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Abstract Complex decision support systems often consist of component modules which,
encoding the judgements of panels of domain experts, describe a particular sub-domain of
the overall system. Ideally these modules need to be pasted together to provide a compre-
hensive picture of the whole process. The challenge of building such an integrated system
is that, whilst the overall qualitative features are common knowledge to all, the explicit
forecasts and their associated uncertainties are only expressed individually by each panel,
resulting from its own analysis. The structure of the integrated system therefore needs to
facilitate the coherent piecing together of these separate evaluations. If such a system is
not available there is a serious danger that this might drive decision makers to incoherent
and so indefensible policy choices. In this paper we develop a graphically based framework
which embeds a set of conditions, consisting of the agreement usually made in practice of
certain probability and utility models, that, if satisfied in a given context, are sufficient to
ensure the composite system is truly coherent. Furthermore, we develop new message pass-
ing algorithms entailing the transmission of expected utility scores between the panels, that
enable the uncertainties within each module to be fully accounted for in the evaluation of
the available alternatives in these composite systems.

Keywords Bayesian decision theory - combination of expert judgement - decision support
systems - graphical models - uncertainty handling

1 Introduction

Nowadays decision centres are required to make choices in complex and evolving envi-
ronments, described through multiple and interdependent processes with many associated
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measurements. The objective of a real time decision making centre is to agree to a sequence
of efficacious countermeasures. To achieve this it is usually necessary to integrate opinions
and information from an often diverse set of stakeholders, articulating several competing
objectives and knowledge over different domains of expertise. A collection of decision sup-
port systems (DSSs) can enhance such an integration, not only ensuring that all relevant
evidence systematically informs policy making, but also encouraging the decision centre to
exhibit an underlying consistency across all its components and to address the problem as a
whole.

One domain of application exhibiting such complexity is emergency management, es-
pecially ones designed to guide the choice of countermeasures after a nuclear accident. Here
decision centres need to address the diverse deleterious outworkings of accidental releases
of contaminants, taking into account, for example, the effects on health, the political impli-
cations and the environmental consequences of that accident. Each of these issues is likely to
be informed by a different panel of domain experts, who are the ones best able to articulate
appropriate forecasts, their uncertainties and the evaluation of specific consequences arising
directly from these.

Early support systems often consisted of a suite of different component DSSs, or mod-
ules, designed by an appropriate panel of experts. These used a variety of deterministic and
stochastic methodologies to guide the estimation and the forecasting of the various quanti-
ties relevant to the domain under study (see e.g. Ehrhardt et al, 1993; Ehrhardt, 1997). Fully
probabilistic component modules then began to be developed to communicate both the rele-
vant panel’s forecasts and their associated uncertainties. For nuclear emergency management
the first such probabilistic DSSs tended to focus on the initial consequences of the accident
(French et al, 1995; Smith and Papamichail, 1999). Since then more sophisticated proba-
bilistic modules modelling both early and later stages of the accident have been introduced
(De and Faria, 2011; Richter et al, 2002; Zheng et al, 2009).

These current component DSSs are designed to function independently, albeit with in-
puts provided by the outputs of other modules. Nevertheless the challenge is to somehow
join together the information from these systems in a coherent way, meaning that beliefs
expressed within a component module do not contradict those expressed in another. For ex-
ample, a decision centre aided by a DSS whose modules are non-coherently integrated might
be tempted to simply plug in point estimates of the inputs necessary for a receiving mod-
ule and to ignore the delivered uncertainties associated with the values of these inputs. In
this paper these uncertainty measures will correspond to the variance of the mean estimates,
but we note here that other descriptions of uncertainty can be implemented in the system
(for example belief functions (Shafer, 1976), interval probabilities (Walley, 1996) or higher
order moments). It has been known for some time that, even in very simple scenarios, ignor-
ing uncertainties can lead a decision centre into choosing the wrong course of action (see
e.g. Leonelli and Smith, 2013b and Section ). This is because expected utility scores for
competing suites of countermeasures often formally depend on these uncertainty measures.

In this paper we develop a framework around which a coherent Bayesian decision anal-
ysis can be performed. This reconciles all the panels’ delivered uncertainties into a unique
formal assessment of the ranking of the decision policies supported by a DSS, thus not
suffering from the type of dysfunctionality mentioned above. This is because we are able
to deduce formulae to compute formal expected utility scores which appropriately draw
together the individual panels’ assessments. We then proceed to derive message passing al-
gorithms that enable the centre to evaluate the efficacy of different policies efficiently as well
as faithfully. The complete propagation of uncertainty between the modules guaranteed by
our algorithms further increases the quality of the modules’ outputs since their inputs encode
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the faithful representation of other panels’ uncertainties. The integrating system so defined
therefore ensures that any decision centre is properly supported and provides a consistent
analysis of the complex composite problem.

In order to provide this formal framework we envisage a real or virtual system manager,
or supraBayesian (SB), who is responsible for the aggregation of the individual panels’
judgements. A successful combination of the beliefs of the panels needs to give sufficient
information for the SB to calculate the expected utility scores associated to different policies.
Long ago French (1997) gave a vision for addressing this class of problems using Bayesian
decision analysis. However until recently, due to computational and methodological con-
straints, it has not been feasible to actually implement this vision: now it is. Henceforth,
we use the phrase integrating decision support system (IDSS) to denote the unifying and
integrating framework around which the SB combines component DSSs into a single entity.
When sufficient conditions exist for individual panels’ beliefs to be formally combined into
a coherent whole, we say that the system is distributed.

In Section 2| below we discuss technical conditions which are sufficient to ensure we
can build a distributed IDSS. There are several advantages that derive from structuring a
problem so that the ensuing support is distributed. First, because the responsibility for each
aspect of the analysis can be devolved to appropriate panels of experts, these are then more
likely to deliver better calibrated judgements. The whole system might therefore be expected
to be more robust to the misspecification of beliefs (Cooke, 1991). On the other hand, if the
system needs to be changed in the light of unexpected developments or unplanned conse-
quences, under suitable conditions, the management of these new developments need only
be addressed autonomously by the relevant panels. These simply adapt their individual fore-
casts and the inputs in the light of the new scenario they face. These adjustments can then
be folded back into the system to provide a revised output of the relevant modules for other
panels to use for their inputs.

Second, the output of a distributed IDSS can produce answers to queries by decision
centres about the premises on which it is based and the calculations of its outputs, by direct-
ing the query to the relevant panels. A route along which the relevant panels can be queried
as to the reasons of their contribution to the expected utility scores is described in Fig. [T}
which shows the different levels of support that can be implemented into an IDSS. When
queried, generic DSSs are usually able to present justifications for the overall expected util-
ity scores and the ranking of the available policies (third box of the second column from
the left of Fig. [I). However IDSSs are able to provide an additional level of support. The
system’s distributivity permits the IDSS to justify its suggestions in terms of the modules
outputs, since expected utilities are functions of these (see the bottom box of the second col-
umn from the left of Fig.[I). If these systems did not exhibit this distributivity property, then
such devolution may not be possible and so any support would be much less transparent.

Third, distributivity ensures that different decision centres can be given the option of
choosing different modules to model the various components of the problem. For example,
in nuclear emergency management, different countries often prefer to predict the spread of
the contamination using their national agencies’ diffusion models.

