the agreements reached so far; the final outcome is the
sum of all partial agreements. We assume that the number of available
bargaining periods T is at least as large as the number of players n. In order
to analyze this multiperiod game, we start by a simplified model in which
responders behave myopically, that is, we initially assume that responders
consider each period in isolation, accepting or rejecting the current proposal
without anticipating the effects of their decision on future periods. The
proposer is assumed to behave rationally, taking into account the effect of
his actions on future periods and also taking into account that the responders
behave myopically. We refer to this kind of strategy profile as a myopic best
response equilibrium.
It turns out that all myopic best response equilibria are effi cient and lead

to the same outcome, which is the serial rule of Arin and Feltkamp (2012).
This solution concept is based on the idea that the strength of player i can
be measured by the maximum amount a coalition can obtain without player
i, denoted by di. Since it is impossible for any coalition to obtain a payoff
above di without i’s cooperation, player i can be viewed as having a veto
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right over v(N) − di. The serial rule divides v(N) into segments, and each
segment is equally divided between the players that have a veto right over it.
We then turn to the analysis of subgame perfect equilibrium outcomes

and show that they may differ from the serial rule. The order of moves
may be such that the proposer is able to hide some payoff from a stronger
player with the cooperation of a weaker player: the proposal faced by the
stronger player is not too favorable for the proposer so that the stronger
player cannot challenge it, but later on a weak player rejects the proposal
and transfers some payoff to the proposer; the weak player may have an
incentive to do so because of the effect of this agreement on future periods.
However, if the order of moves is such that stronger players have the last
word in the sense that they respond to the proposal after weaker ones, the
only subgame perfect equilibrium outcome is the serial rule. Hence, myopic
and rational behavior of the responders lead to the same outcome in this
case.

2 Preliminaries

2.1 TU games

A cooperative n-person game in characteristic function form is a pair (N, v),
where N is a finite set of n elements and v : 2N → R is a real-valued function
on the family 2N of all subsets of N with v(∅) = 0. Elements of N are
called players and the real-valued function v the characteristic function of
the game. Any subset S of the player set N is called a coalition. The number
of players in a coalition S is denoted by |S|. In this work we will only consider
games where all coalitions have nonnegative worth and the grand coalition
is effi cient, that is, 0 ≤ v(S) ≤ v(N) for all S ⊂ N.

A payoff allocation is represented by a vector x ∈ Rn, where xi is the
payoff assigned by x to player i. We denote

∑
i∈S
xi by x(S). If x(N) ≤ v(N),

x is called a feasible allocation; if x(N) = v(N), x is called an effi cient
allocation. An effi cient allocation satisfying xi ≥ v(i) for all i ∈ N is called
an imputation and the set of imputations is denoted by I(N, v). The set of
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nonnegative feasible allocations is denoted by D(N, v) and formally defined
as follows

D(N, v) :=
{
x ∈ RN : x(N) ≤ v(N) and xi ≥ 0 for all i ∈ N

}
.

A (single-valued) solution φ on a class of games Γ is a function that
associates with every game (N, v) in Γ a feasible allocation φ(N, v) in RN .
The solution φ satisfies the aggregate monotonicity property (Meggido, 1974)
on the class of games Γ if the following holds: for all v, w ∈ Γ such that
v(S) = w(S) for all S 6= N and v(N) < w(N), then φi(N, v) ≤ φi(N,w) for
all i ∈ N . Increasing the value of the grand coalition never leads to a payoff
decrease for any of the players.
The core of a game is the set of imputations that cannot be blocked by

any coalition, i.e.

C(N, v) := {x ∈ I(v) : x(S) ≥ v(S) for all S ⊆ N} .

A game with a nonempty core is called a balanced game. A player i is
a veto player if v(S) = 0 for all coalitions where player i is not present. A
game v is a veto-rich game if it has at least one veto player and the set of
imputations is nonempty. A balanced game with at least one veto player
is called a veto balanced game. Note that balancedness is a relatively weak
property for games with a veto player, since it only requires v(N) ≥ v(S) for
all S ⊂ N.

Given a game (N, v) and a feasible allocation x, the excess of a coalition
S at x is defined as e(S, x) := v(S)− x(S). Its mirror concept, the satisfac-
tion of a coalition S at x, is defined as f(S, x) := x(S) − v(S). We define
fij(x, (N, v)) as the minimum satisfaction of a coalition that contains i but
not j.

fij(x, (N, v)) := min
S:i∈S⊆N\{j}

{x(S)− v(S)} .

If there is no confusion we write fij(x) instead of fij(x, (N, v)). The higher
fij(x), the better i is treated by the allocation x in comparison with j. The
kernel can be defined as the set of imputations that satisfy the following
bilateral kernel conditions:

fji(x) > fij(x) implies xj = v(j) for all i, j in N.
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Note that, if j is a veto player, fij(x) = xi.2

Arin and Feltkamp (1997) show that the kernel is a single point for veto-
rich games. In other words, the nucleolus (Schmeidler, 1969) and the kernel
coincide.

2.2 One-period bargaining (Arin and Feltkamp, 2007)

Given a veto balanced game (N, v) where player 1 is a veto player and an
order on the set of the remaining players, we will define an extensive-form
game associated to the TU game and denote it by G(N, v). The game has n
stages and in each stage only one player takes an action. In the first stage,
a veto player announces a proposal x1 that belongs to the set of feasible and
nonnegative allocations of the game (N, v). In the next stages the responders
accept or reject sequentially. If a player, say i, accepts the proposal xs−1

at stage s, he receives the payoff xs−1i and for the next stage the proposal
xs coincides with the proposal at s − 1, that is xs−1. If player i rejects the
proposal, this rejection is understood as an appeal for the bilateral fairness
principle to be enforced. A two-person TU game is constructed by applying
the definition of the Davis-Maschler reduced game3 on the set {1, i} given
xs−1, and player i receives as payoff the restricted standard solution4 of this

2An equivalent definition of the kernel is based on the mirror concept of fij ,
which is the surplus of i against j at x (terminology of Maschler, 1992), sij(x) :=

max
S:i∈S⊆N\{j}

{v(S)− x(S)}. The kernel is the set of imputations such that sij(x) > sji(x)

implies xj = v(j). We found it more convenient to work with fij(.) rather than sij(.).
3Let (N, v) be a game, T a subset of N such that T 6= N, ∅ , and x a feasible allocation.

The Davis-Maschler (1965) reduced game on T given x is the game (T, vTx ) where

vTx (S) :=


0 if S = ∅
x(T ) if S = T

max
Q⊆N\T

{v(S ∪Q)− x(Q)} for all other S ⊂ T.

See also Peleg (1986).
4The standard solution of a two-person TU game v gives player i = 1, 2 the amount

v(i)+ v(1,2)−v(i)−v(j)
2 . The restricted standard solution coincides with the standard solution

except when the standard solution gives a negative payoff to one of the players, in which
case this player receives 0 and the other player receives v(1, 2).
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two-person game, unless this would result in a negative payoff in which case
i receives 0. Once all the responders have played and consequently have
received their payoffs the payoff of the proposer is also determined as xn1 .

Formally, the resulting outcome of playing the game can be described by
the following algorithm.

Input : a veto balanced game (N, v) with a veto player, player 1, and an
order on the set of remaining players (responders).

Output : a feasible and nonnegative allocation xn(N, v).

1. Start with stage 1. Player 1 makes a feasible and nonnegative proposal
x1 (not necessarily an imputation). The superscript denotes at which
stage the allocation emerges as the proposal in force.

2. In the next stage the first responder (say, player 2) says yes or no to
the proposal. If he says yes he receives the payoff x12 and x

2 = x1.

If he says no he receives the payoff5

y2 = max

{
0,

1

2

[
x11 + x12 − v

{1,2}
x1 (1)

]}
where

v
{1,2}
x1 (1) := max

1∈S⊆N\{2}

{
v(S)− x1(S\{1})

}

Now, x2i =


x11 + x12 − y2 for player 1

y2 for player 2

x1i if i 6= 1, 2.

3. Let the stage s where responder k plays, given the allocation xs−1. If
he says yes he receives the payoff xs−1k , and xs = xs−1.

If he says no he receives the payoff

yk = max

{
0,

1

2

[
xs−11 + xs−1k − v{1,k}xs−1 (1)

]}
where

5Note that, since 1 is a veto player, v{1,i}xs (i) = 0 for any proposal xs and any player
i 6= 1.
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v
{1,k}
xs−1 (1) = max

1∈S⊆N\{k}

{
v(S)− xs−1(S\{1})

}
.

Now, xsi =


xs−11 + xs−1k − yk for player 1

yk for player k
xs−1i if i 6= 1, k

.

4. The game ends when stage n is played and we define xn(N, v) as the
vector with coordinates

(
xnj
)
j∈N .

In this game we assume that the conflict between the proposer and a
responder is solved bilaterally. In the event of conflict, the players face a
two-person TU game that shows the strength of each player given that the
rest of the responders are passive. The responder then receives the restricted
standard solution of this game, which is based on the idea that both play-
ers should gain or lose equally with respect to the alternative situation in
which negotiations break down (subject to the limited liability constraint
that player i cannot get a negative payoff).
The fij values play an important role in this bargaining procedure as the

following lemma illustrates.

