
ar
X

iv
:1

40
6.

71
96

v2
 [

cs
.A

I]
 3

0
Ju

n
20

14

Noname manuscript No.
(will be inserted by the editor)

Set Constraint Model and Automated Encoding into

SAT: Application to the Social Golfer Problem

Frédéric Lardeux · Eric Monfroy ·

Broderick Crawford · Ricardo Soto

Received: date / Accepted: date

Abstract On the one hand, Constraint Satisfaction Problems allow one to
declaratively model problems. On the other hand, propositional satisfiability
problem (SAT) solvers can handle huge SAT instances. We thus present a
technique to declaratively model set constraint problems and to encode them
automatically into SAT instances. We apply our technique to the Social Golfer
Problem and we also use it to break symmetries of the problem.

Our technique is simpler, more declarative, and less error-prone than di-
rect and improved hand modeling. The SAT instances that we automatically
generate contain less clauses than improved hand-written instances such as
in [20], and with unit propagation they also contain less variables. Moreover,
they are well-suited for SAT solvers and they are solved faster as shown when
solving difficult instances of the Social Golfer Problem.

Keywords Constraint Programming · CSP · Set Constraints · SAT
Encoding · Social Golfer Problem

F. Lardeux
Université d’Angers, France
E-mail: Frederic.Lardeux@univ-angers.fr

E. Monfroy
LINA, UMR CNRS 6241, Université de Nantes, France
E-mail: Eric.Monfroy@univ-nantes.fr

B. Crawford
Pontificia Universidad Católica de Valparaiso, Valparaiso 2362807, Chile
and Universidad Finis Terrae, Santiago 7500000, Chile
E-mail: broderick.crawford@ucv.cl

R. Soto
Pontificia Universidad Católica de Valparaiso, Valparaiso 2362807, Chile
and Universidad Autnoma de Chile, Santiago 7500000, Chile
E-mail: ricardo.soto@ucv.cl

http://arxiv.org/abs/1406.7196v2

2 Frédéric Lardeux et al.

1 Introduction

Most of combinatorial problems can be formulated as Constraint Satisfaction
Problems (CSP) [19]. A CSP is defined by some variables (generally over
finite domains) and constraints between these variables. Solving a CSP consists
in finding assignments of the variables that satisfy the constraints. One of
the main strength of CSP is declarativity: variables can be of various types
(finite domains, floating point numbers, intervals, sets, . . .) and constraints
as well (linear arithmetic constraints, set constraints, non linear constraints,
Boolean constraints, symbolic constraints, . . .). Moreover, the so-called global
constraints not only improve solving efficiency but also declarativity: they
propose new constructs and relations such as alldifferent (to enforce that all
the variables of a list have different values), cumulative (to schedule tasks
sharing resources), . . .

On the other hand, the propositional satisfiability problem (SAT) [12] is
restricted (in terms of declarativity) to Boolean variables and propositional
formulae. However, SAT solvers can now handle huge SAT instances (millions
of variables). It is thus attractive to 1) encode CSPs into SAT (e.g., [3,5]) in
order to benefit from the declarativity of CSP and the power of SAT, or 2)
introduce more declarativity into SAT, for example with global constraints
(e.g., alldifferent [17], cardinality [4]).

In this paper we are concerned with the transformation of set constraints
into SAT instances: we often refer to this transformation as ”encoding”. Var-
ious systems of set constraints (either specialized systems [18], libraries for
constraint programming systems such as [16], or the set constraint library
of CHOCO [1]) have been designed for solving problems such as prototyp-
ing combinatorial problems, axiomatization of set theory, analysis of pro-
grams,. . . They have shown that some problems can easily be modeled with
set constraints.

Coding set constraints directly into SAT is a tedious tasks (see for exam-
ple [20] or [13]). Moreover, when one wants to optimize its model in terms of
variables and clauses this quickly leads to very complicated and unreadable
models in which errors can easily appear. Thus, our approach is based on an
automated encoding of set constraints into SAT instances. To this end, we de-
fine some encoding rules (⇔enc) that encode set constraints (such as intersec-
tion, union, membership, cardinal of sets) into the corresponding SAT clauses
and variables. The advantage is that the modeling language (i.e., standard set
constraints) is declarative, simple, and readable. We have tried this technique
on various problems, and the SAT instances which are automatically gener-
ated have a complexity similar to the complexity of improved hand-written
SAT formulations, and their solving with a SAT solver (in our case Minisat)
is efficient.

We illustrate our approach with the Social Golfer Problem (problem num-
ber 10 of the CSPLib [15]). The problem is the following: q golfers play every
weeks during w weeks split in g groups of p golfers (q = p.g). How to schedule

Set Constraint Model and Encoding for SAT 3

the play of these golfers such that no golfer plays in the same group as any
other golfer more than once. An instance of the problem is then given by a
triple g− p−w. Various instances of the Social Golfer Problem are still open,
and the problem is attractive since it is related to problems such as encryp-
tion and covering problems. Compared to direct encodings (such as the one
of [20]), the instances we generate are smaller (less clauses), and also contain
less variables using unit propagation. The introduction of symmetry break-
ing is simplified with our technique and can be done by adding constraints
to the initial model or by refining the initial model. Using Minisat [9], our
automatically generated instances (with or without symmetry breaking) are
solved faster than the ones of [20].

We can compare our work with works of different types, first of all with SAT
encoding techniques such as [3] and [5]. These works make a relation between
CSP solving and SAT solving in terms of properties such as consistencies for
finite domain variables and constraints. In this article, we are concerned with
a different type of constraints, i.e., set constraints.

Concerning applications, i.e., the Social Golfer Problem, the closest work
is [20] which is a revision and improvement of [13]. Whereas these works are
hand-written modeling of the Social Golfer Problem directly in SAT, we are
concerned with a higher-level model language which is automatically trans-
formed into SAT instances. [20] also proposes various symmetry breaking tech-
niques to improve the model; some of these symmetries naturally disappear
using our set constraint model (for example, we do not have the permuta-
tions due to numbering of groups within a week). The remaining symmetry
breakings can easily be introduced in our model, by adding constraints or by
refining the initial model.

In [6], the Social Golfer Problem is modeled with a combination of set
constraints and arithmetic constraints. However, this model is not directly
used but it is transformed into CSP before being solved by mimetic algorithms.

Finally, our approach is similar to [17] in which alldifferent global con-
straints and overlapping alldifferent constraints are handled declaratively be-
fore being encoded automatically in SAT using rewrite rules. Note also that we
use the work of [4] about the cardinality global constraint in order to perform
the encoding of set cardinality.

In the next section (Section 2), we present our set constraint language
and the rule-based system for encoding set constraints into SAT; we consider
standard set constraints. To get a comparison basis, we then (Section 3) give
a direct SAT model of the Social Golfer Problem, and some variants of this
model. We then present how to model the Social Golfer Problem with set
constraints, and show the interest of our system in terms of declarativity. In
Section 4, we show how to introduce symmetry breaking techniques (that
can be found in the literature) with our set constraint language: by adding
new constraints or by refining the initial model. In Section 5, we compare
various SAT instances, either hand-written our automatically generated with
our encoding rule: this analysis is made with respect to instance structures

4 Frédéric Lardeux et al.

(e.g., number of variables and clauses). In the next section, we compare the
solving time of these instances. Section 7, discusses various points related to
our technique: structure of instances, usefullness of unit propagation, difference
with work about set constraints in constraint programming, . . .We finally
conclude in Section 8.

2 Set Constraint Encoding

We present here the encoding of usual (CSP) set constraints (such as ∈, ∪,
∩, . . .) into SAT clauses. More constraints could be defined, but they can be
deduced from these basic constraints.

2.1 Universe and Supports

We consider two notions: universe and support. Unformally, the universe is the
set of all elements that are considered in a model of a given problem while the
support F of a set F appearing in this model is a set of possible elements of
F (i.e., F is a superset of F).

Definition 1 Let P be a problem, and M be a model of P in L, i.e., a
description of P from the natural language to the language of constraints L.

– The universe U of M is a finite set of constants.
– The support of the set F of the model M is a subset of the universe U ;

we denote it by F . F represents the elements of U that can possibly be
elements of F :

F ⊆ F ⊆ U and F ∈ P(F)

where P(F) = {A|A ⊆ F} is the power set of F . We say that F is over F .