In the applications we have in mind the input data and the underlying processes sup-
ported by an IDSS are intrinsically dynamic and unfold in time. This is in particular the case
for emergency management, where new observations are constantly gathered throughout the
crisis and decision centres need to make decisions at each time new information is available
(Leonelli and Smith, 2013a). For this reason it is necessary to consider classes of models
that can accommodate a sequential update of the model parameters and, consequently, of the
relevant probabilities. For simplicity here, although this is not strictly necessary, we assume
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IDSS produces expected utility scores

User query: assessment of the policies }
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[User query: why a particular estimate has this value}
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enhancement of
understanding

Press release and
adopt policy

The relevant panels use their DSS to provide
supporting evidence for their judgments

Fig. 1: Description of the possible use of an IDSS for a decision analysis.

that each component module is a dynamic probabilistic model of a type we define later. In
addition we suppose that there is an agreed overarching framework of conditional indepen-
dences common knowledge to all, implying that all panels agree on an overall graphical
model specifying the relationships between the component DSSs.

For a full expected utility decision support to be possible, a utility function needs to be
specified. It is often reasonable and almost always assumed in practice that this function lies
in some family, capturing some form of preferential independence (Abbas, 2010; Fishburn,
1967; Keeney and Raiffa, 1993), which then usually implies some additive or multiplicative
factorization. Here we assume that the panels’ are able to agree on a unique utility function
decomposition lying within a family we define in Section [2] customized to the needs of
the network of expert systems. This will enable for the computation of the expected utility
scores in a fast distributed fashion.

We envisage that the panels can reach these agreements during decision conferences,
where a facilitator guides the panels’ discussion and exploration of the implications of the
possible models (French et al, 2009). During these meetings they also discuss any other
necessary probabilistic assumptions needed to be made as, for example, global independence
of the various components of the parameter set (Cowell et al, 1999). These behavioural
methodologies are well documented and have often been successfully applied in practice in
a variety of domains (Ackermann, 1996; Phillips, 1984). The IDSS is then built around this
agreed qualitative framework.

Having determined conditions under which an IDSS can be updated dynamically in a
modular fashion, in Section [3|we develop message passing algorithms over the network of
component DSSs between the panels and the SB. These enable the SB to compute the ex-
pected utility scores of potential policies. These also let calculations to be devolved to the
relevant panels and hence define the operations of the given distributed system. Our algo-
rithms work similarly to the many others designed for the single agent propagation of proba-
bilities and expected utilities through, respectively, Bayesian networks (BNs) and influence
diagrams (IDs) (see e.g. Cowell et al, 1999; Faria and Smith, 1997; Jensen and Nielsen,
2013; Lauritzen, 1992). The subtlety here is to derive conditions to ensure that all calcu-
lations can be decomposed into sub-computations that can be performed autonomously by
individual panels. We are able to demonstrate that it is surprisingly simple to calculate mes-
sage passing algorithms based on these individual computations using standard backward
induction, albeit in this novel and potentially very complex setting. Distributivity conditions
thus imply that the system is able to quickly produce forecasts and expected utilities, en-
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Fig. 2: Structure of a Bayesian decision analysis for a group of distributed experts, general-
izing French (1997).

abling decision centres to interrogate the IDSS in real-time. We illustrate these processes in
Section [

2 The Integrating Decision Support System

To formally define the network of component DSSs constituting an IDSS we first need to
introduce a theoretical framework based on a set of structural assumptions that can guaran-
tee its distributivity. Our exposition broadly follows the structure of the diagram in Fig. [2]
However in addition we also assume the following. First, all the panels agree on a overarch-
ing (dynamic) graphical statistical model representing the relationships existing between the
quantities they agree to include in the analysis. Second, they are able to jointly determine a
decision space describing the available actions that can be taken after the observation of a
specific subset of the variables. Third, we assume they share a utility factorization which lies
within a customized family of utilities. All these assumptions are defined formally below.

Thus, let {Y (#)}e(r), [T] = {1,2,...,T}, be a multivariate time series with finite hori-
zon T partitioned into n multivariate time series {¥(t) },¢(7), with i € [n]. For A C [n], let
Yat)' = (Yi()"),.u0 Y () = Yp(0) and Yl = (Ya(1)T,...,¥a(r)")". A random vector
Y4(¢) takes values in %4 = X;ca%;, where % is the space associated to Y;(¢). For each
t € [T—1], the vector (Y4 (¢)T,¥a(t +1)T) takes values in % x %,. Further let IT; C [i—1]
and Q; = [i—1]\ IT.

Lower case letters denote generic instantiations of random vectors, e.g. y4(¢) and y,
are realizations of ¥ (r) and Y, respectively. Each individual time series {¥;(r)},c(r) is
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o

Fig. 3: Example of a DAG of a DDM depicting relationships between processes, not vari-
ables.

overseen by a panel of experts, that we denote G;, and includes all the variables associated
to the i-th DSS.

Finally, the term collective, represented by the SB, will be used to refer to representatives
of each panel, relevant stakeholders and interested parties in the support system. We assume
here that the collective is jointly responsible for the definition of the necessary overarch-
ing probabilistic, preferential and decision structures. The structure within each individual
module will on the other hand be agreed by the members of the relevant panel only.

2.1 The integrating system
2.1.1 The probabilistic integrating structure.

The overall statistical model the collective needs to agree upon is, for the purposes of this
paper, a dynamic graphical Bayesian model customized to the needs of multi-expert sys-
tems, here called distributed dynamic model (DDM). Graphical models provide a faithful
picture of the relationships existing between the main features of the problem, which can be
discussed and explored by the collective (for an introduction to graph theory, see e.g. Chap-
ter 4 of Cowell et al, 1999). In a DDM these relationships are depicted by a directed acyclic
graph (DAG), whose vertices are ¥ , i € [n]. Here we assume that the vector ¥7 includes all
the variables the collective is planning to take into account during the analysis. We are now
ready to formally define the DDM model class.

Definition 1 A DDM for the time series {¥ () },[7) consists of :

— n— 1 conditional independence statements for each time point ¢ of the form
Yi(t) LY} | Y, Y

- aDAG ¥ with vertex set V(4) = {¥7,..., YT} and edge set E(¥) including an element
(YI,yl)if jeIl, i€ n].

We use the common notation ¥;(r) L Yf, | Y7, Y =1 (Dawid, 1979) to read that the
vector Y;(¢) is independent of Y/, given ¥; and ¥~', so that the only information to infer
Y;(t) from Y, , Y and Yi 7 is ‘from Y, and Y'~!. Note that the sets IT; and Q; do not
depend on the time index ¢ since the vertices of the DAG of the DDM are the time series
vector overseen by different panels.

An example of a DAG associated to a DDM is presented in Fig. |3 This network is used
throughout the paper to illustrate various features of our methodology. Such a DAG can
be thought of as specifying relevant relationships across the components of different time
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series. This is in contrast to the more common BN, whose DAG represents relationships
between single variables. It is important to note that statements embodied within this DAG
are qualitative in nature and so in particular can more easily provide the framework for a
common knowledge base (see e.g. Smith, 1996, for a discussion).

Since the vertices of the underlying graph are time series, the topology of the DAG does
not change through time. Therefore each time slice Y (¢) of a DDM, conditionally on the
past, can also be described graphically by a DAG with the same topology. This topology
remains constant as time progresses. On the other hand the associated probabilities are al-
lowed to be dynamically updated through time, using for example a dynamic linear model
(DLM) approach (West and Harrison, 1997). Each time slice DAG has vertex set equal to
{Y1(r),...,Yu(t)} and edges (Y ;(¢),Y;(r)) if j € IL;, i, j € [n]. The vertex Y ;(z) is then usu-
ally called a parent of Y;(r), whilst ¥;(r) is called a child of Y ;(t). We call this DAG the
time slice DAG of the DDM. Recall that a vertex with no children is usually called leaf of
the DAG. Let Le(¥) be the index of the leaf vertices of ¥.