Lemma 1 (Arin and Feltkamp, (2007)) Suppose player k is facing the pro-
posal xs−1 at stage s. If k rejects the proposal:
1. Player k receives the payoff yk = max

{
0, 1

2
[fk1(x

s−1) + f1k(x
s−1)]

}
.

2. The proposal xs that emerges from stage s is such that either fk1(xs) =

f1k(x
s), or fk1(xs) > f1k(x

s) and xsk = 0.

Proof. 1. Note that v{1,k}xs−1 (1) = max
1∈S⊆N\{k}

{v(S)− xs−1(S\{1})} =

− min
1∈S⊆N\{k}

{xs−1(S\{1})− v(S)} = xs−11 − f1k(xs−1). Recall also that, since

player 1 is a veto player, fk1(xs−1) = xs−1k .
The payoff player k gets after rejecting proposal xs−1 is

yk = max
{

0, 1
2

[
xs−11 + xs−1k − v{1,k}xs−1 (1)

]}
. Replacing v{1,k}xs−1 (1) and xs−1k by

their values, we obtain yk = max
{

0, 1
2

[fk1(x
s−1) + f1k(x

s−1)]
}
.

2. The new proposal in place is such that xsk = yk and xs1 = xs−11 +xs−1k −
yk. This leads to new fij values. For player k, since player 1 is a veto player,
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we have fk1(xs) = xsk. Since the only difference between x
s−1 and xs is that

a (possibly negative) payoff of xsk − xs−1k has been transferred from 1 to k, it
holds that f1k(xs) = f1k(x

s−1)− xsk + xs−1k .
There are two possible cases. If 1

2
[fk1(x

s−1) + f1k(x
s−1)] ≥ 0, we have

xsk = yk = 1
2

[fk1(x
s−1) + f1k(x

s−1)]. Replacing xsk by
1
2

[fk1(x
s−1) + f1k(x

s−1)]

and xs−1k by fk1(xs−1) in the expression for f1k(xs) above, we obtain f1k(xs) =

f1k(x
s−1)− 1

2
[fk1(x

s−1) + f1k(x
s−1)]+fk1(x

s−1) = 1
2

[fk1(x
s−1) + f1k(x

s−1)] =

xsk = fk1(x
s).

In the second case we have 1
2

[fk1(x
s−1) + f1k(x

s−1)] < 0, so that xsk =

yk = 0. Since fk1(xs−1) = xs−1k ≥ 0, this must be due to f1k(xs−1) < 0. The
proposal that emerges from stage s has xsk = fk1(x

s) = 0. Since f1k(xs) =

f1k(x
s−1)− xsk + xs−1k and xsk >

1
2

[fk1(x
s−1) + f1k(x

s−1)], we have f1k(xs) <
f1k(x

s−1)− 1
2

[fk1(x
s−1) + f1k(x

s−1)]+fk1(x
s−1) = 1

2
[fk1(x

s−1) + f1k(x
s−1)] <

0 = fk1(x
s).

The set of pure strategies in this game is relatively simple. Player 1’s
strategy consists of the initial proposal x1, which must be feasible and non-
negative. A pure strategy for the responder who moves at stage s is a function
that assigns "yes" or "no" to each possible proposal xs−1 and each possible
history of play. Players are assumed to be selfish, hence player i seeks to
maximize xni .

2.3 Nash equilibrium outcomes of the one-period game

The set of bilaterally balanced allocations for player i is

Fi(N, v) := {x ∈ D(N, v) : fji(x) ≥ fij(x) for all j 6= i}

while the set of optimal allocations for player i in the set Fi(N, v) is
defined as follows:

Bi(N, v) := arg max
x∈Fi(N,v)

xi.

In the class of veto balanced games, Fi(N, v) is a nonempty and compact
set for all i, thus the set Bi(N, v) is nonempty.

Theorem 1 (Arin and Feltkamp, 2007) Let (N, v) be a veto balanced TU
game and let G(N, v) be its associated extensive form game. Let z be a
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feasible and nonnegative allocation. Then z is a Nash equilibrium outcome if
and only if z ∈ B1(N, v).

The intuition behind this result is as follows. Recall that, as shown in
lemma 1, the restricted standard solution that is applied if player i rejects
a proposal in stage s results in f1i(xs) = fi1(x

s), unless this would mean a
negative payofffor player i, in which case fi1(xs) > f1i(x

s) and xsi = 0. Hence,
rejection of a proposal leads to a payoff redistribution between 1 and i until the
bilateral kernel condition is satisfied between the two players. It is in player
i’s interest to reject any proposal with f1i(xs−1) > fi1(x

s−1) and to accept all
other proposals. Since player i rejects proposals with f1i(xs−1) > fi1(x

s−1)

and this rejection results in f1i(xs) = fi1(x
s), the proposal in force after i has

the move always satisfies fi1(xs) ≥ f1i(x
s). Subsequent actions by players

moving after i can only reduce f1i(.), hence fi1(xn) ≥ f1i(x
n). Conversely,

player 1 can achieve any bilaterally balanced payoff vector by proposing it.
Player 1 then maximizes his own payoff under the constraint that the final
allocation has to be bilaterally balanced.
The nucleolus is a natural candidate to be an equilibrium outcome since it

is the only effi cient allocation that satisfies the bilateral kernel conditions in
this class of games, and indeed the nucleolus is always in F1(N, v). However,
it is not necessarily in B1(N, v). Instead, Arin and Feltkamp (2007) show
that the proposer may be better-off by proposing an ineffi cient allocation, as
the following example illustrates:

Example 1 (Arin and Feltkamp, 2007) N = {1, 2, 3, 4, 5}; v(S) = 8 if 1 ∈ S
and |S| = 4; v(N) = 12.

The nucleolus of this game is (4, 2, 2, 2, 2). However, player 1 can do
better by proposing the ineffi cient allocation (8, 0, 0, 0, 0). This ineffi cient
allocation would emerge as the final outcome since it satisfies the bilateral
principle. Suppose player 1 sets x1 = (8, 0, 0, 0, 0) and player 2 rejects the
proposal. Player 1 can form a coalition with the other three players and pay
them 0, hence v{1,2}x1 (1) = 8. Since player 1 is a veto player, v{1,2}x1 (2) = 0. The
standard solution of the reduced game allocates 0 to player 2 and leaves the
proposal unchanged, x2 = (8, 0, 0, 0, 0). Note that allocation (8, 0, 0, 0, 0) is
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the nucleolus of a game w that coincides with v except that w(N) = x(N) =

8. Since the nucleolus does not satisfy aggregate monotonicity for the class
of veto balanced games, the proposer may be better-off by proposing the
nucleolus of a different game where the grand coalition has a lower value.

3 A new game: sequential proposals

3.1 The model

We extend the previous model to T periods where T is assumed to be at
least as large as the number of players n. The proposer can now make T
sequential proposals, and each proposal is answered by the responders as in
the previous model. We will denote a generic period as t and a generic stage
as s. The proposal that emerges at the end of period t and stage s is denoted
by xt,s, and the proposal that emerges at the end of period t is denoted by
xt := xt,n. Given a veto balanced game with a proposer and an order on
the set of responders (which may be different for different periods) we will
construct an extensive form game, denoted by GT (N, v).
Formally, the resulting outcome of playing the game can be described by

the following algorithm.
Input : a veto balanced game (N, v) with a veto player, player 1, as

proposer, and a rule that determines the order of the remaining players (re-
sponders). This rule may be different for different periods, and may depend
on the history of play. Formally, let H t denote the set of all possible histories
of play up to the end of period t. For period 1, the ordering of the responders
is a predetermined permutation ρ1 : N\{1} → N\{1}. For t > 1, we have a
collection of permutations indexed by the history of play in previous periods(
ρtht−1

)
ht−1∈Ht−1 , where ρtht−1 : N\{1} → N\{1} is the order of the responders

in period t given history of play ht−1.
Output : a feasible and nonnegative allocation x.

1. Start with period 1. Given a veto balanced TU game (N, v) and the
order on the set of responders ρ1 corresponding to period 1, players
play the game G(N, v). The outcome of this period determines the veto
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balanced TU game for the second period, denoted by (N, v2,x
1
), where

v2,x
1
(S) := max {0,min {v(N)− x1(N), v(S)− x1(S)}} and x1 is the

final outcome obtained in the first period.6 Note that by construction,
the game (N, v2,x

1
) is a veto balanced game where player 1 is a veto

player. Then go to the next step. The superscripts in the characteristic
function denote at which period and after which outcome the game is
considered as the game in force. If no confusion arises we write v2

instead of v2,x
1
.

2. In period t (t ≤ T ), given the history of play ht−1 and the resulting TU
game in place (N, vt,x

t−1
), players play the game G(N, vt,x

t−1
) with the

order of responders determined by ρtht−1 . The outcome of this period
determines the veto balanced TU game for the next period, (N, vt+1,x

t
),

where vt+1,x
t
(S) := max {0,min {vt(N)− xt(N), vt(S)− xt(S)}} and

xt is the final outcome obtained in period t. Then go to the next step.

3. The game ends after stage n of period T. (If at some period before T
the proposer makes an effi cient proposal (effi cient according to the TU
game underlying at this period) the game is trivial for the rest of the
periods).

4. The outcome is the sum of the outcomes generated at each period, that
is, x :=

∑T
t=1 x

t.

3.2 A serial rule for veto balanced games

We now introduce a solution concept defined on the class of veto balanced
games and denoted by φ. Somewhat surprisingly, this solution will be related
to the non-cooperative game with sequential proposals.