Note that each element of U \ F cannot be element of F . In the following,
we denote sets by uppercase letters (e.g., F) and their supports by calligraphic
uppercase letters (e.g., F). When there is no confusion of model, we shorten
”the set F of the model M” to ”the set F”.

Consider a model M with a universe U , and a set F over F . For each
element x of F , we consider a Boolean variable xF which is true if x ∈ F and
false otherwise. We call the set of such variables the support variables for F
in F .

Example 1 Let U = {x, y, z, t} be the universe of a model M , and F = {x, y, t}
be the support of a set F of M . Then, we have 3 Boolean variables xF , yF ,
and tF corresponding respectively to x, y, and z to represent F . By definition,
z 6∈ F and there is no zF variable; and x, y, t can possibly be in F . Consider
now that F = {x, y}. Then, xF = true, yF = true, and tF = false

In the following, we write xF for xF = true and ¬xF for xF = false.

Set Constraint Model and Encoding for SAT 5

2.2 The ⇔enc Encoding Rule

We can now define the encoding of the various CSP set constraints into SAT.
In the following, we consider three sets F , G, andH respectively defined on the
supports F , G and H of the universe U , and for each x ∈ U the various Boolean
variables xF , xG , and xH as defined before. |G| denotes the cardinality of the
set G.

Note that we do not force the supports to be minimal: for example, for
the equality constraint F = G, the sets F \ G and G \ F can be non empty
whereas F \ G and G \ F must be empty. We thus consider these cases in
the ⇔enc encoding rule. Allowing the supports to be non minimal eases the
modeling process: indeed, one does not have to compute the minimal support
and can use a superset of it or the universe. This is practical when sets are
built from many other sets using numerous set constraints. Note also that
using the minimal supports reduces the size of the generated SAT instances.

The encoding rule is noted ⇔enc. The clauses that are generated by this
rule are of the form ∀x ∈ F , φ(xF) which denotes the |F| formulae φ(xF)
built for each element x of the support F of F (x refers to the element of the
universe/support, and xF to the variable representing x for the set F). For
the membership constraint, the rule is not quantified; for multi-intersection
and multi-union, an additional universal quantifier over i is used to denote a
set of encoding rules, each rule being related to one of the sets Fi.

In the following, we propose several set constraint encodings with: first the
set constraint, then its encoding in SAT, and finally, the number of clauses
generated.

2.3 Membership Constraint

This constraint enforces the membership of an element x to a set F :

– if x ∈ F (x is in the support of F), then the corresponding support variable
must be true, i.e., xF .

– if x 6∈ F (x is not in the support of F), then the constraint x ∈ F must
generate a failure since the problem does not have any solution.

x ∈ F ⇔enc

{

x ∈ F , xF 1 unit clause
x 6∈ F , false 1 empty clause

The constraint x 6∈ F can be similarly defined.

2.4 Set Equality Constraint

Two sets G and F are equal if and only if:

– for the elements of F ∩G: the support variables of G have the same values
as the support variables of F ;

6 Frédéric Lardeux et al.

– for the elements of F \G: the support variables of F must be false. Indeed,
an element of the universe which is not in the support of a set is not part
of this set; thus, an element of F \ G cannot be in F .

– for the elements of G \ F : the support variables of G must be false.

F = G ⇔enc

∀x ∈ F ∩ G, xF ↔ xG 2.|F ∩ G| binary clauses
∀x ∈ F \ G, ¬xF |F \ G| unit clauses
∀x ∈ G \ F , ¬xG |G \ F| unit clauses

The constraint F 6= G can be similarly defined by considering the negation
of the conjunction of formulae of the previous encoding.

2.5 Intersection Constraint

Let H be the intersection of two sets G and F :

– for the elements of F ∩ G ∩ H: a support variable of H is true if and only
if this variable is in F and G;

– for the elements of (F ∩ G) \ H: since such an element cannot be in H , it
must not be in F and G;

– for the elements of H\ (F ∩G): a support variable of H which is not in the
support of F and G cannot be true

F ∩G = H
⇔enc

∀x ∈ F ∩ G ∩H, xF ∧ xG ↔ xH
|F ∩ G ∩ H| ternary clauses
+2.|F ∩ G ∩ H| binary clauses

∀x ∈ (F ∩ G) \ H, ¬xF ∨ ¬xG |(F ∩ G) \ H| binary clauses
∀x ∈ H \ (F ∩ G), ¬xH |H \ (F ∩ G)| unit clauses

Note that if H = ∅ (e.g., we want to force the intersection to be empty),
then the encoding can be simplified into ∀x ∈ U,¬xF ∨¬xG, and thus, reduce
its size to |U | clauses.

2.6 Union Constraint

More cases are to be considered for this constraints:

– for the elements of F ∩ G ∩ H: a support variable of H is true if and only
if this variable is in F or in G; this is the trivial case;

– for the elements of (F ∩H) \G: this case is a reduction of the previous one
but it is however equivalent; since such an element x is not in the support
of G then xG does not exist, and x is in H if and only if it is in F ; note
that the generated clauses are exactly the same removing xG ;

– for the elements of (G ∩H) \ F : this is the symmetrical case for G;

Set Constraint Model and Encoding for SAT 7

– for the elements of H \ (F ∪G): the support variables of H that are not in
F or in G must be false;

– for the elements of F \H: elements of the support of F that are not in the
support of H cannot be in F ;

– for the elements of G \ H: symmetrical case for G.

F ∪G = H
⇔enc

∀x ∈ F ∩ G ∩H, xF ∨ xG ↔ xH
|F ∩ G ∩ H| ternary clauses
+2.|F ∩ G ∩ H| binary clauses

∀x ∈ (F ∩H) \ G, xF ↔ xH 2.|(F ∩H) \ G| binary clauses
∀x ∈ (G ∩ H) \ F , xG ↔ xH 2.|(G ∩ H) \ F| binary clauses
∀x ∈ H \ (F ∪ G), ¬xH |H \ (F ∪ G)| unit clauses
∀x ∈ F \ H, ¬xF |F \ H| unit clauses
∀x ∈ G \ H, ¬xG |G \ H| unit clauses

2.7 Inclusion Constraint

– for the elements of F ∩ G: such an element is in G if it is in F ,
– for the elements of F \G: since these elements cannot be in G, they cannot

be in F ;

F ⊆ G ⇔enc

{

∀x ∈ F ∩ G, xF → xG |F ∩ G| binary clauses
∀x ∈ F \ G, ¬xF |F \ G| unit clauses

2.8 Difference Constraint

– for the elements of F ∩ G ∩ H: such elements are in H if and only if they
are in F and not in G;

– for the elements of F \ (G ∪ H): such elements cannot be in F ;
– for the elements of H \ F : such elements cannot be in H ;
– for the elements of (F ∩H) \ G: such elements are in H if and only if they

are in F ;
– for the elements of (F ∩G)\H: since such elements cannot be in H , if they

are in F they also must be in G;

H = F \G
⇔enc

∀x ∈ F ∩ G ∩ H, xF ∧ ¬xG ↔ xH
|F ∩ G ∩ H| ternary clauses
+2.|F ∩ G ∩ H| binary clauses

∀x ∈ F \ (G ∪ H), ¬xF |F \ (G ∪ H)| ternary clauses
∀x ∈ H \ F , ¬xH |H \ F| unit clauses
∀x ∈ (F ∩H) \ G, xF ↔ xH 2.|(F ∩H) \ G| binary clauses
∀x ∈ (F ∩ G) \ H, xF → xG |(F ∩ G) \ H| binary clauses

8 Frédéric Lardeux et al.

2.9 Multi-union Constraint

The multi-union constraint H =
⋃n

i=1 Fi is equivalent to the n constraints
expressed as H = F1 ∪ (F2 ∪ (. . . (Fn−1 ∪ Fn) . . .). It is not only a short-
hand, but it also significantly reduces the number of generated clauses. Indeed,
elements of

⋂n

i=1 Fi are considered once in the multi-union constraint whereas
it is considered n times in the corresponding n union constraints. We do not
detail the encoding since this is an extension of the union constraint. In the
next formulae, the set {1, . . . , n} is noted N .