Associated to any time slice DAG is a partial order over the vector Y (¢). Here an element
Y,(¢) is called a descendant of Y j(t) and Y ;(¢) is called an ancestor of Y;(t), if there is a
directed path from Y (¢) to ¥;(z). A directed path is a sequence of vertices for which any
two consecutive elements of the sequence, Y (7) and Y, () say, are such that (Y(¢),Y,(¢))
is an edge of the DAG. An undirected path is similarly defined as a sequence of vertices for
which any two consecutive elements, ¥ (7) and Y;(¢) say, are such that either (Y (¢),¥,(z))
or (Y;(2),Y(t)) is an edge of the DAG. We denote by A} C [i—1] the set consisting of the
indices of the ancestors of Y;(r) and, calling A; = A} U {i}, the ancestral set of Y;(r) is
{¥i(z) :i e {AlU{i}}}. We denote with D; the set of the indices of the descendants of ¥;(z).
We further call ancestral components of a DAG ¢ those Y 4,(¢) such that i € Le(¥). As an
example consider the time slice DAG at time ¢ associated to the DDM in Fig.|3| For example
(Y1(2),Y2(2),Y3(r)) is a directed path in the DAG in Fig.[3| whilst (¥3(¢),Y(¢),Y2(r)) is an
undirected path. For this network A3 = {1,2,3}, D; = {2,3,4} and there are two ancestral
components: ¥ 3(t) and ¥ ; 4y (¢). In the following this partial order becomes fundamental
since it induces a partial order over the available decision spaces and guides the algorithms
we define below.

Just as for other Bayesian graphical models in the literature, the DDM can be associated
with a factorization of the probability density function, which depends on the topology of
the associated DAG. Specifically, as a direct consequence of the conditional independence
structure associated with a DDM, we have the following result.

Proposition 1 The joint probability density function f associated to a DDM for the time
series {Y (1) },er) = {Y1(t), ..., Y u(t) }scr) can be written as

T n
roh) = Hleu- i(r) 157" ¥ -

i=1i=1
For the purpose of the collective’s specification of the overarching probability model,
it is only relevant that the probability density can be qualitatively written as a product of
the terms f; ;. The actual algebraic form of these terms and the guantitative specification of
the associated parameters is agreed, as we specify below and as usual in practice, by the
members of the relevant panel only. In this sense the algorithms we derive below are built
on the agreed qualitative framework within the collective common knowledge base and are

driven by the topology of the agreed DAG.
We note here that the DDM model class is very large. Particular instances of the DDM
have been extensively studied in the literature. For example, it can be shown that the MDM
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(Queen and Smith, 1993), the dynamic chain graph model (Anacleto and Queen, 2013)
and of course non-dynamic models such as the BN (Cowell et al, 1999; Pearl, 1988), with
appropriate global independence assumptions, can all be seen as special cases of the DDM.
Consequently, all these classes of models can be used to embellish the qualitative structure
of a DDM with explicit probabilistic specifications.

Before introducing an assumption concerning the collective’s probabilistic agreement,
we need to define a few more terms from graph theory. A time slice DAG ¥ is said to be
decomposable if for any Y (1) e V(¥), (Y (1), Yi(t)) €E(Y) if jk€IT;, j <k <i<n. We
also say that a DAG is connected if every two vertices are connected by an undirected path.
A subgraph 9’ of a DAG ¢ is a DAG such that V(¢') C V(%) and E(¢') C E(¢). The
subgraph &’ induced by a subset of the vertex set of ¢, V' say, is one such that V(¢') =V’
and E(9') =E(4)N{V(¥') xV(¥4')}. Consider the time slice DAG associated to the DDM
in Fig.|3| This is decomposable since (Y (¢),Y2(t)) € E(¥). It is also connected since every
two vertices are linked by an undirected path. Finally consider the set {¥(¢),Y3(¢),Y(z)}.
The subgraph of Fig. [3]induced by this set has vertex set {¥(r),¥3(t),Y4(t)} and its edge
setis equal to {(Y2(¢),Y3(2))}.

We are now ready to make the following assumption.

Structural Assumption 1 (Probabilistic consensus) The collective agrees to:

— describe the predictive factorization of YT by a DDM, whose DAG is connected and
decomposable;
— assume that the elements of {Y (t)},c(y| are observed according to the order defined by
the following rules:
- Y,(t1) is observed before Y j(12) if t1 < 1o, for i, j € [n];
— Y (1) is observed before Y (1) if j € A;.

The requirement that the graph is decomposable is simply a technical one, similar to
those used in junction trees propagation algorithms (Lauritzen, 1992). Note that any DAG
can be converted into a decomposable one which then gives a valid (albeit inefficient) rep-
resentation of the underlying processes (see e.g. Smith, 2010, for an explicit description of
this embedding). In this sense this assumption is not too fierce. In particular it ensures that
no new dependencies are introduced in the IDSS through the backward induction steps we
define below. This is because the vertices in an ancestral component are totally ordered for
decomposable DAGs, whilst this does not hold in the non-decomposable case. These total
orders are specified by father-son relationships between vertices. We call a vertex Y;(¢) the
sonof Y (1), if IT; C {{j} UII;} and we say that Y ;(¢) is the unique father of Y;(t), whose
index is F;. Furthermore, we let S; be the set of the indices of the sons of ¥ ;(r). For example,
Y,(r) is the father of ¥3(¢) in the time slice DAG of the DDM in Fig. |3| whilst ¥ () has
two sons, Y (¢) and Y 4(¢).

We can also assume without any loss of generality that the network is connected, since
if this were not the case, then, when the structural assumptions we introduce below hold,
the overall problem could be decomposed into smaller and independent ones that could be
treated separately.

However, more critical, especially in emergency management where it can be commonly
violated, is the assumption, as expressed in the second bullet, that it is possible to observe
all the quantities the collective planned to observe in the order they happen. It has long
been known that when the delivery of some of the data is delayed, the underlying DAG of
the DDM does not in general remain constant through time (Queen and Smith, 1993) and
previously uncorrelated time series overseen by different panels could then become highly
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correlated, thus breaking the distributivity of the system and the validity of our message
passing algorithms. For the purposes of this paper we assume that the receipt of information
is never delayed. We briefly discuss two potential practical ways of addressing violations of
this assumption in the discussion.

2.1.2 The decision space.

As we specify below, the structure of the decision space the collective shares assumes that a
potential decision centre has the possibility of intervening after having observed any variable
in the system. For i € [n] and ¢ € [T], let Z;(t) be the decision space available after having
observed Y;(f) and 2(0) be the decision space associated to an initial decision. We also let
Da(t) = (Zi(t)n, 2% = (2(0),Za(1),...,24(t))" and 7' = _@[’n], for A C [n]. We also
denote with dy (r) and d'; generic elements of Z4(t) and 2 respectively.

We next make the following assumption.

Structural Assumption 2 (Structure consensus) The collective agrees:

— the specification of the decision spaces 2(0) and Z;(t), i € [n], t € [T], defining the acts
a decision centre might take;

— to assume that the choice of a decision d;(t2) € Zi(t2) is not constrained by a decision
d;j(t1) € 9;(t1) if j & A} in the DAG of the DDM, j <i, 1) <t;

— to commit to a decision di(t) € Z(t) only after having observed the value of Y 4,(t) and
Y'~!, and having already committed to decisions da,(t) and d' -1

— that the underlying DDM remains valid under any policy choice open to the centre.

Structural assumption [2] guarantees that the graphical framework of the IDSS remains
unaffected after a decision is taken, so that the system provides a coherent picture of the
problem throughout the unfolding of events and actions in a particular incident. This is
because under the assumption above the topology of the time slice DAGs does not change.
So the algorithms we define below are still able to compute coherent expected utility scores
through message passing. Of course we can still allow for the possibility that the probability
judgments within that structure might change in response to a decision - they usually do.