6Our definition ensures that v2,x
1

(S) remains feasible in all subgames, also off the
equilibrium path. For example, let N = {1, 2, 3}, v(1, 2) = 10, v(1, 2, 3) = 12 and v(S) = 0
for all other S ⊆ N . If x1 = (1, 1, 5), there has been an agreement on the distribution
of a total amount of 7 out of the maximum possible of 12. The amount that remains to
be distributed is v2,x

1

(N) = v(N) − x1(N) = 12 − 7 = 5. If we calculated v2,x
1

(1, 2) as
v(1, 2)− x1(1, 2) we would obtain 10− 2 = 8, but this would be infeasible.
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Let (N, v) be a veto balanced game where player 1 is a veto player. Define
for each player i a value di as follows:

di := max
S⊆N\{i}

v(S).

Because 1 is a veto player, d1 = 0. Let dn+1 := v(N) and rename the
remaining players according to the nondecreasing order of those values. That
is, player 2 is the player with the lowest value and so on. The solution φ
associates to each veto balanced game, (N, v), the following payoff vector:

φl :=
n∑
i=l

di+1 − di
i

for all l ∈ {1, ..., n} .

The following example illustrates how the solution behaves.

Example 2 Let N = {1, 2, 3} be a set of players and consider the following
3-person veto balanced game (N, v) where

v(S) =


50 if S = {1, 2}
10 if S = {1, 3}
80 if S = N

0 otherwise.

Computing the vector of d-values we get:

(d1, d2, d3, d4) = (0, 10, 50, 80).

Applying the formula,

φ1(N, v) = d2−d1
1

+ d3−d2
2

+ d4−d3
3

= 40

φ2(N, v) = d3−d2
2

+ d4−d3
3

= 30

φ3(N, v) = d4−d3
3

= 10

The formula suggests a serial rule principle (cf. Moulin and Shenker,
1992). Since it is not possible for any coalition to obtain a payoff above di
without player i’s cooperation, we can view player i as having a right over
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the amount v(N) − di. The value v(N) is divided into segments (d2 − d1,
d3− d2, ..., v(N)− dn) and each payoff segment is divided equally among the
players that have a right over it.
In the class of veto balanced games, the solution φ satisfies some well-

known properties such as nonemptiness, effi ciency, anonymity and equal
treatment of equals among others. It also satisfies aggregate monotonicity.7

The next section shows that φ(N, v) is the unique equilibrium outcome
assuming that all responders act as myopic maximizers and the proposer
plays optimally taking this into account.

3.3 Myopic Best Response Equilibrium

We start our analysis of the non-cooperative game with sequential proposals
by assuming myopic behavior on the part of responders. Responders be-
have myopically when they act as payoff maximizers in each period without
considering the effect of their actions on future periods.
Suppose all responders maximize payoffs myopically for each period and

that the proposer plays optimally taking into account that the responders
are myopic maximizers. Formally, player i 6= 1 maximizes xti at each period
t whereas player 1 maximizes

∑T
t=1 x

t
1. We call such a strategy profile a

myopic best response equilibrium (MBRE). We will show in this section that
all MBRE lead to the same outcome, namely the serial rule.
In order to show this result, we introduce the concept of balanced pro-

posals, which are proposals that emerge as the final outcome regardless of
whether they are accepted or rejected by the responders. We then show that
any payoff the proposer can attain under myopic behavior of the responders
can also be attained by making balanced proposals: player 1 can cut the
payoff of other players until a balanced proposal is obtained at no cost to
himself (lemma 4). Hence, from the proposer’s point of view there is no loss
of generality in restricting the analysis to balanced proposals. We will then

7For a definition of those properties, see Peleg and Sudhölter (2003). It is not the aim
of this paper to provide an axiomatic analysis of the solution. Arin and Feltkamp (2012)
characterize the solution in the domain of veto balanced games by core selection and a
monotonicity property.
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show that the highest payoff the proposer can achieve with balanced propos-
als is φ1. Finally, we will show that the only way in which the proposer can
achieve φ1 requires all players to get their component of the serial rule, so
that the only MBRE outcome is φ(N, v).
Note that the property of balancedness in a proposal holds or fails to hold

for all possible orders of the responders. Because of this, the results in this
section hold for any order of moves of the responders.
Our main motivation for the use of MBRE is its simplicity. Beyond that,

it can be justified as modelling cautious behavior on the part of the respon-
ders. If the responders are not certain of other players’rationality, they may
choose to maximize payoffs for the current period without trying to antic-
ipate other players’future behavior. What if we assume similarly cautious
behavior on the part of the proposer? This would lead us to the concept of
balanced proposals. Hence, in a MBRE with balanced proposals all players
are playing cautiously. Our results on MBRE and balanced proposals indi-
cate that it is enough that one of the sides (proposer or responders) is acting
cautiously in order to obtain the serial rule.

3.3.1 Balanced proposals

The notion of balanced proposals will play a central role in the analysis of
MBRE.

Definition 1 Let (N, v) be a veto balanced TU game, and GT (N, v) its as-
sociated extensive form game. Given a period t, a proposal x is balanced if it
is the final outcome of period t regardless of the actions of the responders.

Balanced proposals coincide with the nucleolus (kernel) of special games.
In the class of veto-rich games (games with at least one veto player and a
nonempty set of imputations) the kernel and the nucleolus coincide (Arin
and Feltkamp, 1997). Therefore we can define the nucleolus as

ν(N, v) := {x ∈ I(N, v) : fij(x) < fji(x) =⇒ xj = 0} .

We use this alternative definition of the nucleolus in the proof of the
following lemma.
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Lemma 2 Let (N, v) be a veto balanced TU game. Consider the associated
game GT (N, v). Given a period t, a proposal xt is balanced if and only if it
coincides with the nucleolus of the game (N,wt), where wt(S) = vt(S) for all
S 6= N and wt(N) = xt(N).

Proof. Assume that xt is a balanced proposal in period t with the game
(N, vt).

a) Let l be a responder for which xtl = 0. If whatever the response of
player l the proposal does not change then f1l(xt) ≤ 0 = xtl = fl1(x

t).

b) Let m be a responder for which xtm > 0. If whatever the response of
player m the proposal does not change then f1m(xt) = xtm = fm1(x

t).

Therefore, the bilateral kernel conditions are satisfied for the veto player.
Lemma 12 in Arin and Feltkamp (2007) shows that if the bilateral kernel
conditions are satisfied between the veto player and the rest of the players
then the bilateral kernel conditions are satisfied between any pair of players.
Therefore, xt is the kernel (nucleolus) of the game (N,wt). The converse

statement can be proven in the same way.

3.3.2 Balanced proposals and MBRE

If there is only one period in the game, myopic and rational behavior coincide.
This means that the following lemma holds if responders behave myopically.

Lemma 3 (Arin and Feltkamp, 2007, lemmas 2 and 3) Let (N, v) be a veto
balanced TU game, and GT (N, v) its associated extensive form game. At any
period t and stage s, the responder (say, i) will accept xt,s−1 if fi1(xt,s−1, vt) >
f1i(x

t,s−1, vt), and will reject it if fi1(xt,s−1, vt) < f1i(x
t,s−1, vt) in a MBRE. If

fi1(x
t,s−1, vt) = f1i(x

t,s−1, vt), the responder is indifferent between accepting
and rejecting since both decisions lead to the same outcome. Also, the final
outcome xt of any period t is such that fi1(xt, vt) ≥ f1i(x

t, vt) for all i.

We have established that myopic behavior of the responders leads to
fi1(x

t, vt) ≥ f1i(x
t, vt), or equivalently to xti ≥ f1i(x

t, vt). We now show that
the proposer can obtain the same payoff with balanced proposals in all such
cases.
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Lemma 4 Let (N, v) be a veto balanced game. Consider the associated game
with T periods GT (N, v). Let z =

∑T
t=1 x

t be the outcome resulting from an
arbitrary strategy profile. Assume that the final outcome of any period t, xt,
is such that for any player i, xti ≥ f1i(x

t, vt). Then there exists y such that
y1 = z1, y =

∑T
t=1 q

t where qt is a balanced proposal for period t.

Proof. If (x1, x2, ..., xT ) is a sequence of balanced proposals the proof is
done.
Suppose that (x1, x2, ..., xT ) is not a sequence of balanced proposals. This

means that for some xt and for some i 6= 1 it holds that xti > f1i(x
t, vt)

and xti > 0. Let k be the first period where such result holds. Therefore,
(x1, x2, ..., xk−1) is a sequence of balanced proposals. We will construct a
balanced proposal where the payoff of the proposer does not change.
Since fi1(xk) = xki , by reducing the payoff of player i we can construct a

new allocation yk such that f1i(yk) = fi1(y
k) or f1i(yk) < fi1(y

k) and yki = 0.
In any case, xk1 = yk1 and the payoff of the proposer does not change. Note
also that reducing i’s payoff cannot increase f1j(yk), so it is still the case that
f1j(y

k) ≤ fj1(y
k) for all j.

Now, if there exists another player l such that f1l(yk) < fl1(y
k) and

ykl > 0 we construct a new allocation zk such that f1l(zk) = fl1(z
k) or

f1i(z
k) < fi1(z

k) and zki = 0. Note that zk1 = yk1 . Repeating this procedure
we will end up with a balanced allocation qk.
The TU game (N,wk+1) resulting after proposing qk satisfies thatwk+1(S) ≥

vk+1(S) for all S 3 1. Therefore, f1i(xk+1, wk+1) ≤ f1i(x
k+1, vk+1), and

xk+1l ≥ f1l(x
k+1, wk+1) for all l.