H =
⋃n

i=1 Fi

⇔enc

∀I, J ∈ P(N), I 6= ∅, I ∪ J = N,
∀x ∈ H ∩ (

⋂

i∈I Fi) \ (
⋃

j∈J Fj),
∨

i∈I xFi
↔ xH

(I)

∀x ∈ H \ (
⋃n

i=1 Fi), ¬xH (II)
∀i ∈ [1..n], ∀x ∈ Fi \ H, ¬xFi

(III)

(I) generates
∑

I,J∈P(N),
I 6=∅,

I∪J=N

(

|H ∩ (
⋂

i∈I Fi) \ (
⋃

j∈J Fj)|.(|I|+ 1)
)

binary clauses

and
∑

I,J∈P(N),
I 6=∅,

I∪J=N

(

|H ∩ (
⋂

i∈I Fi) \ (
⋃

j∈J Fj)|
)

(|I|+ 1)-ary clauses

(II) generates |H \ (
⋃n

i=1 Fi)| unit clauses
(III) generates

∑n

i=1 |(Fi \ H| unit clauses

Note also that in our implementation that generates SAT instances, the
result of an union must be stored in a set: thus, H =

⋃n

i=1 Fi is equivalent to
H = F1∪H1, H1 = F2∪H2, . . .Hn−1 = Fn−1∪Fn. The multi-union constraint
thus also significantly reduce the number of variables (variables necessary for
the intermediate sets Hi).

2.10 Multi-intersection Constraint

Similarly, we define the multi-intersection constraints. As for the multi-union,
the advantage is the gain of clauses, and of variables in our implementation of
the encoding.

H =
⋂n

i=1 Fi ⇔enc

∀x ∈ H ∩ (
⋂n

i=1 Fi),
∧n

i=1 xFi
↔ xH (I)

∀x ∈
⋂n

i=1 Fi \ H,
∨n

i=1(¬xFi
) (II)

∀x ∈ H \ (
⋂n

i=1 Fi), ¬xH (III)

(I) generates 2.|H ∩ (
⋂n

i=1 Fi)| (n+ 1)-ary clauses
(II) generates |

⋂n
i=1 Fi \ H| n-ary clauses

(III) generates |H \ (
⋂n

i=1 Fi)| unit clauses

Set Constraint Model and Encoding for SAT 9

2.11 Cardinality Constraint

This constraint is interesting to enforce the size of a set, or to compute the size
of a set. We denote by k = |G| the cardinality constraint linking the cardinal
of G to the finite domain number (or variable) k. This constraint has been
studied for the encoding of global constraints, see for example [4].

The very intuitive encoding of this constraint is quite simple. If we have a
support G of size n and we want to obtain a set G of k elements (k ≤ n) we
have to verify that:

– All the sets of k + 1 variables have at least one false variable.
– All the sets of n− k + 1 variables have at most one true variable.

|G| = k ⇔enc

∀{x1, ..., xk+1} ⊆ V ,
∨

i

¬xi, ∀{x1, ..., xn−k+1} ⊆ V ,
∨

i

xi

The weakness of this encoding is the number of generated clauses:

n!

(k + 1)! + (n− k − 1)!
+

n!

(k − 1)! + (n− k + 1)!

A more efficient encoding (but less intuitive) for this constraint is the use
of the unary representation of integers (an integer k ∈ [0..n] is represented by
1 k times followed by 0 n − k times). This encoding is presented in [4] with
two main components: the totalizer and the comparator. Note that we have
chosen this encoding for the unit clauses it generates (see Section 3.3.2).

The totalizer corresponds to a balanced binary tree structure. It is used
to associate an auxiliary variable (output variable) for each variable of the
cardinality constraint (input variable) and to sort these new variables such
that the true variables are placed before the false variables. Internal variables
used to linked input and output variables are called linking variables. The
main property of the binary tree is that each non-leaf node corresponds to the
union of the two children. The leaves are the input variables and the seed is
the set of the output variables. Each node N has two child nodes C1 and C2

that are sets of Boolean variables. We denote C1
α the α-th variable of the set

C1.
The totalizer is encoded by generating for each node the next clauses:

∧

0≤α≤|C1|

0≤β≤|C2|
0≤γ≤|N|
α+β=γ

(¬C1
α ∨ ¬C2

β ∨Nγ) ∧ (C1
α+1 ∨C2

β+1 ∨ ¬Nγ+1)

with

– C1
0 = C2

0 = N0 = 1
– C1

|C1|+1 = C2
|C2|+1 = N|N |+1 = 0

10 Frédéric Lardeux et al.

The comparator enforces the cardinal k of the set simply by assigning the
true value to the first k output variables (noted si) of the totalizer. Its encoding
is very simple:

∧

1≤i≤k

si
∧

k+1≤j≤n

¬sj

In total, if G is over the support G of size n, then the set constraint |G| = k
generates:

– n+
∑n

i=1 2u
n
i (⌊

un
i

2 ⌋+ 1)(⌈un
i

2 ⌉+ 1)− (
un
i

2 + 1) clauses
–

∑n

i=1 u
n
i variables.

with un
n = 1,un

1 = n and un
i = un

2i−1 + 2un
2i + un

2i+1.

3 Models for the Social Golfer Problem

In this section we describe various SAT related models for the Social Golfer
Problem.

3.1 Direct Encoding

In order to present (and then compare) a SAT model for the Social Golfer
Problem which does not use set constraints, we give here a model, similar
to the one of [20] (which was already a revision of [13]) without auxiliary
variables.

The Boolean variables to be considered are denoted gq′,p′,g′,w′ meaning
(when gq′,p′,g′,w′ is true) that player q′ is the p′-th player of the group number
g′ of week w′ with:

– p′ ranging from 1 to p, p being the number of players in each group;
– g′ ranging from 1 to g, g being the number of groups each week;
– q′ ranging from 1 to q, q = g.p being the total number of players;
– and w ranging from 1 to w, w being the number of weeks considered.

With the q.p.g.w variables of type gq′,p′,g′,w′ , the constraints are:

– each golfer plays once per week;
– there is p players in each group;
– two players never play twice in the same group.

Each golfer plays at least once per week To enforce that each golfer plays at
least once per week, we need the following g.p.w clauses:

q
∧

q′=1

w
∧

w′=1

p
∨

p′=1

g
∨

g′=1

gq′,p′,g′,w′ (1)

meaning that for each week w′, each player q′ is at least the p′-th player in
one group g′.

Set Constraint Model and Encoding for SAT 11

Each players plays at most once per week Enforcing that each players plays at
most once per week is done in two steps, first enforcing that each golfer plays
at most once per group in each week: on week w′, group g′, the same player
cannot play both on position p′ of g′ and position p′′ of g′:

q
∧

q′=1

w
∧

w′=1

p
∧

p′=1

g
∧

g′=1

p
∧

p′′=p′+1

¬gq′,p′,g′,w′ ∨ ¬gq′,p′′,g′,w′ (2)

Formula (2) consists in q.w.g.p.(p− 1)/2 clauses.
Then, the following q.w.p.(p − 1).g.(g − 1)/4 clauses ensure than a player

does not play in more than a group each week:

q
∧

q′=1

w
∧

w′=1

p
∧

p′=1

g
∧

g′=1

g
∧

g′′=g′+1

p
∧

p′′=p′+1

¬gq′,p′,g′,w′ ∨ ¬gq′,p′′,g′′,w′ (3)

Groups are correct The same has to be done for groups to ensure that they
are correct: one and only one player per position in each group, each week.
There is at least a golfer playing at position p′ in the group g′ on week w′;
this gives w.p.g clauses:

w
∧

w′=1

p
∧

p′=1

g
∧

g′=1

q
∨

q′

gq′,p′,g′,w′ (4)

And at most one golfer plays at position p′ in the group g′ on week w′:

w
∧

w′=1

p
∧

p′=1

g
∧

g′=1

q
∧

q′

q
∧

q′′=q′+1

¬gq′,p′,g′,w′ ∨ ¬gq′′,p′,g′,w′ (5)

which results in q.(q − 1).w.p.g/2 clauses.

The socialization constraint The only remaining constraint (named the so-
cialization constraint) states that two players cannot play twice in the same
group, i.e., if a player q′ plays in the same group g′ on the same week w′ as
player q′′, and that q′ plays in another group g′′ another week w′′, then q′′

cannot play on group g′′ on week w′′ at whatever position:

w
∧

w′=1

g
∧

g′=1

w
∧

w′′=w′+1

g
∧

g′′=1

q
∧

q′=1

p
∧

p1=1

p
∧

p′
1=1

q
∧

q′′=q′+1

p
∧

p2=1

p
∧

p′
2=1

gq′,p1,g′,w′ ∧ gq′′,p2,g′,w′ ∧ gq′,p′
1,g

′′,w′′ → ¬gq′′,p′
2,g

′′,w′′ (6)

Formula (6) is the hard point of the direct model with a complexity of w.(w−
1).g2.q.(q − 1).p4/4 clauses.