To illustrate the assumption above we consider the diagram of the time slice DAG at time
t of our network, reported in Fig. 4| which includes four decision spaces: 2 (t),..., Z4(t).
This network is in reduced form (see e.g. Smith, 2010), meaning that if (2;(¢), Zk(1)),
(2,(1),2,(t)) € E(¥),i < j <k, thenin its reduced version the edge (Z;(r), Z;(t)) is omit-
ted. Furthermore, in reduced form networks edges of the type (¥;(r),Z;(t)) are included
only if i = j. Note that this is not a simple ID since Structural Assumption [2]does not guar-
antee that the decision spaces are totally ordered, although for convenience their indexing
respects the total order of natural numbers, just as for the common BN model. In fact these
decision spaces only need to be partially ordered consistently with the DAG of the DDM.
Therefore, for example, there is no fixed order in which a decision centre commits to deci-
sions dy (1) € 2»(t) and d4(t) € P4(t). The constraints associated with this partial order are
denoted in Fig. 4] by the absence of an edge between these two decision spaces. A decision
centre needs to commit to one of these decisions, d;(t) € Z;(t) say, only after having ob-
served the value of ¥;(t), i € [4]: in our notation only after having observed ¥ 4, () and ¥'~!
as specified by the third bullet of Structural Assumption Of course a decision d;(r) € Zi(t)
is made after having already committed to d'~! € 2'~!. We further assume that the overall
decision space is such that Z4(t) x Z,(t), so that in particular these two decision spaces do
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Fig. 4: A time slice DAG of the DDM in Fig. including decision nodes.

not constrain one another. In general decision spaces that are not connected by an edge in
the non-reduced representation of the network in Fig. ] cannot be mutually constrained.

The second assumption about the structure of the decision problem concerns a set of
irrelevance statements.

Structural Assumption 3 (Decisions’ irrelevance) The collective agrees that
foi i) [d" ¥y 7") = fu (yi(t) | d,&;yyh,.,yi»") 7 (1

fori€nlandt €[T)].

Equation (1) states that a random vector ¥;(¢) does not functionally depend on the decisions
that are not included in Z},. This assumption is a very weak one. For example the sufficiency

theorem (Smith,1989a; Smith, 1989b) guarantees that a decision centre can always find one
Bayes optimal decision based on a decision rule which respects these statements. We further
note here that within each time slice this assumption is an instance of the causal consistency
lemma of Cowell et al (1999), but applied to this more general setting. The lemma guarantees
that decisions can have a direct influence only on variables that are yet to be observed.
More generally here Structural Assumption [3]implies the lemma holds for partially ordered
decisions and decision spaces that are not simply product spaces.

Return now to the example above. Since there is no fixed order between ¥ (r) and ¥ 4(¢),
Structural Assumption [3|demands that ¥ 4(¢) does not functionally depend on d>(t) € % (t).
Similarly, we require that ¥, () does not functionally depend on d4(t) € Z4(t). This can be
noted in the diagram of Fig. ] by the absence of edges between these nodes.

These are the irrelevances the collective needs to be ready to assume. Of course they
might believe that some decisions do not have any direct effect to additional variables and
thus assume further irrelevances. For example they might believe that the initial decision
space 2(0) is irrelevant for the outcomes of the variables at the first time point, ¥ (1). Such
additional assumptions do not affect the validity of the architecture of the DAG.

2.1.3 The utility integrating structure.

The last overarching agreement the collective needs to find concerns the utility factorization.
We suppose the time series with index in U C [n] to be the attributes of the decision problem.
For i € U, define r; = r,-(yiT,dgi) to be a function of both y! and df{_ and let rq = (r;)ica
for A C [n]. Note that each vertex Y} of the DAG of the DDM, for i € U, can be uniquely
associated with an r;. This notation will turn out to be very useful and concise to depict utility
independent statements between time series under the responsibility of different panels. We
assume here that a set of assumptions implying the existence of a utility function u over ry
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is appropriate (see e.g. French and Rious Insua, 2000). For simplicity we also assume that
ieUforalli€ Le(9).

The utility function describes the preferential structure of the collective. When there are
more than one or two attributes, a faithful elicitation of such a function is difficult, unless
certain preferential independence conditions are imposed. An added problem in the multi-
expert setting we study here is that joint utility elicitations across different panels in a single
integrating decision conference are only rarely possible (see e.g. Chapter 11 of French et al,
2009). So for example it is typically possible to elicit the scores associated with the overall
weighting of one attribute over another, for example as expressed by the criterion weights
of multi-attribute independent utilities. But other more detailed elicitations, for example the
appropriate forms of the marginal utility functions, are better delegated to those closest to
understanding the consequences of such attributes (for an illustration of why this is so see
Von Winterfeldt and Edwards, 1986). However, for this type of delegation to be formally
justified it is first necessary to assume that the collective is prepared to entertain certain
sets of preferential independences in order to be able to elicit, through individual panels’
assessments, a joint utility function.

Here we define a multi-attribute utility factorization compatible with the DAG of the
multi-expert DDM we defined above. Specifically, this first assumes that the time series with
index in U belonging to different ancestral components are generalized additive independent
(GAI) (see e.g. Braziunas and Boutilier, 2006). The utility independence structure within
each of this these components is then assumed to be described by a member of a certain class
of utility diagrams (Abbas, 2010) representing conditional utility independence statements
(Keeney and Raiffa, 1993).

Recall that a utility diagram is a bidirected graph whose vertex set corresponds to the
sets of attributes, in our notation {r;: i € U}, and its edge set is defined by the following
rules:

— a bidirected edge between two vertices does not assert any independence relation;

— adirected edge from a vertex to another asserts that the first is utility independent of the
second given all the other vertices;

— the absence of an edge between two vertices asserts that the first is utility independent
of the second and vice versa, given all the other vertices.

Definition 2 Let ¢ be the DAG of a DDM of a time series {Y (¢) };c (7] and relabel a vertex
Y7 (i) of 4 with r;, i € [n]. Let U C [n] be the index set of the attributes of the decision
problem. We say that a utility function u is in the class U¥ of utilities compatible to the
graph ¢, if:

— the ancestral components of the subgraph ¢’ of & induced by {r; : i € U} are GAI,

— the independence structure associated to an ancestral component of ¢', A; say, can be de-
scribed by a subgraph of the utility diagram coinciding with the subgraph of ¢’ induced
by {rj:j€A};

In order to illustrate the class of compatible utility factorizations, consider the DAG in
Fig.[3]and let U = {2,3,4}. Recall that {4} and {2,3} are in different ancestral components
and therefore in the class of compatible utility factorizations r4 and {r,r3} are GAIL The
two utility diagrams derived following the procedure in Definition 2] would then correspond
to the following two networks: one including only the vertex r4, the other with vertices r;
and r3 and an edge from r; to r3.

The class of compatible utilities to a graph ¢ can be equivalently described by a certain
multiattribute factorization as formalized by the following proposition. For A € [n], let R}
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denote the set of all possible instantiations rj;o such that every r;, i € A, is fixed either at
the best, r}, or the worst value, r?. We also let u(r; | "C,-) be a normalized conditional utility
function over r; given r¢;, where C; C {[n] \ {i}} (Abbas, 2010; Keeney and Raiffa, 1993).