Consider the game (N,wk+1) and the payoff xk+1. Suppose that xk+1i >

f1i(x
k+1) for some i 6= 1 and xk+1i > 0. We can repeat the same procedure of

period k until we obtain a balanced allocation qk+1. The procedure can be
repeated until the last period of the game to obtain the sequence of balanced
proposals (x1, x2, ..., xk−1, qk, ..., qT ).

Corollary 1 A proposer’s payoff z1 is achievable under myopic behavior of
the responders if and only if it is achievable by balanced proposals.
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If responders behave myopically, the proposer has a sequence of balanced
proposals that yields the same proposer’s payoff (lemmas 3 and 4). The
converse statement is trivial: if a payoff is achievable by balanced proposals,
it is achievable under any assumptions about responders’behavior including
myopic behavior.

3.3.3 The serial rule can be achieved with balanced proposals

We now show that, by making balanced proposals, the proposer can secure
the payoff provided by the serial rule φ. Note that the assumption T ≥ n is
crucial for this result.

Lemma 5 Let (N, v) be a veto balanced TU game and GT (N, v) its asso-
ciated extensive form game with T ≥ n. The proposer has a sequence of
balanced proposals that leads to φ(N, v).

Proof. The sequence consists of n balanced proposals. At each period
t, (t ∈ {1, ..., n}) consider the set St = {l : l ≤ t} and the proposal xt, defined
as follows:

xtl =

{
dt+1−dt

t
for all l ∈ St

0 otherwise.

whenever xt is feasible and propose the 0 vector otherwise.
It can be checked immediately that in each period the proposed allocation

will be the final allocation independently of the answers of the responders
and independently of the order of those answers. The proposals are balanced
proposals.
For example, in period 1, the proposal is (d2, 0, ..., 0). Because 1 is a veto

player, fi1(.) = 0 for all i. As for f1i(.), because all players other than 1

are getting 0, the coalition of minimum satisfaction of 1 against i is also the
coalition of maximum v(S) with i /∈ S. Call this coalition S∗. By definition,
v(S∗) = di ≥ d2 and f1i(.) = x(S∗)−v(S∗) = d2−di ≤ 0. Thus, fi1(.) ≥ f1i(.)

for all i and the outcome of period 1 is (d2, 0, ..., 0) regardless of responders’
behavior.
In period 2 we have a game v2 with the property that v2(S) > 0 implies

v2(S) = v1(S) − d2 for all S. Thus, player 2 is a veto player in v2. Player 1
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proposes
(
d3−d2
2
, d3−d2

2
, 0, ..., 0

)
. If player 2 rejects, we have f12(.) = d3−d2

2
−

0 = f21(.). As for other players i 6= 1, 2, when computing f1i we take into
account that any coalition of positive value must include 1 and 2. Since
players other than 1 and 2 are getting 0, the coalition 1 uses against i is
S∗ ∈ arg maxS:i/∈S v(S). By definition, v(S∗) = di and v2(S∗) = di − d2.
Then f1i(.) = x(S∗)− v2(S∗) = (d3 − d2)− (di − d2) = d3 − di ≤ 0.

In period 3, player 3 has become a veto player and the same process can
be iterated until period n.
Therefore, this strategy of the proposer determines the total payoff of

all the players, that is, the final outcome of the game GT (N, v). This final
outcome coincides with the solution φ.

Remark 1 The serial rule can also be obtained by making balanced proposals
if the game has n− 1 periods.

This is because the proposer can combine the first two proposals in the
proof of lemma 5 by proposing (d2 + d3−d2

2
, d3−d2

2
, 0, ..., 0) in the first period.

The proof of lemma 5, together with lemma 2, suggests a new interpre-
tation of the serial rule. At each period the proposal coincides with the
nucleolus of a veto-rich game. Formally,

Remark 2 The serial rule is the sum of the nucleolus allocations of n aux-
iliary games, namely

φ(N, v) =
n∑
i=1

ν(N,wi)

where the games (N,wt) are defined as follows: w1(N) = d2 and w1(S) =

v(S) otherwise. For i : 2, .., n :

wi(S) :=

 di+1 − di if S = N

max

{
0, wi−1(S)−

∑
l∈S
νl(N,w

i−1)

}
otherwise.

.

This interpretation of the serial rule provides a better understanding of
the connection between the serial rule and the model with sequential pro-
posals. In the one-period game the kernel (nucleolus) of the veto game is a
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natural candidate to be a Nash outcome of the noncooperative model since
it satisfies the bilateral principle that is applied in the event of disagreement;
in many cases this intuition is confirmed (Arin and Feltkamp, 2007). In
contrast, the model with n periods leads to the serial rule, an apparently un-
related solution concept. However, since the nucleolus of an auxiliary game is
obtained in each period, the outcome of the n-period game is not incongruent
with the outcome of the one-period game.8

3.3.4 The serial rule is the only MBRE outcome

Theorem 2 Let (N, v) be a veto balanced TU game and GT (N, v) the as-
sociated extensive form game with T ≥ n. Let z =

∑T
t=1 x

t be an outcome
resulting from a MBRE of GT (N, v). Then z = φ(N, v).

Proof. We have already shown that the proposer can achieve φ1(N, v)

with balanced proposals. It remains to show that the proposer cannot im-
prove upon φ. Let z =

∑T
t=1 x

t be an outcome resulting from balanced
proposals. The strategy of the proof is to show that z1 ≥ φ1 implies zi ≥ φi
for all i. This result, together with the effi ciency of the serial rule, leads to
z = φ being the unique MBRE outcome. See Appendix for details.
As a byproduct of the analysis, we are able to compare the serial rule and

the nucleolus from player 1’s point of view.

Corollary 2 Let (N, v) be a veto balanced TU game. Then φ1(N, v) ≥
ν1(N, v).

Proof. As we have seen, φ1(N, v) coincides with the MBRE payoff for
the proposer in the game GT (N, v) when T ≥ n − 1. This payoff is at least
as large as his equilibrium payoff in the game G1(N, v), because the proposer
can always wait until period T to divide the payoff. This equilibrium payoff

8Arin and Katsev (2014) show that in the class of veto balanced games the serial rule
coincides with the SD-Prenucleolus, a solution concept defined in the class of all TU games
that has similarities with the per capita prenucleolus and the prenucleolus. This result
reinforces the unexpected relationship between two apparently very different concepts.
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is in turn at least as high as ν1(N, v), because ν(N, v) is a balanced proposal.

3.4 MBRE and SPE may not coincide

The next example illustrates that a MBRE need not be a subgame perfect
equilibrium.

Example 3 Let N = {1, 2, 3, 4, 5} be the set of players and consider the
following 5-person veto balanced game (N, v) where

v(S) =


36 if S ∈ {{1, 2, 3, 4} , {1, 2, 3, 5}}
31 if S = {1, 2, 4, 5}
51 if S = N

0 otherwise.

The serial rule for this game can be easily calculated given that d1 = d2 =

0, d3 = 31, d4 = d5 = 36 and d6 = 51. Player 1’s payoff according to the
serial rule is then φ1(N, v) = 31

2
+ 36−31

3
+ 51−36

5
= 121/6. As we know from

the previous section, this is player 1’s payoff in any MBRE for any order of
the responders. Suppose the order of responders is 2, 3, 4, 5. The following
result holds given this order: If the responders play the game optimally
(not necessarily as myopic maximizers) the proposer can get a higher payoff
than the one provided by the MBRE outcome. Therefore, MBRE and SPE
outcomes do not necessarily coincide.
The strategy is the following: The proposer offers nothing in the first

three periods. In the 4th period the proposal is: (10, 10, 5, 0, 0).

The responses of players 2, 4 and 5 do not change the proposal (even if
the proposal faced by player 4 and 5 is a new one resulting from a rejection of
player 3). If player 3 accepts this proposal, the TU game for the last period
will be:

w(S) =


11 if S ∈ {{1, 2, 3, 4} , {1, 2, 3, 5}}
11 if S = {1, 2, 4, 5}
26 if S = N

0 otherwise.
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In the last period, myopic and rational behavior coincide, so the out-
come must be an element of B1(N,w). It can be checked that B1(N,w) =

{(5.5, 5.5, 0, 0, 0)} . Therefore, after accepting the proposal in period 4, player
3 gets a total payoff of 5.

If player 3 rejects the proposal, the outcome of the 4th period is (15, 10, 0, 0, 0)

and the TU game for the last period is:

u(S) =


11 if S ∈ {{1, 2, 3, 4} , {1, 2, 3, 5}}
6 if S = {1, 2, 4, 5}
26 if S = N

0 otherwise.

As before, in the last period myopic and rational behavior coincide and the
outcome must be an element of B1(N, u). It can be checked that B1(N, u) =

{(5.2, 5.2, 5.2, 5.2, 5.2)} . Therefore, after rejecting the proposal player 3 gets
a total payoff of 5.2.