12 Frédéric Lardeux et al.

Complexity of the direct encoding The complexity of the direct encoding DE
which contains Formulae (1)–(6) is thus: O(w2.g4.p6) in terms of clauses with
p2.g2.w variables.

3.2 Variants of the Direct Encoding

3.2.1 The Ladder matrix structure

In [13] a ladder matrix is used: the ladder matrix, which was first presented
in [14], introduces a set of auxiliary variables g′i,k,l ↔

∨p
p′=1 g

′
i,p′,k,l. Intuitively,

these new variables abstract the positions of the players in the group. These
new variables together with the characteristics of the ladder matrix are then
used to model the socialization constraint. The resulting constraints are a
bit less complex than the socialization constraint given above, but the ladder
matrix introduces an ”intermediate level” in the model which is not so simple
to handle and not declarative. Moreover, it also results from this model more
variables and more clauses.

3.2.2 Intermediate variables

In [20], q.g.w intermediate variables g′i,k,l are introduced:

∀i ∈ [1..q], ∀k ∈ [1..g], ∀l ∈ [1..w], g′i,k,l ↔

p
∨

p′=1

gi,p′,k,l (7)

As for the ladder matrix, these variables abstract the positions of players in
the groups. These variables simplify the socialization constraint by abstracting
positions as follows:

∧w
w′=1

∧g
g′=1

∧w
w′′=w′+1

∧g
g′′=1

∧q
q′

∧q
q′′=q′+1

(¬g′q′,g′,w′ ∨ ¬g′q′′,g′,w′) ∨ (¬g′q′,g′′,w′′ ∨ ¬g′q′′,g′′,w′′)
(8)

This introduces q.w.g new intermediate variables g′i,k,l and q.w.g.(p+1) clauses

in g′i,k,l ↔
∨p

p′=1 g
′
i,p′,k,l, but this significantly reduces the complexity of

the new socialization constraint from w.(w − 1).g2.q.(q − 1).p4/4 to w.(w −
1).g2.q.(q − 1)/4.

The complexity of the Triska-Musliu encoding [20] (Formulae (1)–(5), (7),
and (8)) is thus O(w2.g4.p2) in terms of clauses. In the following we call this
encoding TME. A more complete analysis in terms of variables and clauses is
given in Section 5.2.

3.3 SAT Encoding for Set Constraint Model

We propose a model for the Social Golfer Problem using set constraints in a
solver independent way. These constraints are then encoded into SAT using
our ⇔enc rules.

Set Constraint Model and Encoding for SAT 13

3.3.1 Set constraints model

An instance of the problem is thus given by a triple g − p− w:

– p is the number of players per group;
– g is the number of groups per week;
– w is the number of weeks;

The universe for this model is the set of players P = {p1, . . . , pq} with
q = g.p being the total number of players. We need the following w.g set
variables to model the groupsG1,1, . . . , Gw,g. The set Gi,j is the group number
j of week i and is over the support Gi,j = P . Each Gi,j will contain p players
from P . Note that the supports are minimal and cannot be reduced without
loosing solutions (or symmetric solutions). We now give the constraints of the
Social Golfer Problem.

p players per group every weeks:

∀i ∈ [1..w], ∀j ∈ [1..g], |Gi,j | = p (9)

Every golfer plays every weeks:

∀i ∈ [1..w]
⋃

j=1..g

Gi,j = P (10)

No golfer plays in two groups the same week:

∀i ∈ [1..w]
⋂

j=1..g

Gi,j = ∅ (11)

However, Constraints (11) are not required since they are implied by Con-
straints (9) and Constraints (10).

Two players cannot play twice together in the same group: The simplest for-
mulation is: ∀p1, p2 ∈ P , ∀w1, w2 ∈ [1..w], ∀g1, g2 ∈ [1..g], p1 6= p2 ∧ (g1 6=
g2 ∨ w1 6= w2) ∧ p1 ∈ Gg1,w1 ∧ p2 ∈ Gg1,w1 ∧ p1 ∈ Gg2,w2 → p2 6∈ Gg2,w2

meaning : if two different golfers play in the same group g1, if p1 plays in
another group g2 then p2 cannot play in this group g2. However, due to the
permutations p1, p2, w1, w2, and g1, g2, this constraint introduces redundancies
that can be removed using the following constraint:

∀w1, w2 ∈ [1..w], pi, pj ∈ P , g1, g2 ∈ [1..g],

w1 > w2 ∧ i > j ∧ g1 ≥ g2 ∧ (12)

pi ∈ Gw1,g1 ∧ pj ∈ Gw1,g1 ∧ pi ∈ Gw2,g2 → pj 6∈ Gw2,g2

Another formulation of these constraints can be given using the cardinality
constraints:

∀w1, w2 ∈ [1..w], g1, g2 ∈ [1..g],

w1 > w2 ∧ g1 ≥ g2 ∧ (13)

|Gw1,g1 ∩Gw2,g2 | ≤ 1

14 Frédéric Lardeux et al.

3.3.2 SCE: Set Constraint Encoding

From the set constraint model proposed previously, our ⇔enc encoding rule
automatically generates SAT instances as describe in Section 2. For each type
of the above constraints we give the number of clauses generated in the SAT
instance:

p players per group every weeks: Constraints (9) generates

w.g.w.(g.p+

g.p
∑

i=1

[2ug.p
i (⌊

ug.p
i

2
⌋+ 1)(⌈

ug.p
i

2
⌉+ 1)− (

ug.p
i

2
+ 1)])

clauses with ug.p
g.p = 1,ug.p

1 = g.p and ug.p
i = ug.p

2i−1 + 2ug.p
2i + ug.p

2i+1. The com-
plexity of the formula generated by Constraints (9) is O(w2.g3.p2).

Every golfer plays every week: Constraints (10) generates w.g.p clauses.

Two players cannot play twice together in the same group: Two formulations
are possible:

– with implication formulation, Constraints (12) generates w.(w − 1).g.(g +
1).q.(q − 1)/2) clauses (O(w2.g4.p2)).

– with cardinality formulation, Constraints (13) generatesw.((w−1)/2).g.((g+

1)/2).3.q.(q+
∑q

i=1[2u
q
i (⌊

u
q
i

2 ⌋+1)(⌈
u
q
i

2 ⌉+1)−(
u
q
i

2 +1)]) clauses (O(w2.g5.p3)).

Complexity of the generated SAT instances Complexity of Constraints (12) is
O(w2.g4.p2) whereas complexity of Constraints (13) is O(w2.g5.p3). Thus in
the following we will only focus on the implication formulation (Constraints (12)).
To summarize, the complexity of the SAT instances generated by the SCE
model (Set Constraint Encoding model) made from Constraints (9), (10), and
(12) is O(w2.g4.p2). In Section 5.2, we show the exact numbers of clauses that
are required for specific instances of the Social Golfer Problem.

Post-treatment by Unit Propagation Unit propagation is a simply process cor-
responding to constraint propagation. The idea is to eliminate unit clauses
(clauses with only false literals and one free literal) by valuing the free literal
to true. This valuation can produce new unit clauses and then the process is
achieved until there is no longer any unit clause. In term of complexity, algo-
rithms for unit propagation is in polynomial time; however, in practice, this
process is insignificant compared to solving time and may significantly reduce:

– instances size,
– number of variables,
– and solving time.

Note also that the cardinality constraint encoding that we have chosen gener-
ates a lot of unit clauses that vanish using unit propagation.

Set Constraint Model and Encoding for SAT 15

4 Symmetry Breaking for the Social Golfer Problem

The idea of symmetry breaking is to remove uninteresting solutions and to
ease the work of a (SAT) solver. The Social Golfer Problem is highly symmet-
ric: the position of a player in a group is not relevant; the groups in a week can
be renumbered; the weeks can be swapped. Symmetry breaking thus consists
in eliminating these symmetries by adding new constraints or modifying the
model. [13] proposes some clauses to remove symmetries among players, to
order groups within a week with respect to their first player, to order lexico-
graphically the weeks with respect to the second player in the first group of
each week, ... However, these clauses become more and more complicated and
mistakes can easily be introduced. Indeed, [20] revised the clauses for sym-
metry breaking of [13] in order to correct the ranges of the various

∨

and
∧

appearing in these clauses.