Proposition 2 A utility function u over ry compatible with the graph & can be written as

W)= Y u(r)=Y ¥ u?('fx?)ng(rj|'7%»'gi\{n,Uj})v @

icLe(9) i€Le(%) rOeRy? JEA;
1 1
where
| %0 50 ifyr. —pfi 0
u(rj |"H,~"'A,-\{H,-Uj})7 ifrj=rj mu(rAI),

*0 0
8j (rj | T Ya\{I1,u ‘}) =
j7 AN YT ] %0 .0 ;
I—ul(r;] TN ) otherwise.

This result easily follows by first writing the overall utility as a linear combination of the
utilities over the ancestral components (as assured by the GAI independence condition), then
applying the expansion theorem of Abbas (2010) in each of these components in increasing
order over their indices and finally impose the conditional utility independence structure.
Each of the utilities u? in equation (2)) is the product of terms u?(rl’;?), corresponding to
criterion weights (French and Rios Insua, 2000) and g; (r i rf%, rgi\ { H,Uj}) which is a func-
tion of r; only since the attributes r,,) ; are fixed to a certain instantiation. Thus a compatible
utility factorization is a function of the criterion weights and utilities whose arguments are
overseen by individual panels only. We can therefore envisage that the collective can agree
on using one of these compatible factorizations and to delegate the elicitation of the form
of the functions g;, j € U, to the most informed panels. The functional form of compatible
utilities in equation (Z) guarantees that the computation of expected utilities scores can be
achieved in a distributed fashion through the message passing algorithms we define below.
We now make the following assumption.

Structural Assumption 4 (Preferential consensus) The collective is able to identify an
agreed compatible multi-attribute utility decomposition over ry within the class Uy and to
elicit the common criterion weights u?(r:‘?), i€Le(9).

2.1.4 The IDSS expected utility.

Under the assumptions introduced above, which specify the qualitative structure of the deci-
sion problem, the expected utility function factorizes into separate factors of the beliefs that
particular individual panels can provide themselves. To show this, for ¢ € [T — 1], let

7T 2 [ ) ) [ ay(r),
@ (yhd") 2 /J{ @ (y.d") f (y(0) |y ") dy(o).

These two terms correspond to the expected utility scores after marginalization steps have
been performed over all the variables with time index bigger or equal than ¢ in the algorithms
we define below.

We now show that any function i#’, ¢ € [T], can be deduced recursively as a function of
the individual panels’ statements.
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Theorem 1 Under Structural Assumptions i, fort € [T], can be written as

i = /J ey (¥1,d") fra 0 @) 1Y di ™) dyy (o), 3
1
where
Zr/’;(;eRZ? ”? (rZ?) ITjea; 8J (rj | 'Z(_),JEO].) ) i€Lle(9),t=T
o (v d") 2 i (¥d7) icLe(@), 14T (@)
ZjeS,- i j (}’zgaytfladT> s otherwise,
iy (yg;_,y;-l 7dT) = /J it (Y, d") fri (yl-(l) | dg;,yh,.7yﬁ") dy;(1), )
and 1l ; is uniquely defined as the function for which
=Y a,0y.d"), ©)
icLe()

The proof of this theorem is provided in Appendix [A]

We note here that again the actual algebraic form of the terms in equations (3)-(€) is not
fundamental to the construction of a coherent distributed IDSS. This form depends on the
individual panels’ agreements concerning the quantities under their particular jurisdiction.
Importantly, however, any i@’ can be written as a function of these terms, whatever they are.
Its computation, as we show in the following section, can therefore be obtained through a
message passing algorithm, guided by the topology of the DAG of the DDM, between each
individual panel and the SB.

The quantities appearing in the theorem above are fundamental to later developments
of this paper. So we now discuss their interpretation. The definition of & ; in equation (4)
depends on whether or not ¥;(7) is a leaf vertex of the time slice DAG ¥. In the former case,
for t =T, this corresponds to the utility function over the appropriate ancestral component,
whilst if 7 # T this is simply equal to i ;. If i ¢ Le(¥) then equation (4) consists of the sum
of the incoming messages i; ; received by Panel G; in our algorithms below. Equation (EI)
defines it; ; which consists of the result of a marginalization of #; with respect to the con-
ditional density function f; ;. Finally, the theorem asserts that i’ +1 can be uniquely written
as a linear combination of the functions & ;, for i € Le(%). Throughout this paper, for ease
of notation, we use the convention of writing the arguments of the utility functions u and
g in terms of the attributes r, whilst for the other functions, e.g. i ;, the arguments will be
written in terms of the random variables ¥7 and the decisions d” .

2.2 The component DSSs

It is often recommended that the evaluation of both the conditional utilities and the condi-
tional probabilities should be delegated to groups of individuals best able to compare the
efficacy and the likelihood of different value of that attribute (see e.g. Von Neumann and
Morgenstern, 1947; Von Winterfeldt and Edwards, 1986). We therefore assume the follow-

ing.
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Structural Assumption 5 (Individual panel consensus) Every expert within a panel G;
agrees on a probabilistic model for the associated component DSS, f;;, i € [n], t € [T], as a
function of its inputs. In addition every expert in G; shares a marginal utility function over
riifiel.

It is possible to encourage the experts within a panel to come to these agreements in
a variety of ways, appropriate depending on the context, for example through a facilitated
Bayesian decision conference or by following a Delphi Protocol (see e.g. French et al, 2009).
Similarly, the probabilistic individual agreement might consist of following certain pooling
axioms (see e.g. French, 2011; Faria and Smith, 1997; Wisse et al, 2008) or by using agreed
software on expert inputs, for example a probabilistic emulator (see e.g. O’ Hagan, 2006).

3 The message passing algorithms

The structure of the IDSS has been fully defined. We now proceed to discuss the computation
of the expected utilities through message passing. We first introduce an algorithm which
includes partial optimization steps to deduce an optimal expected utility score. We then
consider two special cases of this algorithm. The first does not include optimization steps
and computes the expected utility score of a specific policy, whilst the second works over a
non-dynamic network of expert systems.

3.1 The collective optimal expected utility algorithm

In contrast to the quantities defined in equations (3)-(6), which compute the expected utility
score of a particular policy, we now include additional optimization steps to the algorithms.
These enable us to identify an optimal policy. In fact we can use exactly the same architec-
ture of message passing in this case. For this slight generalization we need to first define a

new quantity, u; ;, which accounts for optimizations over decision spaces. Let

u;ii (yfﬁxivdtil’dAé (t)) £ rg_z(‘t);ﬁl-,i (yiti?dlilvd/‘ii (t)) . N

This function is an optimized version, over the decision space %;(t), of i, ;. We also let i;;
be the result of the marginalization of u;;. Specifically,

s (g g 0) 2 [ (ad g 0) S (310 |y Y ) i)

(®)

Before illustrating the algorithm using the network of Fig. [3| we introduce a new no-

tation which is also used in the formal algorithms below. We let G; : or SB : denote the

entity that is responsible for the corresponding operation, while we represent with — G; or

— SB the fact that panel G; and the SB, respectively, receives the value of an appropriate

function. So for example G; : ##; ; — SB denotes that panel G; computes the function 7 ;
and communicates its value to the SB.
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Fig. 6: Optimal expected utility algorithm over the time slice DAG at time 7—1 of the
network in Fig. El

3.1.1 An illustrative example.

The algorithm starts from the leaves of the last (time 7) time slice DAG and assumes that
each panel overseeing a leaf of the time slice DAG, Y;(T) say, has been provided with the
term u? Panels G; : iir; — SB, for i = 3,4. Note that in this case iir; simply corresponds
to u? . This step is represented by the dotted arrows on the left network of Fig.|5|from ¥3(T')
and Y4(T) to the SB. Then SB : u3; — G; as in equation (7) for i = 3,4. This has been
depicted by the curly arrows in the left network of Fig. |5 At this stage G4 : ii7, — G| and
Gs : i3 — Ga, since Y (T') is the father of ¥3(7') and Y (T') is the father of ¥4 (7). These
two operations are described by the dashed arrows on the left network of Fig. Bl

Now G : iir» — SB, where iir, = ﬁ”}g since ¥ (T') has only one son. Then as before
SB:uj, — Gyand G, : iiy., — Gy, since Y | (T') is the father of ¥ (7). The whole process
is depicted by the network in the middle of Fig. [l where, as before, a dotted arrow is
associated to iir,;, a curly arrow to u7; and a dashed one to ity ;.