Therefore, rational behavior of player 3 implies a rejection of the proposal
in the 4th period. This rejection is not a myopic maximizer’s behavior. After
the rejection of player 3 the proposer gets a payoffof 20.2, higher than 121/6.
Hence, the outcome associated to MBRE is not the outcome of an SPE.
In the example above, the proposer finds a credible way to collude with

player 3 in order to get a higher payoff than the one obtained by player 2
(a veto player). Player 2 cannot avoid this collusion since he is responding
before player 3. If he responded after player 3, collusion between players 1
and 3 would no longer be profitable. This observation turns out to be crucial
as we will see in the next section.

3.5 The serial rule as an SPE outcome

The previous example shows that, in general, myopic and rational behavior
do not coincide. However, they do coincide when the model incorporates
a requirement on the order of the responders. We will assume in theorem
3 that stronger responders must move after weaker responders. Formally,
denote the d−value for player i in vt as dti := max

S⊆N\{i}
vt(S). We assume that

responders move following the order of nonincreasing d−values of vt, that is,
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that player j moving earlier than player k at time t implies dtj ≥ dtk.
9 Given

this order, any veto responder can secure a payoff equal to the one obtained
by the proposer. This was not the case in Example 3, where player 2 is a
veto responder responding before player 3.

Theorem 3 Let (N, v) be a veto balanced TU game and GT (N, v) its associ-
ated extensive form game in which T ≥ n and the responders move following
the order of nonincreasing d−values of vt. Then φ(N, v) is the outcome of
any SPE.

Proof. (See Appendix for details) The strategy of the proof is to show
that, if responders move following the order of nonincreasing d−values of
vt, any SPE outcome z is such that the proposer can obtain z1 by making
balanced proposals. Since the best outcome achievable by balanced proposals
is φ(N, v) as shown in section 3.3, this will complete the proof.

4 Concluding remarks

We have studied a bargaining procedure with a distinguished player and
an enforceable bilateral principle in case of disagreement. The nucleolus is
the only effi cient allocation that satisfies this bilateral principle, but it does
not always emerge as an equilibrium outcome because the proposer may
prefer to make an ineffi cient proposal. We then introduced the possibility
of renegotiation through additional periods of bargaining and showed that
it leads to an effi cient outcome, namely the serial rule. As a byproduct of
the analysis, we uncovered a relationship between the serial rule and the
nucleolus: the serial rule is the sum of n allocations, each of which is the
nucleolus of an auxiliary game.
We have shown that any SPE outcome of our bargaining procedure is

achievable with myopic behavior of the responders if responders move by
increasing strength (lemma 14 in the Appendix). This result is independent
of the number of periods. If there are at least n − 1 periods, the only SPE

9Note that we do not rule out dtj = d
t
k, in which case there is more than one order of

moves compatible with this condition. Theorem 3 holds for any such order of moves.
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outcome is the serial rule: the proposer is always able to obtain φ1(N, v) by
making balanced proposals, and the only way to obtain this payoff is if all
other players get φi(N, v) as well. If there are fewer than n−1 periods, there
may not be enough periods for the proposer to achieve the serial rule with
balanced proposals. If z is an SPE outcome, it is still true that the proposer
can obtain z1 by making balanced proposals, hence all SPE outcomes must
have the same z1, but there may be several SPE outcomes if z1 < φ1(N, v).
Our paper is closely related to Dagan et al. (1997) in that both papers

are based on bilateral bargaining with a certain bilateral principle being
enforced in the event of disagreement. Nevertheless, there is a fundamental
difference with this and other papers (e.g. Chun (1989), Herrero et al. (2010)
and Karagözoğlu (2014)) that makes it diffi cult to relate our paper to the
literature on noncooperative models of bankruptcy: our bargaining procedure
does not feature an exogenous vector of claims (ci)i∈N . The values v(N) −
di could be considered analogous to claims, but note that they are not an
exogenous element of the model (they just happen to play an important role
in equilibrium) and there is no suggestion that player i is entitled to receive
the entire v(N) − di, just that achieving a payoff above di would require
player i’s consent so that player i has a veto right over v(N)− di. However,
it is worth noting that, if we define ci := v(N)− di, the serial rule coincides
with Ibn Ezra’s solution as described by O’Neill (1982).

5 Appendix

5.1 Proof of theorem 2

We have already shown that φ(N, v) can be achieved with balanced proposals.
It remains to show that the proposer cannot improve upon φ. Let z =

∑T
t=1 x

t

be an outcome resulting from balanced proposals. Our objective is to show
that z1 ≥ φ1 implies zi ≥ φi for all i. This result, together with the effi ciency
of the serial rule, leads to z = φ being the unique MBRE outcome. We
start by establishing the result not for the original game (N, v), but for the
sequence of auxiliary games (N,wt) (lemma 9). We then check that the sum
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of the serial rules of the games wt cannot exceed the serial rule of the original
game (N, v) (lemma 10).
We start with the following property of balanced proposals:

Lemma 6 If xt is a balanced proposal, any player i with xti > 0 will be a
veto player at t+ 1.

This is because if xt is balanced we have f1i(xt, vt) = xti, so that all
coalitions that have a positive vt but do not involve i have vt(S) < xt(S).
Thus, after the payoffs xt are distributed any coalition with positive value
must involve i.
The following lemma establishes a relationship between balanced propos-

als in GT (N, v) and the serial rule. Suppose xt is a balanced proposal in
period t. Consider the game wt, where wt(S) = min{vt(S), xt(N)}. The
serial rule of wt and the balanced proposal xt do not coincide in general.
However, the set of players who receive a positive payoff in xt coincides with
the set of players who receive a positive payoff according to the serial rule of
wt.10

Lemma 7 Let (N, v) be a veto balanced TU game. Consider the associated
game GT (N, v). Let z =

∑T
t=1 x

t be the outcome resulting from some strategy
profile with balanced proposals. Consider period t, its outcome xt and the
game (N,wt) where wt(S) = min{vt(S), xt(N)}. Then it holds that xtk > 0

if and only if φk(N,w
t) > 0.

Proof. a) If xtk > 0 we need to prove that dk(N,wt) < xt(N), so that
the serial rule of wt assigns a positive payoff to k.
Let S ∈ arg maxT⊆N\{k} v

t(T ). Since xt is balanced we have f1k(xt) =

xtk > 0 and that implies xt(S) > vt(S) (otherwise S could have been used

10For example, consider the game with N = {1, 2, 3, 4}, v(1, 2) = v(1, 3) = 2, v(1, 2, 3) =
6, v(1, 2, 3, 4) = 10 and v(S) = 0 otherwise. The proposal x = (2, 1.5, 1.5, 0) is a balanced
proposal with a total payoff distributed of 5 (and, because of lemma 2 and the uniqueness
of the nucleolus, it is the only balanced proposal that distributes a total payoff of 5). The
game w associated to this proposal is identical to v except that w(1, 2, 3) = w(N) = 5. Its
serial rule is (3, 1, 1, 0), which is different from the balanced proposal but gives a positive
payoff to the same set of players.
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to complain against k). Hence, xt(N) ≥ xt(S) > vt(S) = dk(v
t) = dk(w

t),
where the last equality follows from lemma 6.11

b) If xtk = 0 we need to prove that dk(N,wt) = xt(N). Since xt is
balanced, f1k(xt, vt) ≤ 0. Let P be a coalition associated to f1k(xt, vt).
Because f1k(xt, vt) ≤ 0, xt(P ) ≤ vt(P ). Coalition P must contain all players
receiving a positive payoff at xt (otherwise xt is not balanced since P can
be used against any player outside P ). Therefore xt(N) = xt(P ) ≤ vt(P ).
Because of the way wt is defined it cannot exceed xt(N), so xt(N) = wt(P ) =

dk(w
t) and k receives 0 according to the serial rule of wt.
The following lemma concerns a property of the serial rule. By definition,

the serial rule is such that dk is divided among players {j ∈ N, j < k}. Above
dk, player k and any player j < k get the same payoff.

Lemma 8 For any player k we have
∑

i∈{1,2,...,k−1} φi = dk+(k−1)φk. Hence,∑
i∈{1,2,...,k−1} φi ≥ dk + φk. The latter inequality is strict except if k = 2 or

φk = 0.

The next lemma tell us that, given a strategy profile with balanced pro-
posals, the proposer cannot get more than the serial rule of the games wt.

Lemma 9 Let (N, v) be a veto balanced TU game. Consider the associated
game with T periods GT (N, v). Let z =

∑T
t=1 x

t be an outcome resulting
from balanced proposals. Consider period t, its outcome xt and the game
(N,wt) where wt(S) = min{vt(S), xt(N)}. Then xt1 ≥ φ1(N,w

t) implies
xtl ≥ φl(N,w

t) for all l ∈ N.

Proof. Let T be the set of veto players in (N,wt), and letM = {l1, ..., lm}
be the ordered (according to the d−values of (N,wt)) set of nonveto players
that have received a positive payoff at xt. That is, dl1 ≤ ... ≤ dlm .