More symmetries can be broken, such as in [11] or [10]. All symmetries
can be broken, such as shown in [7], but this is often at the cost of a super
exponential number of constraints. Thus, this cannot be considered in practice.

4.1 Symmetry Breaking for TME

In [20], three types of symmetry breaking are added to the TME encoding.
Note that this is done by adding constraints. The first one consists in breaking
the symmetry among players within each group.

x
∧

i=1

p−1
∧

j=1

g
∧

k=1

w
∧

l=1

i
∧

m=1

¬Gijkl ∨ ¬Gm(j+1)kl (14)

The second one consists in ordering all groups within a single week by their
first players.

x
∧

i=1

g−1
∧

k=1

w
∧

l=1

i−1
∧

m=1

¬Gi1kl ∨ ¬Gm1(k+1)l (15)

The last one consists in strictly ascending second players in the first group
of each week.

x
∧

i=1

w
∧

l=1

i
∧

m=1

¬Gi21l ∨ ¬Gm21(l+1) (16)

The encoding TMESB corresponding to the Triska-Musliu encoding with
the above symmetry breaking is thus defined by Formulae (1)–(5), (7), (8),
(14)–(16).

16 Frédéric Lardeux et al.

4.2 Symmetry Breaking with Set Constraint Model

With our set constraint language, we have two possibilities to break symme-
tries. The first one consists in adding some constraints to the initial model;
the second one consists in refining the model itself by modifying the supports
of sets and the constraints.

Since our model is different from the one of [13,20], we do not obtain the
same symmetries. However, we try to break similar symmetries as in [13,20].

The first group of symmetry breaking (SB1) consists in filling the first
week as follows: the first p players are sent to the first group of the first week;
the next p players, on the second group of the first week; and so on.

We consider a second group SB2 of symmetry breaking which completes
SB1. SB2 consists in spreading the first p players (who already played together
the first week in the first group due to SB1) in different groups each week:
the first player in the first group of each week (except the first week); the
second one in the second group of each week; and so on. This approximately
corresponds to group (23) of constraints of [20].

We first consider the following fact to simplify the following models: when
p (the number of players per group) becomes greater than g (the number of
groups per week) we can rather obviously see that the problem has no solution.
Indeed, consider the p players of the first group of the first week; for the second
week, they all must play in different groups; thus, the number of groups needs
to be greater or equal to the number of players per group, otherwise, there
is no solution. In the following, we thus consider g ≥ p. However, if one does
not want to make this simplification, it is sufficient to change p by min(g, p)
in the following, and to add the constraints ”Two players cannot play twice
together in the same group” between G1,1 and the other groups. Indeed, these
constraints make immediately the model unsatisfiable for g < p.

4.2.1 Symmetry breaking for the set constraint model by adding constraints

In this section constraints are added to the initial model in order to break
symmetries. For SB1, we only have to add the following simple constraints to
the model of the SCE.

∀i ∈ [1..p.g], pi ∈ G1,i div (p+1) (17)

For the second group SB2 of symmetry breaking, the required constraints
are also simple:

∀i ∈ [2..w], ∀j ∈ [1..p], pj ∈ Gi,j (18)

We can note that these constraints add clauses to the set model and its
SAT encoding, but all these extra constraints are unit clauses that will produce
unit propagation and thus they will vanish.

The SAT encoding of the set model with symmetry breaking by adding
constraints to the model is named SCESBC and consists in Constraints (9),
(10), (12), (17), and (18).

Set Constraint Model and Encoding for SAT 17

4.2.2 Symmetry breaking for the set constraint model by modifying the model

Modifying the model is more tedious. However, the gain is to reduce the sup-
ports of sets and cardinality constraints. These modified models will thus sig-
nificantly reduce the size of the generated SAT instances.

The only modification for SB1 consists in both modifying the supports of
the groups of the first week and to fix these groups:

∀i ∈ [1..g],G1,i = {p1+(i−1).g, . . . pp+(i−1).g}

and

∀i ∈ [1..g], G1,i = G1,i (19)

The other sets, variables, and constraints remain unchanged.

To introduce SB2, we change the group variables. Instead of the Gi,j , we
now consider the sets G′

1,1, . . . , G
′
w,g such that:

– for the first week Gi,j = G′
i,j ;

– for the following weeks Gi,j = G′
i,j ∪ {pj} if j ≤ p, Gi,j = G′

i,j otherwise.

The support of the G′
1,i (i.e., the groups of the first week) are defined as

with SB1. Since the min(p, g) first player are spread on the min(p, g) first
groups of each week, the supports of the other groups can be reduced. Let
P ′ = {pmin(p,g)+1, . . . , pq} be the set of golfers except the first ones. The
supports can thus be defined by:

∀i ∈ [2..w], ∀j ∈ [1..g],Gi,j = P ′

Constraints are modified as follows.

P players per group every weeks: Constraints (9) must be replaced by Con-
straints (20)–(22).

∀i ∈ [1..g], |G′
1,i| = p (20)

∀j ∈ [2..w], ∀i ∈ [1..p], |G′
j,i| = p− 1 (21)

∀j ∈ [2..w], ∀i ∈ [p+ 1..g], |G′
j,i| = p (22)

Every golfer plays every week: Constraints (23) replace Constraints (10).

∀j ∈ [2..w]
⋃

i=1..g

Gj,i = P ′ (23)

18 Frédéric Lardeux et al.

Two players cannot play twice together in the same group: Constraints (12)
are replaced by Constraints (24)–(27).

We recall here that we are working on G′
i,j which has the following relation

with the intial set Gi,j of the model without symmetry breaking: if j ≤ p and
i > 1, then Gi,j = G′

i,j ∪ {pj}. Since 2 groups Gi,j with j ≤ p and i > 1 have
player pj in common, the corresponding groups G′

i,j (which supports do not
contain the pl, l ≤ p) cannot have any other player pk in common:

∀w1, w2 ∈ [2..w], pi ∈ P , g1 ∈ [1..p], w1 > w2,
pi ∈ G′

w1,g1
→ pi 6∈ G′

w2,g1

(24)

The relation between other two groups is not changed as shown below.

Constraints between a group of the first week (except the first group) and
groups of other weeks:

∀w1 ∈ [2..w], pi, pj ∈ P , g1 ∈ [2..g], g2 ∈ [1..g], i > j,
pi ∈ G′

1,g1 ∧ pj ∈ G′
1,g1 ∧ pi ∈ G′

w1,g2
→ pj 6∈ G′

w1,g2

(25)

Note that if one does not consider the simplification p ≤ g, then g1 must be
considered in [2..g] to generate the proper constraints (that will generate a
failure during the resolution of the SAT instance).

Constraints between two groups (except of the first week) equally numbered
with an index greater than p:

∀w1, w2 ∈ [2..w], pi, pj ∈ P , g1 ∈ [p+ 1..g], w1 > w2, i > j,
pi ∈ G′

w1,g1
∧ pj ∈ G′

w1,g1
∧ pi ∈ G′

w2,g1
→ pj 6∈ G′

w2,g1

(26)

Constraints between two groups (except of the first week) not equally num-
bered :

∀w1, w2 ∈ [2..w], pi, pj ∈ P , g1, g2 ∈ [1..g], w1 > w2, g1 6= g2, i > j,
pi ∈ G′

w1,g1
∧ pj ∈ G′

w1,g1
∧ pi ∈ G′

w2,g2
→ pj 6∈ G′

w2,g2

(27)

The SAT encoding of the set model with symmetry breaking by modifying
the model is named SCESBM and consists in Constraints (19)–(27).

5 Comparisons of Models

Table 1 summarizes the various encodings that we will compare in the following
sections. These encodings have been described in previous sections. NAMEUP

denotes the encoding NAME after unit propagation.

Set Constraint Model and Encoding for SAT 19

Table 1 List of the encoding names, descriptions and the corresponding constraints or
formulae.

Encoding Description Corresponding constraints
Name or formulae

DE Direct Encoding (1)–(6)
TME Triska-Musliu encoding (1)–(5), (7), (8)
TMESB TME with symmetry breaking (1)–(5), (7), (8), (14)–(16)
SCE SAT encoding of the set (9), (10), (12)

constraint model
SCESBC SCE with with symmetry (9), (10), (12), (17), (18)

breaking by adding constraints
SCESBM SCE with with symmetry (19)–(27)

breaking by modifying the model
NAMEUP encoding after unit propagation

treatment

5.1 Declarativity

We compare here the models in terms of declarativity. Comparisons in terms
of structures (number of clauses, number of variables) are given in the next
section.