Because Y1 (T) is the father of both Y (T) and ¥ 4(T), now G : iir,; —> SB, by simply
adding @} , and @} 4, received from panels G, and G4 respectively. Panel G| then repeats
the same procedure as the other panels, with the only difference that iy | — SB and not to
another panel, since it oversees the unique root (i.e. a vertex with no parents) of the DAG.
This is depicted by the dashed arrow in the right network of Fig.[5]

Theorem 1| states that i, = @' is equal to the sum of the terms dr 1, i € Le(#). So,
if i is the index of a leaf vertex, SB : fiy_1; — G;. This is denoted in the left network of
Fig. |§|by the double arrows. Panels G; : ity ; — SB, i € Le(¥), where iiy_; = liy_1 .
From this stage on, the message passing algorithm copies the calculations and the actions
of the previous time slice. So the arrows in Fig. [l match the ones on the left network of
Fig.[5] The algorithm repeats the same sequence depicted by the dashed, curly, dotted and
double arrows in Fig. |§] and |§L until it reaches the root vertex of the first time slice. When
this happens the SB, after receiving i} | from panel G, computes a final optimization step
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Algorithm 3.1: THE COLLECTIVE OPTIMAL EXPECTED UTILITY (&, f,¥)

for t < T downto 1
for i < n downto 1
ifi€Le(9)

ift=T
{{G,’ . IZ,‘,' = u;j — SB
else Gi: ﬁ[.i = ﬁ[.i — SB
else G, : il =Y jcs, IZ,*J. — SB
SB: Mii = max@i(,) ﬁt’,' — G;
do {if (i #1)
then {G[ : ﬁ?,i =)o u;“,.f,‘,-dy,v(t) — Gp,
Gi: ity = [y uf fridy;(t) — SB
ifr 1
else ¢ {for each j € Le(9)
do {SB: computes i;_1,; — G
else SB : uy = max g o) iy ;

do

= e e~
N AW — OO0 00N B W —
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over the decision space Z(0). The algorithm has now been completed and can return the
expected utility score of the optimal sequence of decisions.

3.1.2 The algorithm.

Having described the algorithm on the running example, we now introduce it for a generic
DDM and in particular for more realistic scenarios. Specifically, this algorithm takes as
inputs the utilities ¥ associated to the ancestral components of ¢, denoted as u, all the
conditional density functions f; ;, denoted as f, and all the information concerning the DAG
¥¢. A formal definition of the algorithm can be found in Algorithm which is called
henceforth the collective optimal expected utility algorithm. For simplicity we have left
implicit the arguments of various quantities the panels and the SB communicate to each
other.

Theorem 2 Under Structural Assumptions Algorithm 31| produces an optimal expec-
ted utility score resulting from a unique Bayesian probability model, informed only by the
individual judgments delivered by the panels.

The proof of this theorem is provided in Appendix [B]

We note here that often the utility function is a polynomial function in its attributes.
When this is so, its expectation is a polynomial in which the variables are, in the continuous
case, low order moments. This can dramatically simplify the message passing algorithm for
computing the optimal policy as we illustrate below. As a result the IDSS often needs as
inputs only a few low order moments to work coherently. Even in rather complex domains
this in turn means that we can expect the algorithms defined above to be almost instantaneous
if each component module can produce the values of these uncertainties under various policy
choices efficiently. A study of the polynomial structure of expected utilities in the rather
more complex discrete domain is presented in Leonelli et al (2015).
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Algorithm 3.2: NON-DYNAMIC COLLECTIVE OPTIMAL EXPECTED UTILITY(u, f,%)

for i < n downto 1

ifi e Le(9)

{Gi:ii;=u? — SB
else G; 1 il = ) jcs, ﬁ; — SB

SB : u;-* =maxgy, i —> G

if (i #£1)
then {G;: i} = [y u; fidy, — Gr,
else {G,- L@} = [y u} fidy; — SB

SB : uy = maxg, ii;

do

3.2 Two variations of Algorithm 3.1
3.2.1 The score associated to a generic policy.

Algorithm [3.T] provides an operational guideline of how to compute the score associated to
an optimal policy. Recall however that the aim of a DSS is not only to identify the decisions
with highest expected utilities, but also to provide explanations and the reasoning behind the
outputs it provides (French et al, 2009). It is therefore also relevant to compute the expected
utility score associated with any policy that might be adopted. These scores then allow de-
cision centres to compare the different available options in more detail, possibly following
the route described in Fig.[I] To accommodate this feature a simple variant of Algorithm[3.1]
not including any optimization steps can be defined. This would simply correspond to the
collective optimal expected utility algorithm without lines (8) and (15), and with the policy
of interest as an additional input.

3.2.2 The non-dynamic case.

In some domains it can be more appropriate to model decision problems using a non-
dynamic probabilistic model, as for example a BN. Within the IDSS framework, this is
possible by simply adapting Algorithm [3.1]to the non-dynamic case. Algorithm [3.2] which
we call henceforth non-dynamic optimal expected utility algorithm, shows how this can be
done. Note that we adapt the notation to the non-dynamic case by dropping the dependence
on the time-varying index. Although this notation is new, it is self-explanatory and follows
straightforwardly from the dynamic one. It is easy to notice that this algorithm works, since
the last time slice of a dynamic DDM alone can be thought of as a non dynamic network. For
this time slice, Theorem 2] guarantees the algorithm computes exact expected utility scores.

In the non-dynamic case it is easier to highlight the relationships between our algorithms
and standard backward induction evaluation of IDs. Consider the time slice DAG of Fig.
which can be related to a non-dynamic problem. The conditions imposed by Structural As-
sumptions T}j5] guarantee that a standard evaluation can be performed over each ancestral set
of the DAG. Furthermore, as stated by Theorem the evaluation of each of these ancestral
components can be distributed to the different panels since the expected utility factorizes
accordingly.
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4 The IDSS in practice: illustration of the typical recursions

The previous section formally presented message passing algorithms for IDSSs. These work
in general and for any network of expert systems that respect the structural assumptions of
Section[2] We now illustrate how the different panels of experts can communicate with each
other through an IDSS using the network of Fig. [|concerning the policies after an accidental
release of contaminants at a nuclear power plant. We show here the typical recursions of an
IDSS in a continuous and dynamic agreed structure.

Many applications we have in mind have a geographical structure, in the sense that many
of the values of the required variables are recorded at several locations in an area of inter-
est. This is for example the case in a nuclear emergency, where levels of contamination are
collected at many different locations in the surroundings of a power plant. Thus, the pro-
cesses IDSSs will usually deal with are high dimensional. However, the associated utilities
are usually low dimensional and can consequently be evaluated transparently. Note that if
the impacts of the countermeasures need to be considered at a regional level, it is straight-
forward to implement these into an IDSS framework. Panels then simply need to provide
different scores for the different regions of interest.