12

11Because xt is a balanced proposal, the d−values of wt coincide with the d−values
of vt for all players receiving a positive payoff. Any player j that is receiving a positive
payoff at t will be veto at t+1 (lemma 6). The values dj(wt) and dj(vt) can only differ if
vt(S) > xt(N) for some S such that j /∈ S, but then player j would not be veto at t+ 1.
12Recall that, because xt is a balanced proposal, the d−values of wt coincide with the

d−values of vt for all players in M .
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Suppose xt1 ≥ φ1(N,w
t). Since xt is balanced, xt1 = xti for all i ∈ T , thus

if xt1 ≥ φ1(N,w
t) it follows that xti ≥ φi(N,w

t) for all i ∈ T .
We now want to prove that xti ≥ φi(N,w

t) for all i ∈ M . We will do it
by induction.
Consider the responder l1. Since xt is balanced we have f1l1(x

t) = xtl1 .
If the coalition associated to f1l1 has a value of 0, it follows that xt1 = xtl1
so xtl1 ≥ φl1(N,w

t). If the coalition 1 is using has a positive value, all veto
players must be in it, so its payoffmust be at least |T |φ1(N,wt), and its value
(by definition of dl1) cannot exceed dl1 . Hence, f1l1(x

t) ≥ |T |φ1(N,wt)− dl1 .
Because of lemma 8, |T |φ1(N,wt)− dl1 ≥ φl1(N,w

t).
Now suppose the result xti ≥ φi(N,w

t) is true for all i ∈ {l1, ..., lk−1}. We
will prove that xtlk ≥ φlk(N,w

t). Let S be a coalition such that f1lk(x
t) =

xt(S) − vt(S). As before, the result follows immediately if vt(S) = 0. If
vt(S) > 0 it must be the case that T ⊆ S, but S need not involve all players
in {l1, ..., lk−1}. Denote {l1, ..., lk−1} by Q. We consider two cases, depending
on whether Q ⊆ S.
IfQ ⊆ S, we have xtlk = f1lk(x

t) = xt(S)−vt(S) ≥
∑

i∈T∪Q φi(N,w
t)−dlk ,

where the last inequality uses the induction hypothesis. The set T ∪ Q
contains all players with di < dlk . Hence, by lemma 8,

∑
i∈T∪Q φi(N,w

t) −
dlk ≥ φlk(N,w

t).
If Q * S, there is a player lp < lk such that lp /∈ S. Because xt is

a balanced proposal, xtlp = f1lp(x
t). Because the veto player can use S to

complain against lp, f1lp(x
t) ≤ f1lk(x

t) = xlk , hence xlp ≤ xlk . By the
induction hypothesis, xlp ≥ φlp(N,w

t). Since dlp ≤ dlk we also know that
φlp(N,w

t) ≥ φlk(N,w
t), so that

xlk = f1lk(x
t) ≥ f1lp(x

t) = xlp ≥ φlp(N,w
t) ≥ φlk(N,w

t).

So far we have discussed the set of veto players and the set of nonveto
players that are getting a positive payoff in xt. For players in N\(T ∪M),
we have shown in lemma 7 that xtj = 0 implies φj(N,w

t) = 0, hence xtj ≥
φj(N,w

t) for all players.

Corollary 3 If z =
∑T

t=1 x
t is an outcome resulting from balanced proposals,

xt1 ≥ φ1(N,w
t) implies xtl = φl(N,w

t) for all l ∈ N.
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This corollary follows directly from lemma 9 and the effi ciency of the
serial rule. Lemma 9 states that xt1 ≥ φ1(N,w

t) implies xtl ≥ φl(N,w
t) for

all l ∈ N . By definition of wt,
∑

l∈N x
t
l = wt(N). By the effi ciency of the

serial rule,
∑

l∈N φl(N,w
t) = wt(N). Hence, the only way in which player

1 can obtain the serial rule of (N,wt) with balanced proposals is that all
players in the game obtain their serial rule payoff.
Finally, the sum of the serial rules of the games wt cannot exceed the

serial rule of the original game. This is due to the following property of the
serial rule:

Lemma 10 Consider the veto balanced TU game (N, v) and a finite set of

positive numbers (a1, ..., ak) such that
k∑
l=1

al = v(N). Consider the following

TU games: (N,w1), (N,w2), ..., (N,wk), where

w1(S) : =

{
a1 if S = N

min{a1, v(S)} otherwise

w2(S) : =

{
a2 if S = N

min{a2,max
[
0, v(S)−

∑
i∈S φi(N,w

1)
]
} otherwise

wl(S) : =

{
al if S = N

min{al,max
[
0, v(S)−

∑l−1
m=1

∑
i∈S φi(N,w

m)
]
} otherwise

Then φ(N, v) =
∑k

m=1 φ(N,wm).

Sketch of proof. In the lemma, we take v(N) and divide it in k

positive parts, where k is a finite number. We then compute the serial rule
for each of the k games, and see that each player gets the same in total as
in the serial rule of the original game. The k games are formed as follows:
wl(N) is always al for each l : 1, ..., k; the other coalitions have v(S) minus
what has been distributed so far according to the serial rule of the previous
games, unless this would be negative (in which case the value is 0) or above
wl(N) (in which case the value is al). Denote by dli the d-value for player i
associated to the auxiliary game (N,wl).
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The idea of the proof is that player i cannot get anything until di is
distributed and becomes a veto player from then on. For example, if a1 ≤ di,
any coalition S associated to di has w1(S) = min(v(S), a1) = min(di, a1) =

a1. Hence, d1i = a1 = w1(N) and player i gets nothing according to the serial
rule of w1. The entire payoff a1 will go to players with d1j < a1. Such players
must have dj < a1 ≤ di and must belong to any T such that v(T ) > a1
(otherwise d1j ≥ a1). Hence, any coalition with positive value in w2 will
have w2(T ) = min(v(T ) − a1, a2) and any player who got a positive payoff
according to φ(N,w1) will be a veto player from w2 onwards.
The same holds for w2 if a1 + a2 ≤ di. Any coalition S with v(S) = di

has w2(S) = min(v(S) − a1, a2) = a2, hence d2i = a2 = w2(N) and player i
gets nothing according to φ(N,w2). The entire a2 goes to players with lower
d2j -values, and these players must have dj < a1 + a2 ≤ di and must belong to
any coalition T such that v(T )− a1 > a2. Hence, any coalition with positive
value in w3 will have w3(T ) = min(v(T ) − a1 − a2, a3) and any player who
got a positive payoff in φ(N,w2) will be a veto player from w3 onwards.
Let l be the first auxiliary game for which a1 + ... + al > di. At this

point, the value of any coalition S associated to di is wl(S) = min(v(S) −∑l−1
t=1 at, al) = v(S) −

∑l−1
t=1 at < al = wl(N). The value dli = wl(S) will

still be divided between the other players, but above that value player i will
receive a share. Note that

∑l
t=1 d

t
i = di. Hence, player i finds that di is

divided (not necessarily equally) between players with a lower index. Any
player with φj(N,w

l) > 0 must have dlj < al, and thus must belong to any
coalition T such that v(T ) −

∑l−1
t=1 at > al. Hence, any T with wl+1(T ) > 0

will have wl+1(T ) = min(v(T )−
∑l

t=1 at, al+1) and any j with φj(N,w
l) > 0

-including player i- will be a veto player from wl+1 onwards and will therefore
receive a share of the payoff.
We see that players receive a positive share if and only if di has already

been distributed. Above di, the serial rules of the auxiliary games ensure that
the payoff is evenly divided between the players who are getting a positive
share. This process replicates the serial rule of the original game. For the
same reason, if

∑k
l=1 al < v(N), the proposer will get less than φ1(N, v).

Note that lemma 10 refers to a sequence of TU games such that each game
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is obtained after distributing the serial rule payoffs for the previous game;
the games wt in lemma 9 are obtained by subtracting balanced proposals from
wt−1. It turns out that the TU games involved are identical in both cases: the
sequence wt depends only on the total amounts distributed x1(N), ..., xT (N)

(denoted by a1, ..., ak in lemma 10). This is because the set of players that
get a positive payoff at period t is the same in both cases (lemma 7) and
all these players become veto players at period t+ 1 (lemma 6). Hence, any
coalition with positive value at t has wt(S) = min(wt−1(S)−xt−1(N), xt(N))

in both cases.

Putting the above lemmas together we can prove theorem 2. First, any
payoffplayer 1 can achieve in a MBRE can be achieved by balanced proposals
(lemma 4). Second, given that proposals are balanced, the payoff player 1

can get cannot exceed the sum of the serial rules of the games wt (lemma 9).
Since the sum of the serial rules of the games wt cannot exceed the serial rule
of the original game (lemma 10), player 1 can never get more than φ1(N, v)

in a MBRE. Also, player 1 can only get φ1(N, v) if all other players get their
serial rule payoff(corollary 3). Finally, φ(N, v) is achievable by the sequential
proposals described in lemma 5.
Note that the assumption T ≥ n only plays a role in lemma 5. For time

horizons shorter than n− 1, all auxiliary results still hold but player 1 may
not be able to achieve a payoff as high as φ1(N, v).

5.2 Proof of theorem 3

We start by pointing out some immediate consequences of the results in
section 3.3.

Corollary 4 Let (N, v) be a veto balanced TU game and GT (N, v) its as-

sociated extensive form game with T ≥ n. Let z =
T∑
t=1

xt be an outcome

resulting from some SPE of the game GT (N, v). If z differs from φ(N, v)

then z1 cannot be achieved by making balanced proposals.

Suppose to the contrary that there is an SPE outcome z that differs from
φ(N, v) and can be achieved by balanced proposals. If z differs from φ(N, v),
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z1 ≥ φ1(N, v) (otherwise the proposer would prefer to play the strategy
described in lemma 5, which is available since T ≥ n). If z is achievable
by balanced proposals, it is (trivially) achievable under myopic responder
behavior. However, under myopic behavior of the responders, the proposer
can only achieve at least φ1(N, v) if all players are getting their serial rule
payoffs, that is, if z = φ(N, v) (theorem 2), a contradiction.