The first remark is that the variables we use in the set model are much
simpler. Indeed, we have only two indices instead of 4, making them more
readable. This is due to the fact that we do not have to number the positions
in a group (groups are sets), and we do not have to add an index for the
number of players (players are members of the groups).

The second difference to be noticed is the simplicity and declarativity
of constraints. Indeed, set constraints are more declarative than pure SAT
clauses. Then, the encoding in SAT is performed using the encoding rules
⇔enc. The advantage is double:

– first, constraints are readable, declarative, easy to modify, resulting in a
much understandable model;

– second, less mistakes are introduced since the modeling process is much
simpler.

Last, but not least, the set encoding is solver independent. Indeed, the
same model (changing the syntax) could be used in a CSP solver with set
constraints or in a SAT solver after applying the rule encoding ⇔enc proposed
above.

Adding symmetry breaking in the direct encodings DE and TME can only
be done by adding constraints/clauses.With the set model, symmetry breaking
can also be done by modifying the model itself. The process is a bit more
complicateed than just adding constraints, but the result is worth: instances
are smaller and solving time is faster.

20 Frédéric Lardeux et al.

Table 2 Size of instances generated using the direct encoding (DE), the Triska and Mus-
liu encoding (TME) [20], the set constraints encoding (with unit propagation post-process
(SCEUP) and without (SCE)).

Prob. DE TME SCE SCEUP

#Vars #Cls #Vars #Cls #Vars #Cls #Vars #Cls
5-3-6 1 350 3 203 055 1 800 60 255 8 625 50 400 1 410 43 905
5-3-7 1 575 4 481 085 2 100 79 485 11 110 67 985 1 645 60 410
8-4-4 4 096 48 850 176 5 120 322 816 24 224 234 912 3 840 204 928

8-4-5 5 120 81 378 880 6 400 482 880 34 752 372 992 4 800 335 520

8-4-6 6 144 121 896 960 7 680 674 688 47 072 542 816 5 760 497 856

8-4-7 7 168 170 815 680 8 960 898 240 61 184 744 384 6 720 691 936

8-4-8 8 192 227 723 776 10 240 1 153 536 77 088 977 696 7 680 917 760

8-4-9 9 216 292 552 704 11 520 1 440 576 94 784 1 242 752 8 640 1 175 328

8-4-10 10 240 365 690 880 12 800 1 759 360 114 272 1 539 552 9 600 1 464 640

9-4-6 7 776 196 150 032 9 720 1 047 762 117 324 858 366 7 344 792 882

9-4-7 9 072 274 564 584 11 340 1 400 994 157 284 1 180 026 8 568 1 103 634

9-4-8 10 368 366 042 816 12 960 1 805 256 203 076 1 552 716 9 792 1 465 416

9-4-9 11 664 470 584 728 14 580 2 260 548 254 700 1 976 436 11 016 1 878 228

9-4-10 12 960 588 190 320 16 200 2 766 870 312 156 2 451 186 12 240 2 342 070

To summarize, in terms of declarativity, readability, error introduction, and
solver dependence, our set model is superior to direct encodings such as DE
or TME. Breaking symmetries is also easier in the set model.

Each encoding produces specific SAT instances. We compare the direct
encodings and the set constraint encoding in two ways: the size of the provided
instances and the ease to solve them with a complete SAT solver.

5.2 Model Structure

In order to compare our set constraint encoding, we generate a set of so-
cial golfer instances with: the direct encoding DE, the Triska-Musliu encoding
(TME) proposed in [20], and our set constraint encoding with unit propaga-
tion post-treatment (SCEUP) and without (SCE). In Table 2, each instance is
defined by the triple (groups, players per group, weeks) and for each encoding
the number of variables and the number of (generated) clauses are provided.
It is not possible to compare efficiency of an encoding only in terms of in-
stance size (this is done in the next section). Nevertheless, big instances are
intractable due to the limited size of computer memory. It is thus necessary to
generate instances as small as possible. In Table 2, for each instance, encodings
generating the smallest number of clauses and variables are in bold.

Direct encoding (DE) is clearly unsuitable when the number of players
or groups increases: the number of clauses immediately blows up. With the
introduction of auxiliary variables the number of clauses is less important for
TME but the number of variables is increased. SCE produces more variables
but less clauses. As might be expected, SCEUP provides the most interesting
encoding in terms of number of clauses and number of variables: indeed, SCE
generates a lot of unit clauses and binary clauses (Section 3.1) than vanish
using unit propagation.

Set Constraint Model and Encoding for SAT 21

5.3 Impact of the symmetry breaking

Social Golfer Problem has a lot of identical solutions modulo symmetries. In
Table 3 we apply the two symmetry breaking processes presented in Section
4.2 to the instances proposed in Table 2.

For TME, introducing symmetry breaking constraints only increases the
number of clauses (around 10% more clauses), the number of variables does
not change. Note also that unit propagation is not worth for TME instances
nor for TMESB instances: there is no unit clause and the size of the instance
is not changed (both in terms of variables and clauses).

For SCE, symmetry breaking by adding constraints adds a negligible amount
of constraints (see SCESBC). More interestingly, adding symmetry breaking by
modifying the model (SCESBM) significantly reduces the size of the generated
SAT instances: from 20 up to 60% less variables and from 40 to 60% less
clauses. This significant reduction is due to the reduction of supports and to
the cardinality constraints: sets with k − 1 elements instead of k, and less
clauses are necessary when supports are smaller.

Without unit propagation, the instances of SCESBM are always the smallest
one generated with respect to the number of clauses.

Unit propagation has no impact at all on TME. However, its impact is
significant on SCE, SCESBM, and SCESBC:

– for SCE, unit propagation divides the number of variables by 6 to 25: this
is mainly due to the variables of the cardinality constraints. The number
of clauses is reduced of around 10%.

– for SCESBC, unit propagation reduce even more the number of variables
(up to 30 times less variables). The number of clauses is reduced from 30
to 60%.

– for SCESBM, unit propagation is less spectacular: indeed, the initial model
itself is reduced by adding symmetry breaking. However, the number of
variable is divided by 5 up to 15. The number of clauses is reduced of
about 10%.

To summarize, unit propagation is more beneficial to SCESBC; however, SCESBM
UP

always gives the best instances in terms of number of clauses and number of
variables.

6 Experimental Analysis

In the previous section we have shown that SCE enables us to obtain the
smallest instances with unit propagation. The use of symmetry breaking also
reduces the size of the SAT instances. It can happen that symmetry break-
ing makes more difficult the resolution: by changing the search landscape, an
”easy” solution can disappear; with incomplete solvers (such as local search),
symmetry breaking can partitions the search space and makes difficult a path

22 Frédéric Lardeux et al.

Table 3 Size of instances generated using Triska-Musliu encoding and the set constraint en-
coding with symmetry breaking (TMESB Triska and Musliu encoding with symmetry break-
ing, SCESBM for symmetry breaking in the supports and SCESBC for symmetry breaking
by adding constraints).

Prob. TME TMESB and TMESB

UP

var clauses var clauses
5-3-6 1 800 60 255 1 800 70 935
5-3-7 2 100 79 485 2 100 91 965
8-4-4 5 120 322 816 5 120 389 872
8-4-5 6 400 482 880 6 400 566 832
8-4-6 7 680 674 688 7 680 775 536
8-4-7 8 960 898 240 8 960 1 015 984
8-4-8 10 240 1 153 536 10 240 1 288 176
8-4-9 11 520 1 440 576 11 520 1 592 112
8-4-10 12 800 1 759 360 12 800 1 927 792
9-4-6 9 720 1 047 762 9 720 1 190 952
9-4-7 11 340 1 400 994 11 340 1 568 160
9-4-8 12 960 1 805 256 12 960 1 996 398
9-4-9 14 580 2 260 548 14 580 2 260 548
9-4-10 16 200 2 766 870 16 200 3 005 964