Because for real problems the number of equations required to define the problem scales
up to an extent where the outworkings of the algorithm are obscured, the example below
illustrates how a geographic component can be included into the analysis in the simplest
possible case. However in much larger scenarios the calculations are still very feasible and
just as straightforward to calculate as in this example because everything is distributed and
in closed form. Furthermore, each of the unknown quantities are in practice numbers, rather
than algebraic entities, provided by the component DSS and so quick to integrate within the
composite system.

4.1 A multiregression dynamic model for a nuclear emergency

The network in Fig. [3] gives our representation of the possible policies after an accidental
release of contaminants at a nuclear power plant. Let {¥' (¢) } be a time series that computes
the contamination in a certain area, {¥,(r)} describe the intake of radioactive elements in
the population of the area, {Y3(¢)} measure the effects on health on the population and
{Y4(¢)} rank the political disruption in the area consequently to the accident. The topology
of this network implies that, conditional on the past, the political disruption in the area is
independent of the human intake and the deleterious effects on health given that the amount
of contamination has been observed. Four different panels of experts have jurisdiction over
one of these time series, where G; is responsible for {Y;(¢)}. Assume further that each
vector ¥;(t) = (Y (t),..., ¥/ (t))T,i € [4], £ € [T], is such that Y/ (¢) is a univariate continuous
random variable observed at location [ € [r]. The locations are the same for all the time series
and do not change through time.

To keep this illustration simple we consider here a simple linear MDM (Queen and
Smith, 1993) over a finite time horizon T equal to 2. Specifically, fori =2,...,4,t =1,2
and [ € [r], we let

Y,-’(t)éeZH 0] (1) +vi(r), and  6};(2) = 6);(1) +w;(2). ©)
Jell

Equation (9) implicitly makes the simplifying assumption that the processes at different
locations are independent of each other. We are further assuming that the intercepts are equal
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to zero and that a simple steady state DLM (West and Harrison, 1997) has been assumed for
the root vertex, so that

Yi(1)=6],(1) +vi(r), and  6{,(2) = 6{; (1) +wh(2). (10)

éi(Z) are assumed by the collective to be mutually independent of each
other following a Gaussian distribution with mean zero and known variance V/(¢) and lei(2)
respectively. Assume further that each panel has provided prior information about the pa-

rameter vector at time ¢ = 1, such that al is the mean prior estimate of 61 ;(1), whilst its

The errors vi(t), w

variance is elicited to be ¢’ i . Note that each of these parameters and parameter estimates are
possibly a function of the available decisions. Here in order not to make the notation too
heavy, we do not explicitly label this dependence. However it is important to remember that
these values might be different for each available policy.

An important result concerning linear MDMs, and more generally MDMs, is that the
predictive densities f(y(¢) | ¥ '), t € [T], also enjoy a factorization which respects the
topology of the associated graph (Queen and Smith, 1993). When the errors are assumed to
be normal with unknown variances, then these predictive densities can be written in closed
form as products of multivariate T-distributions and represent an instance of the factorization
of a DDM. Thus, Algorithm [3.T] can be directly applied to this class of models once these
predictive distributions are provided by the individual panels. Note that, because of the dis-
tributivity of the system, panels can also provide the reasoning behind the value choices for
their parameters, since these will be independent to the ones of other panels.

Now assume that the collective has agreed on a linear utility factorization over the at-
tributes, u = {2, 3,4} and that each panel has individually agreed to model every individual
conditional utility function as a cubic. Let r/(¢) = y!(t) and assume that decisions are not
arguments of the utility function. We let

\Q
||
Il M»

2 r
Z Y —n@)yie)’, (11)
t=11=1

where ¥(¢) > 0. It is easy to deduce by comparing equations and that this factor-
ization is a member of the class of compatible utilities. Furthermore the utility function, for
each attribute of the decision problem, is assumed to be the same for the r geographical loca-
tions and that the overall score of an attribute is equal to the sum of the scores of each region
for that attribute. The cubic utility function is a member of the family of constant relative
risk aversion utilities, used in the literature to model risk aversion (see Wakker, 2008).

Now that the IDSS has been fully defined for this example, we can show how the al-
gorithm works symbolically when the overarching structure is the linear MDM. Recall that
the third non-central moment of a Gaussian distribution with mean u and variance 62 is
equal to u3 4 3pc?. Since this is a function of the first two moments (as for any high-order
moment of a Gaussian), the algorithm consists of a sequential use of the tower property for
the first two conditional moments. Specifically, recall that for any two random variables X
and Y,

E(X)=EEX|Y)),  V(X)=V(E®X]Y))+EVX]Y)) (12)
where E and V denote respectively the expectation and variance operators.

Suppose the IDSS needs to identify the expected utility score associated to a specific
policy. Equation (11) can be written as u” (-) = uf (ra,) +uf (ra,), where

2

2 r
uf (ray) =3, Y (- P -, uf(ra) =Y Y —mnhe)?. (13)

t=11=1 t=11=1
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ex(1) = =¥, (T n( (1) +3%(2)E (65 (265 (2)8L,(2)Y/(2)°) )
02(2) = 1) Ly (3 QE((65(2) + 65(2)61,(2)Y () +E((632)¥2)°))
23) = ~Xi (n@) + BREEL(2))) (E(6L (2] 2)°) + 3V QE(9,(2)Y{(2))

e2(4) = ~3n(2) i E(85,(2)04,21Y(2)) (E(0L(22Y/(2)%) + V (6,(2)Y](2) + Vi)

Table 1: Definition of the terms ¢ (i) in i 5.

The algorithm starts with panel G4 computing i, 4 = E(uf (-)) through a sequential use of
the two identities in equation (T2). Specifically, from equation (I3), we have that

(Y1) + BQEEX ), (14

M\

i 4() = E(B@uf (-) | ) =

1

1

where, from the properties of Gaussian random variables,

E(E(Y(1)*] ) = E(614(2)°Y{(2)°) + 3Vi(Q)E(614(2)Y{(2), (15)
since E(Y/(¢) | -) = 0!,(2)Y!(2) and V(¥}(¢) | -) = V/(¢). Conversely, panel G3 computes
i3 =E(u %( ) as

r

iy ==Y, (B +nh(1)° +12052)° + BREE®X;(2)’ ),  16)

=1

where E(E(¥{(2)? | )) = E(E((2) | )?) +3VIQEEX(2) | )) and

E(Y4(2) | ) = 6{3(2)Y] (2) + 045 (2)Y1(2), (17)
E;2) )= Y (652)Y (2 +3 Y, (0:(2)Y/(2)°6:(2)¥(2).  (18)
=12 k=3
JFkEL >

Now, equations - are functions of ¥}(2) and ¥}(1) only and can therefore — G,.
Then panel G5 : ii; » which can be written as the sum of the terms ¢, (i), i € [4], defined in
Table|1} by noting that E(Y}(2)) = E(6/,(2)Y!(2)),

E(Y;(2)%) = V(EX;(2) | ) +E(V(¥3(2) | )+ E(¥;(2))*
=V(61,(2)Y{(2)) + V5(2)+1E(912(2)Y11(2))
E(¥;(2)°) = E(E(Y;(2)° | ) = E(61,(2)*Y{(2)°) + 3V (2)E(61,(2)Y{ (2)),

and substituting these expressions into equations @—@)

All the terms in Table [T} as well as those in equations (T4) and (T3), are a function of
Y!(2), parameters and variables in the first time slice only and can therefore be sent to panel
G, which sums these two incoming messages. Panel G, then applies sequentially the tower
rules to compute i 1. This corresponds to the sum of the rhs of (]E[) and the terms in Table
where Y/ (2) and ¥/ (2)? are substituted with 6/, (2) and 6!, (2)* +36!,(2)V1(2) respectively.