Corollary 5 Let (N, v) be a veto balanced TU game and GT (N, v) its associ-

ated extensive form game with T ≥ n. Let z =
T∑
t=1

xt be an outcome resulting

from some SPE of the game GT (N, v). If z differs from φ(N, v) then there ex-
ists at least one period t and one player p for which f1p(xt, (N, vt)) > xtp ≥ 0.

This is because if xtl ≥ f1l(x
t, vt) for all l and t, z would be achievable

under myopic behavior of the responders by proposing xt in each period t
(lemma 3), but we know from theorem 2 that the proposer can only get at
least φ1(N, v) if all players are getting their serial rule payoffs.
Since myopic behavior always leads to f1i(xt, vt) ≤ xti for all i and all t

(lemma 3), the presence of a player p for which f1p(xt, (N, vt)) > xtp indicates
non-myopic responder behavior. This responder may be player p (nonmyopi-
cally accepting a proposal), or a responder moving after p (nonmyopically
rejecting a proposal and transferring payoff to player 1). In example 3, player
3 rejects a proposal nonmyopically and as a result creates the inequality
f12(x

t, vt) > xt2 at the end of period t = 4.
We are now ready to prove theorem 3. We will show in lemma 14 that,

if responders move following the order of nonincreasing d−values of vt, any
SPE outcome z is such that the proposer can obtain z1 by making bal-
anced proposals. Since any SPE outcome z different from φ(N, v) would
be unachievable with balanced proposals according to corollary 4, this will
complete the proof.
In order to prove lemma 14 we need several auxiliary results.
We denote by xt,i the proposal that emerges in period t immediately after

i gets the move. The following lemma establishes a property of xt,i that must
be inherited by the final outcome in period t, xt.
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Lemma 11 Suppose after player i responds to the proposal in period t it
holds that f1i(xt,i, vt) > 0. Then f1i(xt, vt) > 0 regardless of the responses of
the players moving after i.

Proof. Suppose by contradiction that f1i(xt, vt) ≤ 0. This means that
at the end of period t there is a coalition S∗ such that i /∈ S∗ and vt(S∗) ≥
xt(S∗). Because f1i(xt,i, vt) > 0 immediately after i responds to the proposal,
all coalitions excluding i had a positive satisfaction at that point, and in
particular vt(S∗) < xt,i(S∗). There must be a player h moving after i such
that h /∈ S∗ and h has received a payofftransfer from player 1 by rejecting the
proposal. At the moment of rejection by h we have f1h(xt,h, vt) = xth > 0.
However, since S∗ can be used by 1 to complain against h, at the end of
period t we have f1h(xt, vt) ≤ 0. There must be another player l moving
after h that has received a payoff transfer from player 1, and this player
cannot be in S∗. Then this player is in the same situation as player h: he has
f1l(x

t,l, vt) > 0 at the moment of rejection, but at the end of period t he has
f1l(x

t, vt) ≤ 0. Thus there must be another player moving after him that has
caused this change and would himself be in the same situation as player h...
but the number of players is finite.
Note that lemma 11 holds for any strategy profile, not necessarily an

equilibrium.
The next auxiliary result will allow us to compare the equilibria of games

with different characteristic functions. If one of the characteristic functions is
"worse" than the other (in the sense of having lower values), player 1 might
still have a greater SPE payoff, but only with nonmyopic responder behavior.

Lemma 12 Let (N, v) and (N,w) be two veto balanced games in which
player 1 is a veto player. Let w(S) ≥ v(S) for any S. Let GT (N, v) and
GT (N,w) be the associated extensive form games with T proposals. If the
payoff provided to the proposer by an SPE outcome of the game GT (N,w)

is strictly lower than the payoff provided to the proposer by an SPE out-
come of the game GT (N, v), then the SPE outcome of GT (N, v) is such that
xtl < f1l(x

t, vt) for some l and t, which implies that at least one responder is
behaving nonmyopically.
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Proof. By contradiction, suppose the final payoffs in the SPE outcome
of GT (N, v) are such that xtl ≥ f1l(x

t, vt) for all l and t.
Consider the strategy combination (not necessarily an equilibrium) of

the game GT (N,w) in which the proposer makes the sequence of proposals
xt and responders accept. Because by assumption w(S) ≥ v(S) for all S,
wt(S) ≥ vt(S) for all t given this strategy combination and thus f1l(xt, wt) ≤
f1l(x

t, vt) ≤ xtl for all l and t.
Given that f1l(xt, wt) ≤ xtl for all l and t in this strategy profile, we

can use lemma 4 to construct a sequence of balanced proposals yt for the
game GT (N,w) where the payoff of the proposer does not change, that is,∑T

t=1 y
t
1 =

∑T
t=1 x

t
1. Because the proposer always has the option of making

the sequence of balanced proposals yt in the game GT (N,w), the proposer’s
payoff in any SPE of game GT (N,w) must be at least

∑T
t=1 y

t
1 =

∑T
t=1 x

t
1.

We have shown that if an SPE outcome of GT (N, v) is such that xtl ≥
f1l(x

t, vt) for all l and t, then the payoff obtained by the proposer in this
outcome can also be obtained with balanced proposals (and therefore in any
SPE) in GT (N,w). Hence, if the proposer is obtaining strictly less in an SPE
of GT (N,w), it must be the case that xtl < f1l(x

t, vt) for some l and t.
The next auxiliary result provides a bound for the payoff difference be-

tween player 1 and player i 6= 1.

Lemma 13 Let (N, v) be a veto balanced TU game. Consider the associated
game with T periods GT (N, v). Fix a period l ∈ {1, ..., T} and a subgame
that starts in period l (not necessarily on the equilibrium path), and label the
responders according to the nondecreasing order of d-values in the game vl.
Let yl =

∑T
t=l x

t be the vector of payoffs accumulated between l and T . Then
yli ≥ yl1 − dli for all i ∈ {2, ..., n} in any SPE of GT (N, v). Moreover, the
inequality is strict if dli > dl2.

Proof. Note that, because period T is the last period of the game, myopic
and rational behavior coincide, so xTi ≥ f1i(v

T , xT ) for all i.
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Consider player 2. Since players play myopically in period T , it must be
the case that13

xT2 ≥ f12(x
T ) ≥ xT1 −

(
dl2 −

T−1∑
t=l

xt1

)
=

=
T∑
t=l

xt1 − dl2 = yl1 − dl2.

Since yl2 ≥ xT2 , it follows that y
l
2 ≥ yl1 − dl2.

Now consider player i 6= 2. There are two possible cases, depending on
whether yl1 ≤ dl2.
If yl1 ≤ dl2, the result follows immediately since

yl1 − dli ≤ yl1 − dl2 ≤ 0 ≤ yli.

It is also clear that the inequality is strict if dl2 < dli.
From now on we assume yl1 > dl2. Note that since we have already shown

that yl2 ≥ yl1−dl2, it follows that that yl2 > 0 in this case. There are again two
possible cases, depending on whether the coalition associated to f1i(xT , vT )

contains 2.
If the coalition contains 2, we have

yli ≥ xTi ≥ f1i(x
T , vT ) ≥ xT1 + xT2 −

(
dli −

T−1∑
t=l

xt1 −
T−1∑
t=l

xt2

)
=

= yl1 + yl2 − dli > yl1 − dli,

where the last inequality follows from the fact that yl2 > 0.
If the coalition does not contain 2, we have f1i(xT ) ≥ f12(x

T ). Then

yli ≥ xTi ≥ f1i(x
T , vT ) ≥ f12(x

T , vT ) ≥ yl1 − dl2 ≥ yl1 − dli.

Note that the inequality is strict for dli > dl2.
The main building block of the proof is the next lemma, which shows that,

given the particular order of responders we impose, the proposer cannot do
better than with balanced proposals.
13If S is a coalition associated to f12(xT ), the total payoff of S must be at least xT1 .

Also, the total value of S must be at most dl2 −
∑T−1

t=l x
t
1.
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Lemma 14 Let (N, v) be a veto balanced TU game. Consider the associated
game GT (N, v) in which the responders move following the order of nonin-

creasing d−values of vt. Let z =
T∑
t=1

xt be an outcome resulting from some SPE

of the game GT (N, v). Then the proposer can obtain z1 by making balanced
proposals.

Proof. Suppose on the contrary that z1 cannot be obtained with balanced
proposals. By Lemma 4 we know that there is a player k and a stage t such
that f1k(xt, vt) > xtk ≥ 0; otherwise the proposer can obtain z1 with balanced
proposals.
Let t be the last period14 in which for some responder it holds that

f1k(x
t, vt) > xtk ≥ 0. Let k be the last responder at t for whom f1k(xt , v

t) >

xtk ≥ 0. We consider two cases:
Case a) There is a player p with dtp ≤ dtk such that f1p(x

t, vt) ≤ 0. Note
that f1k(xt, vt) > xtk ≥ 0 means that any coalition without player k has a
positive satisfaction and, in particular any coalition Sk ∈ arg max

S⊆N\{k}
vt(S).

On the other hand since f1p(xt, vt) ≤ 0 then there exists a coalition without
player p for which the satisfaction is not positive. Let S∗p be one such coalition
(it must contain k). Then we have the following two inequalities:

xt(Sk) > dtk and v
t(S∗p) ≥ xt(S∗p).