Prob. SCE SCESBM SCESBC

var clauses var clauses var clauses
5-3-6 8 625 50 400 5 702 21 487 8 625 50 430
5-3-7 11 110 67 985 7 734 30 243 11 110 68 018
8-4-4 24 224 234 912 14 192 95 712 24 224 234 956
8-4-5 34 752 372 992 22 476 173 180 34 752 373 040
8-4-6 47 072 542 816 32 552 273 440 47 072 542 868
8-4-7 61 184 744 384 44 420 396 492 61 184 744 440
8-4-8 77 088 977 696 58 080 542 336 77 088 977 756
8-4-9 94 784 1 242 752 73 532 710 972 94 784 1 242 816
8-4-10 114 272 1 539 552 90 776 902 400 114 272 1 539 620
9-4-6 117 324 858 366 46 344 447 832 117 324 858 422
9-4-7 157 284 1 180 026 63 368 652 344 157 284 1 180 086
9-4-8 203 076 1 552 716 82 984 895 176 203 076 1 552 780
9-4-9 254 700 1 976 436 105 192 1 176 328 254 700 1 976 504
9-4-10 312 156 2 451 186 129 992 1 495 800 312 156 2 451 258

Prob. SCEUP SCESBM

UP
SCESBC

UP

var clauses var clauses var clauses
5-3-6 1 410 43 905 860 17 680 980 23 110
5-3-7 1 645 60 410 1 032 25 680 1 176 33 690
8-4-4 3 840 204 928 2 376 77 700 2 580 91 548
8-4-5 4 800 335 520 3 168 149 184 3 440 176 240
8-4-6 5 760 497 856 3 960 243 460 4 300 288 020
8-4-7 6 720 691 936 4 752 360 528 5 160 426 888
8-4-8 7 680 917 760 5 544 500 388 6 020 592 844
8-4-9 8 640 1 175 328 6 336 663 040 6 880 785 888
8-4-10 9 600 1 464 640 7 128 848 484 7 740 1 006 020
9-4-6 7 344 792 882 5 620 471 690 5 620 471 690
9-4-7 8 568 1 103 634 6 008 561 712 6 744 700 830
9-4-8 9 792 1 465 416 7 024 782 620 7 868 974 904
9-4-9 11 016 1 878 228 8 040 1 039 956 8 992 1 293 912
9-4-10 12 240 2 342 070 9 056 1 333 720 10 116 1 657 854

Set Constraint Model and Encoding for SAT 23

Table 4 Minisat with SatElite: Running time for the set constraints encoding and the
Triska-Musliu encoding. Formulations with symmetry breaking and unit propagation are
compared.

Prob. TME TMESB SCE SCESBM SCESBC SCEUP SCESBM

UP
SCESBC

UP

Time in seconds (limited to 300)
5-3-6 8.92 0.69 0.18 0.06 0.12 0.12 0.07 0.04

5-3-7 98.28 13.37 1.42 0.13 1.21 5.09 0.09 0.08

8-4-4 1.04 1.33 0.97 0.32 1.19 0.90 0.29 0.27

8-4-5 2.26 2.64 1.93 0.86 2.51 1.89 0.84 0.78

8-4-6 4.44 5.16 3.65 1.87 4.74 3.65 1.82 1.71

8-4-7 34.25 94.68 8.66 3.59 8.52 7.52 3.64 3.46

8-4-8 - - - - - - - -
8-4-9 - - - - - - - -
8-4-10 - - - - - - - -
9-4-6 8.45 10.52 11.24 3.15 10.34 11.10 2.71 4.58
9-4-7 13.69 27.16 18.95 5.80 17.8 19.04 5.12 8.76
9-4-8 - - 31.87 11.10 29.60 31.48 12.72 14.90
9-4-9 - - - - - - - -
9-4-10 - - - - - - - -

Table 5 Minisat without SatElite: Running time for the set constraints encoding and the
Triska-Musliu encoding. Formulations with symmetry breaking and unit propagation are
compared.

Prob. TME TMESB SCE SCESBM SCESBC SCEUP SCESBM

UP
SCESBC

UP

Time in seconds (limited to 300)
5-3-6 9.37 0.30 1.05 0.01 0.01 0.26 0.01 0.01

5-3-7 97.47 24.86 9.19 0.06 0.13 5.67 1.79 0.28
8-4-4 0.05 0.23 0.09 0.03 0.07 0.07 0.03 0.03

8-4-5 0.08 0.58 0.13 0.06 0.11 0.06 0.05 0.07
8-4-6 0.25 3.58 0.27 0.14 0.18 0.19 0.08 0.09
8-4-7 27.05 25.88 3.53 0.48 1.71 1.94 0.56 0.98
8-4-8 - - - - - - - -
8-4-9 - - - - - - - -
8-4-10 - - - - - - - -
9-4-6 0.23 3.72 0.37 0.13 0.29 0.25 0.11 0.13
9-4-7 0.31 6.61 0.58 0.22 0.51 0.36 0.14 0.24
9-4-8 247.83 - 14.66 5.03 1.10 20.93 2.62 0.68

9-4-9 - - - - - - - -
9-4-10 - - - - - - - -

to a solution. In this section we will compare the efficiency of the encodings
in terms of running time.

To compare our set constraints encoding with Triska-Musliu [20] encoding,
we use the well known solver Minisat [9]. This solver won various competi-
tions 1. Since some few years, a pre-treatment named SatELite [8] has been
added to Minisat in order to drastically reduce the number of clauses (e.g.,
by using subsumptions detections) and variables (e.g., eliminating pure liter-

1 http://www.satcompetition.org/

24 Frédéric Lardeux et al.

als). This pre-treatment has a cost in terms of running time but it generally
improves the global running time. It is now included in Minisat but an option
enables one to desactivate it.

Experimentations are realized on a 2.60GHz Intel Core i5-2540M CPU and
4 GB RAM. For each experiment, the time-out is 300 seconds. Larger execution
times were tested but no real differences were observed. Results for the direct
encoding DE are not presented since, as supposed, no results are obtained in
a reasonable time.

Table 4 and Table 5 represent respectively the running time of Minisat
with the use of SatElite as pre-treatment and without pre-treatment.

First of all, the two tables show that the use of SatElite is difficult to
predict: for some instances, it significantly improves the results whereas for
others, it significantly degrades the results. On average, it does not improve
the results and the best running times are obtained without pre-treatment.

Moreover, symmetry breaking modifying the model (SCESBM) provides
the best results (or results very close to the best ones), with or without pre-
treament. The use of unit propagation seems to have a weak impact to the
resolution time of SCESBM.

Adding constraints to break symmetries (SCESBC) does not produce im-
provement except when unit propagation is applied (SCESBC

UP). Indeed, SCESBC
UP

obtain results as good as SCESBM.
Breaking symmetries in TME is rather fluctuating: depending on the in-

stances and depending on the use of SatELite, it significantly improves or
degrades the results.

To summarize, the best results are obtained with our set constraint model,
with SCESBC

UP when the pre-treatment is applied, or predominantly with SCESBM
UP

when the pre-treatment is not applied. Finally, the best results are obtained
without pre-treatment.

7 Discussion

Modeling Modeling a problem with set constraints and then automatically
generating the corresponding SAT instances is much simpler than writing di-
rectly encodings such as DE or TME. Breaking symmetries is rather tedious in
direct encodings, very easy by adding constraints in the set model, and rather
easy by modifying the set constraint model.

Using a higher level formalism (such as our set constraint) is thus bene-
ficial to the modeling phase: it simplifies the task, and avoid making errors
(mainly errors in the numerous indices required by a direct encoding). The
SAT encoding is then automatically done.

SAT Instances We have shown that the SAT instances that are automatically
produced by our encoding rules are of good quality:

– they always produce significantly less clauses (with or without symmetry
breaking, and with or without unit propagation);

Set Constraint Model and Encoding for SAT 25

– with unit propagation, they also generate less variables;
– and finally, they are solved faster with Minisat, without ”tuning parame-

ters”, with or without pre-treatment with SatElite.

Symmetry breaking We have shown that breaking symmetries by adding con-
straint to the set model is very simple. Moreover, the generated SAT instances
after unit-propagation are much smaller, and the solving time is also improved.

Symmetry breaking by modifying the model is even more beneficial. How-
ever, the effort for modifying the model is more important than the effort
for adding constraints. This extra work is very beneficial for the size of the
generated SAT instances, but not so much worth for the solving time (it is de-
pending on instances, and pre-treatment). Thus, one has to make the trade-off
between solving time and modeling time. The size of the generated instances
can be the deciding factor: larger problems can be modeled and generated
introducing symmetry breaking into the model as in SCESBM.