Combining the two inequalities we obtain

xt(Sk)− xt(S∗p) > dtk − vt(S∗p) ≥ dtk − dtp ≥ 0.

The inequality above implies that there are players not in S∗p receiving a
positive payoff in period t.
Consider a new allocation, yt, which is identical to xt except that yti =

0 for all i not in S∗p (thus y
t
i = xti for all i in S∗p). We now show that

f1i(y
t, vt) ≤ yti for all i ∈ N , so that player 1 can get the same payoff with

balanced proposals by lemma 4.

14It is clear that t < m, since all responders behave as myopic maximizers in the last
period.
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For any player i it holds that f1i(yt, vt) ≤ f1i(x
t, vt).

Because S∗p can be used against any player outside S
∗
p , for any player

outside S∗p it holds that f1i(y
t, vt) ≤ f1p(y

t, vt) ≤ f1p(x
t, vt) ≤ 0. Thus,

f1i(y
t, vt) ≤ yti for all i /∈ S∗p .
We can also rule out the existence of a player l ∈ S∗p for which f1l(yt, vt) >

ytl . If there was such a player, this inequality would have already existed for
xt, since f1l(yt, vt) ≤ f1l(x

t, vt) and ytl = xtl . Since player k is the last player
satisfying the inequality for xt, it must be the case that dtl ≥ dtk ≥ dtp, thus we
can repeat the reasoning above with Sl and S∗p and, given that nothing has
changed for S∗p , we would conclude that y

t(Sl)− yt(S∗p) > 0, a contradiction
since all players outside S∗p have zero payoffs. Thus, f1i(y

t, vt) ≤ yti for all i.
Note that for this part of the proof no assumption is needed about the

order in which the responders move.15

Case b) The second case is f1l(xt, vt) > 0 for all players moving after k
at t. By assumption, on the equilibrium path from t+1 onwards all proposals
have an associated balanced proposal. We distinguish two subcases:
b1) The last player to act nonmyopically at t has accepted a proposal.

This player must be player k or a player moving after k. Call this player p
(p moving after k is possible if a myopic rejection by a player moving after p
has restored f1p ≤ xp).
We will show that it is not in p’s interest to accept the proposal. To

do this, we need to analyze two subgames: the subgame on the equilibrium
path in which p accepts the proposal, and the subgame off the equilibrium
path in which p rejects the proposal. We will talk about the A-path (the
equilibrium path) and the R-path. Denote by xA,t and xR,t the final payoffs
in period t depending on whether player p accepts or rejects the proposal.
If player p rejects the proposal, we take any subgame perfect equilibrium of
that subgame. Denote by vA,t+1 and vR,t+1 the corresponding TU games at
t+ 1.
Because f1l(xt, vt) > 0 for l ∈ {2, ..., p}, on the A-path all players in

{2, ..., p} are veto players at t+ 1.

15All we need to assume in this part of the proof is that player k is the "last" player in
the sense of being the player with the lowest dti, not necessarily the one who moves last.
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The game vR,t+1 is better than the game vA,t+1 (in the sense of lemma
12). If vA,t+1(S) > 0, coalition S must contain all players in {1, 2, ..., p}.
For this kind of coalition vR,t+1(S) = vA,t+1(S), since any payoff transfers
after rejection occur between members of {1, ..., p} (here the order of moves
is essential). Thus, vA,t+1(S) ≤ vR,t+1(S) for all S.
We now show that p is also veto at t+ 1 on the R-path.
Suppose p is not veto at t + 1 on the R-path. Then there is a coalition

Sp such that p /∈ Sp and vR,t+1(Sp) > 0. This can only happen if vR,t(Sp) >
xR,t(Sp), or equivalently f1p(xR,t, vt) < 0, contradicting lemma 11.
Thus, player p is a veto player at t + 1 regardless of whether he accepts

or rejects the proposal. Given the order of moves, veto players can secure
at least the same payoff as the proposer. There is no reason for veto players
to act nonmyopically because the game at t + 2 will be the same regardless
of how the payoff is distributed at t + 1 between veto players; no payoff
can go to anyone else given the order of responders. For the same reason
the proposer will never make a proposal that gives another veto player more
than he gets himself, so that all veto players must get the same payoff given
the order of moves. Let yR1 be player 1’s payoff if p rejects the proposal (this
is the payoff accumulated between periods t + 1 and n) and yA1 be player
1’s payoff if p accepts the proposal. Because of lemma 12, the only way in
which yA1 can exceed y

R
1 is if there is a nonmyopic move at v

A,t+1 that leads
to f1i(xA,t+1, vA,t+1) > xA,t+1i for some i. By assumption this is not the case.
Thus, it was not in p’s interest to accept: rejecting would yield a higher
payoff at t, and at least the same payoff in the rest of the game.
b2) The last player to act nonmyopically at t has rejected a proposal. Let

p be the last player to act nonmyopically at t. This player cannot be player
k because after any rejection (myopic or otherwise) it holds that f1k(.) ≤
xtk, and given that the remaining responders act myopically this inequality
would never be reversed. Someone moving after k must have rejected a
proposal nonmyopically (transferring payoff to the proposer) and created the
inequality f1k(xt, vt) > xtk, hence player p must be moving after k. We will
show that it is not in p’s interest to reject the proposal. To do this, we need
to analyze two subgames: the subgame on the equilibrium path in which p
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rejects the proposal, and the subgame off the equilibrium path in which p
accepts the proposal. We will talk about the R-path (the equilibrium path)
and the A-path.
Because f1l(xt, vt) > 0 for l ∈ {2, ..., k}, on the equilibrium path all

players in {2, ..., k} are veto players at t+ 1.
The game vA,t+1 is better than the game vR,t+1 (in the sense of lemma

12). If vR,t+1(S) > 0, coalition S must contain all players in {1, 2, ..., p}. For
this kind of coalition vR,t+1(S) = vA,t+1(S), since any payoff transfers on the
A-path must occur between members of {1, 2, ..., p} (again, here the order of
moves is essential). Thus, vR,t+1(S) ≤ vA,t+1(S) for all S.
Suppose player p is veto also on the A-path. Then the reasoning of case

b1 applies, and there is no reason for p to act nonmyopically in period t.
Now suppose player p is not veto on the A-path at t + 1. We define

dA,t+1p := max
S⊆N\{p}

vA,t+1(S). Since p is not a veto player at t+1 on the A-path,

dA,t+1p > 0. There is a coalition Sp such that vt(Sp)− xA,t(Sp) = dA,t+1p > 0.
Since by assumption f1p(xt, vt) > 0 on the R-path, we also have xR,t(Sp) −
vt(Sp) > 0. From the two inequalities we get xR,t(Sp)− xA,t(Sp) > dA,t+1p .

Let α be the payoff player p transfers to player 1 when rejecting the
proposal (part of this payoff may then go to other players between 2 and
p − 1 if they myopically reject a proposal). We want to show that α ≥
xR,t(Sp)−xA,t(Sp), which implies α > dA,t+1p . This is not completely obvious
because part of the difference could be due to a player outside Sp myopically
rejecting on the A-path.
Claim. α ≥ xR,t(Sp)− xA,t(Sp) > dA,t+1p .
Note that xR,t and xA,t are identical for all responders moving before p.

Because of the order of moves, any payoff transfers due to a change of p’s
action from R to A occur within the set {1, 2, ..., p}. Denote by T the set
{2, ..., p − 1}\Sp. We can write xR,t(Sp) + xR,t(T ) = xA,t(Sp) + xA,t(T ) + α.
All we need to show is that xR,th ≥ xA,th for all h ∈ T (this is obvious if T is
empty). This implies xR,t(T ) ≥ xA,t(T ) and hence xR,t(Sp)− xA,t(Sp) ≤ α.
Suppose there is a player h in T that has xR,th < xA,th . Since this player is

not in Sp, Sp can be used by player 1 against him.
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Player h must have rejected in the A-path (if he had accepted he would
have xR,th ≥ xA,th )

16. After rejecting he is left with f1h(.) = xA,th > 0. On
the other hand, vt(Sp)− xA,t(Sp) > 0. Thus, f1h(xA,t, vt) < 0, contradicting
lemma 11.
Now we are in a position to compare payoffs on the A and R-paths and

see that p prefers to accept the proposal.
Since player p is veto on the R-path, he gets yR1 . On the A-path, he gets

yAp , whereas the proposer gets y
A
1 . Because lemma 13 applies to all subgames

regardless of whether they are on the equilibrium path, yAp ≥ yA1 − dA,t+1p .
In order to have an equilibrium, p must prefer to reject the proposal, thus

we need xtp + yR1 ≥ xtp + α + yAp > xtp + dA,t+1p + yA1 − dA,t+1p . Therefore we
need yR1 > yA1 . Since the game v

A,t+1 is better than the game vR,t+1 (in the
sense of lemma 12), and by assumption f1i(xl, vl) > xli never happens on the
R-path from t+ 1 onwards, the inequality yR1 > yA1 cannot hold.
We have shown that any SPE outcome is such that the proposer can

always achieve z1 with balanced proposals. From the previous section we
know that the best outcome the proposer can achieve with balanced proposals
is φ(N, v), hence this completes the proof.
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In neither case it is possible for h to get a higher payoff by accepting the proposal on the
A-path.
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