Set constraints in constraint programming The declarativity of set constraints
in constraint programming (such as in [16] or in [18]) is more or less the same
as the one of our set constraints in terms of sets: that was our goal. However,
our approach is different: in systems such as [16] or [1], sets constraints are not
the only constraints, but a special set solver has to be designed to solve these
models. For example, the mechanism of [16] consists in reducing the domain
of the sets by working on lower and upper bounds of the sets and to combine
this process with search. Note that the domain of a set is similar to our notion
of support, and lower and upper bounds of sets are the smallest and largest
elements of a set with respect to a given ordering. Our approach is different:
we do not want to design a special solver, nor to tune an existing one for
efficiently solving our SAT instances; we want to transform a high level model
written with set constraints into a good quality (in terms of size and solving
time) SAT instance that is efficiently solved by an existing multi-purpose SAT
solver.

Note that in the future, we want to add a pre-process to reduce support
sizes. Indeed, the size of the SAT instances depends on the size of the sup-
ports. For the Social Golfer Problem, supports are minimal: they cannot be
reduced without loosing solutions. But for some other problems, supports can
be reduced by a deduction process (withtout loosing solution), and thus, gen-
erated SAT instances can be reduced. Such a process could be similar to one
application of the first phase of the mechanism of [16] without search.

Note also that in [2] some comparisons of set constraint solvers in constraint
programming are given for the social golfer problem. Most of the results re-
ported are obtained by giving special (dynamic) search heuristics or special
solving mechanisms. The approach is thus very different from ours.

26 Frédéric Lardeux et al.

8 Conclusion

We have presented a technique for encoding set constraints into SAT: the mod-
eling process is achieved using some very declarative set constraints which are
then automatically transformed into SAT variables and clauses using our⇔enc

encoding rules. This technique has been applied successfully to model en en-
code the Social Golfer Problem, and to study some symmetry breaking on this
problem.

The advantages of our technique are the following:

– the modeling process is simple, declarative, and readable. Moreover, it is
solver independent and independent from CSP or SAT;

– the technique is less error-prone than hand-written SAT encodings;
– breaking symmetry can be achieved by just adding new constraints or by

refining the model (this cannot be done with direct encodings such as DE
or TME);

– the SAT instances which are automatically generated are smaller than the
ones of [20] that are hand-made written and improved; with unit propaga-
tion, our instances also contain less variables than the ones of [20];

– finally, with respect to solving time, our automatically generated instances
of the Social Golfer Problem are solved faster with or without unit propa-
gation, with or without constraint breaking, with or without SatElite (the
pre-treatment mechanism of Minisat).

We have tested our technique to model and solve other problems (such as n-
queen problem, Sudoku, WhoWithWhom, . . .). Each time we obtained very
readable and simple set models. The generated SAT instances also appeared
to be well-suited for Minisat.

In the future, we plan to use our set constraints encoding for formalizing
domain variables and sequences of elements. To this end, we will need to add
some new constraints and to complete our ⇔enc encoding rule.

We want to refine the notion of supports and reduce their sizes. As said
before, this do not have any impact on a problem such as the Social Golfer
Problem for which supports are already minimal. But for many problems (in
which supports are not clear at the principle), it is important to reduce the size
of the supports (using a pre-treatment) before generating the SAT instances.

Finally, we also plan to combine set constraints with arithmetic constraints,
and we want to define the corresponding combining SAT encoding.

References

1. Choco. Http://www.emn.fr/z-info/choco-solver/
2. Azevedo, F.: An attempt to dynamically break symmetries in the social golfers prob-

lem. In: F. Azevedo, P. Barahona, F. Fages, F. Rossi (eds.) CSCLP, Lecture Notes in

Computer Science, vol. 4651, pp. 33–47. Springer (2006)
3. Bacchus, F.: Gac via unit propagation. In: Proc. of CP 2007, LNCS, vol. 4741, pp.

133–147. Springer (2007)

Http://www.emn.fr/z-info/choco-solver/

Set Constraint Model and Encoding for SAT 27

4. Bailleux, O., Boufkhad, Y.: Efficient cnf encoding of boolean cardinality constraints. In:
Proc. of CP 2003, vol. 2833, pp. 108–122. Springer (2003)

5. Bessière, C., Hebrard, E., Walsh, T.: Local consistencies in sat. In: Selected Revised
Papers of SAT 2003., LNCS, vol. 2919, pp. 299–314. Springer (2004)

6. Cotta, C., Dotú, I., Fernández, A.J., Hentenryck, P.V.: Scheduling social golfers with
memetic evolutionary programming. In: Proc. of HM 2006, LNCS, vol. 4030, pp. 150–
161. Springer (2006)

7. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predicates
for search problems. In: Proc. of KR’96, pp. 148–159. Morgan Kaufmann (1996)

8. Eén, N., Biere, A.: Effective preprocessing in sat through variable and clause elimination.
In: Proc. of SAT 2005, vol. 3569, pp. 61–75 (2005)

9. Eén, N., Sörensson, N.: An extensible sat-solver. In: Proc. of SAT 2003, vol. 2919, pp.
502–518 (2003)

10. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.:
Breaking row and column symmetries in matrix models. In: Proc. of CP 2002, vol.
2470, pp. 462–476. Springer (2002)

11. Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Global constraints for lexi-
cographic orderings. In: Proc. of CP 2002, vol. 2470, pp. 93–108. Springer (2002)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of
NP-Completeness. W.H. Freeman & Company (1979)

13. Gent, I., Lynce, I.: A sat encoding for the social golfer problem. In: IJCAI’05 workshop
on modelling and solving problems with constraints (2005)

14. Gent, I.P., Prosser, P.: An empirical study of the stable marriage problem with ties and
incomplete lists. In: Proc. of ECAI’2002, pp. 141–145. IOS Press (2002)

15. Gent, I.P., Walsh, T.: CSPLib: A benchmark library for constraints. In: Proc. of CP
1999, LNCS, vol. 1713, pp. 480–481. Springer (1999)

16. Gervet, C.: Conjunto: Constraint propagation over set constraints with finite set domain
variables. In: Proc. of ICLP’94, p. 733. MIT Press (1994)

17. Lardeux, F., Monfroy, E., Saubion, F., Crawford, B., Castro, C.: Sat encoding and csp
reduction for interconnected alldiff constraints. In: Proc. of MICAI 2009, pp. 360–371
(2009)

18. Legeard, B., Legros, E.: Short overview of the clps system. In: Proc. of PLILP’91, vol.
528, pp. 431–433. Springer (1991)

19. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier
(2006)

20. Triska, M., Musliu, N.: An improved sat formulation for the social golfer problem. Annals
of Operations Research 194(1), 427–438 (2012)

	1 Introduction
	2 Set Constraint Encoding
	2.1 Universe and Supports
	2.2 The enc Encoding Rule
	2.3 Membership Constraint
	2.4 Set Equality Constraint
	2.5 Intersection Constraint
	2.6 Union Constraint
	2.7 Inclusion Constraint
	2.8 Difference Constraint
	2.9 Multi-union Constraint
	2.10 Multi-intersection Constraint
	2.11 Cardinality Constraint

	3 Models for the Social Golfer Problem
	3.1 Direct Encoding
	Each golfer plays at least once per week
	Each players plays at most once per week
	Groups are correct
	The socialization constraint
	Complexity of the direct encoding

	3.2 Variants of the Direct Encoding
	3.2.1 The Ladder matrix structure
	3.2.2 Intermediate variables

	3.3 SAT Encoding for Set Constraint Model
	3.3.1 Set constraints model
	p players per group every weeks:
	Every golfer plays every weeks:
	No golfer plays in two groups the same week:
	Two players cannot play twice together in the same group:

	3.3.2 SCE: Set Constraint Encoding
	p players per group every weeks:
	Every golfer plays every week:
	Two players cannot play twice together in the same group:
	Complexity of the generated SAT instances
	Post-treatment by Unit Propagation

	4 Symmetry Breaking for the Social Golfer Problem
	4.1 Symmetry Breaking for TME
	4.2 Symmetry Breaking with Set Constraint Model
	4.2.1 Symmetry breaking for the set constraint model by adding constraints
	4.2.2 Symmetry breaking for the set constraint model by modifying the model
	P players per group every weeks:
	Every golfer plays every week:
	Two players cannot play twice together in the same group:

	5 Comparisons of Models
	5.1 Declarativity
	5.2 Model Structure
	5.3 Impact of the symmetry breaking

	6 Experimental Analysis
	7 Discussion
	Modeling
	SAT Instances
	Symmetry breaking
	Set constraints in constraint programming

	8 Conclusion