The algorithm then considers the first time slice. Because of the very regular structure
of the LMDM, the expressions resulting from the first time slice are almost identical to the
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ones at the second time point. These follow the same steps illustrated above and inherit the
expectations of the parameters at the second time point. Since in an LMDM the parameters
are all independent of each other, the expected utility function can be deduced by simply
computing the expectation of each of these. Specifically, letting fori = 1,2 and j = 2,3,4

ki1 (2) =E(6{;(2)°) = ((ah))’ +3d}, (¢}, + Vi (2) + W/, (2))),

(Pl

nction as

Ky (1) =E(6f,(1)%) = ((d},)* +3d}, (¢}, + V(1))
kij(1) = E(6/;(1)%) = ((ai;)* + 3alci),
kzl'j(z) = E(eilj(z)3) = ((“fj) +3aq (Cij+vvilj(2))):
dz{j(z) = ]E(Gilj(z)z) = (a};)* +cl; + W(2),
1)%) =
fu

we can write the expected utlht

ﬂ-Z(Z(Z% 1)+ (1) (m <>+ﬁé<r>+k’23<r>a2<r>>)) (19)

=1

'\<

where
(1) = ki (DK} (1) + 3V (Ddayy,  #5(t) = 3alzdyy () (dip (0K, (8) + Vi ()d) ),
;(2) = ki, (2)k}, (2) +3V/ (2)a)al (1) = 3V (t)ayahy (ahy + Ky (1)di5(1)).

There are a few important points to notice here:

— because of the form of the utility factorization in equation (II)), the expected utility
consists of the sum of the expected scores at each location / and of the sum, at each
of these locations, of the scores associated to the two time slices. This result is a di-
rect consequence of the independence of the processes at different locations. How-
ever, it would have been straightforward to embellish the example to allow the differ-
ent processes to be dependent on one another, by defining a hierarchical model over

0(t)T=(0:(t)T,...,04(t)T), where 6;(t) is the vector including the parameters 0j;(t)
in equations (9) and (10), i € [4]

— the expected utility in equation is a polynomial, where the unknown quantities are
the individual judgements delivered by the panels. This polynomial has for this example
degree six and it is not a simple multilinear combination of the unknowns. Note that
knowing the shape of the expected utility allows potential decision centres to understand
how different factors influence the decision making process;

— the IDSS would have not been able to compute the expected utility of equation (T9) if the
panels had only delivered the mean estimates of the variables under their jurisdiction.
The quantities Vil(t), Wllj(2) and cf ; Tepresent levels of uncertainty concerning these
mean estimates. If we just plug-in the expectations of relevant means and set equal to
zero the above measures of uncertainty we obtain a spurious evaluation of an expected
utility score corresponding to

ﬁ:lﬁ,z (ZY! (@11)*(@),)* + 1(1)(ah)) (dh3)* (d)5)*(3als +az3a12)>- (20)

Equations (20) is way different from (I9). A DSS that provides expected utility scores
from equation (20) could thus lead decision centres to behave as non expected util-
ity maximizer and put them in danger of adopting indefensible countermeasures (see
Leonelli and Smith, 2013b, for another example).
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5 Discussion

The implementation of Bayesian methods for a group decision analysis involving the assess-
ment and the aggregation of both probabilistic and utility models in complex systems has
often been considered too difficult to be developed because of the unwieldy large number
of factors and interactions that needs to be taken into account. In this paper we have con-
sidered both a dynamic and a non-dynamic framework in which, from a theoretical point of
view at least, it is possible to feasibly deal with such a class of problems. As shown by the
above example all calculations are straightforward and scale up, albeit with a large number
of moments or probabilities to be computed, stored and transmitted between panels. How-
ever, these quantities can be provided by an IDSS. So the large number of computations
necessary for coherently evaluating different policies are actually trivial ones and opera-
tionally computable in real time. We note that the algorithms we define in this multi-expert
system are closely related to the ones already cited for the propagation of probabilities and
expected utilities in graphical structures, which have now been successfully implemented in
many large applications (Gémez, 2004; Oliver and Smith, 1990). So we can be confident
that our methods remain feasible for current and much larger applications.

The critical assumption of our methodology is that the collective observes all the data
they planned to collect. Of course it is very common in practice for data about, for example,
the development of an accident to arrive non-sequentially. For instance, a van collecting
deposition measurements can be delayed in transmitting these, so that readings are available
from the last hour but not the current ones. In such a situation the distributivity of the system
is broken. We briefly mention two possible practical solutions here:

— Panels can accommodate only a subset of the data into the system that is appropriately
time ordered. This gives the basis for a framework to analyze the system. This can
then be elaborated by the appropriate communication of extra information that does not
satisfy the criteria;

— Methods can be developed where the distributivity property can only be approximatively
satisfied. These methods are beyond the scope of this paper. We have some encouraging
new results in this area which will be formally reported in Smith et al (2015).

Of course in some applications the lost of distributivity is not critical and non-observable
data can be treated using standard statistical missing data techniques (Little and Rubin,
2014).

So it is feasible for an IDSS to support rapid policy evaluations even when drawing
together judgments from diverse panels of probabilistic expert systems, provided conditions
ensure distributivity (or this is approximately so). Distributivity can be guaranteed if the
density associated with the graphical statistical model the collective agrees upon factorizes
appropriately. In this paper we chose a specific, although a rather large, class of directed
graphical models where this is so. However, other classes of graphical models can also
entertain a distributed analysis. For example chain event graphs (Smith and Anderson, 2008)
and their dynamic variant (Barclay et al, 2013) might be able to provide in some domains a
better representation of the involved uncertainties and consequently a more focused decision
making. We plan to extend our results to additional classes of model in future research.
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A Proof of Theorem 1.

We develop this proof via backward induction both through the vertices of the DAG and through time. For
the purpose of this proof define forr =T

ﬁTﬁi(y{v"'7y1?;17y[T717"'1yZl-71’dT) :/y/ ung,i'"fT,ndyi(T)"'dyn(T)7 (21)

and note that /! = i’ .

First, without any loss of generality, fix a policy d”. Then start the backward induction from ¥, (T),
which, by construction, is a leaf of the time slice DAG at time 7. For a leaf, Y;(T) say, it follows from
that iir; = ui-”)(rA,.) and note that consequently ufy is a function of ¥,,(T') only through ir ,. Therefore it
can then be simply marginalized as in equation @ to obtain ity ,. Furthermore

il = Z u?(rA,-) +ir, (y£;17y5"7dT) . (22)
ie{Le(9)\{n}}

Now consider ¥, (T). The vertex associated with this random vector in the time slice DAG is either
the father of Y,,(T') or a leaf of the DAG. In the latter case, since by construction n — 1 € U, the exact same
method followed for ¥ ,,(T') can be applied to ¥,,_;(T'), and thus

D M OO E Y1 /1 TR L B 23)
ic{Le(9)\{n,n—1}} Jj=n—1 /

If on the other hand Y, (T) is the father of ¥, (T'), then by construction ¥,,_1(T) has only one son. Thus
from equation ifT,n = it »—1 and equation is a function of ¥,,_;(T) only through ir ,. In order to
deduce i/ "! only it ,—1 has to be marginalized with respect to fr,_1 and therefore

@l =Y wl ) (v YT 4
ie{Le(%)\{n,n—1}} "

We can note from equations (23) and (24)) that 27"~! consists of the linear combination of two summa-

tions: the first over the leaves of the graphs with index j smaller than n — 1 of utility terms u%; the second

J
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over the indices j bigger or equal than n — 1 of the terms iir j such that the father of ¥ ;(7') has an index
smaller than n — 1 in the time slice DAG. So for example in equation @) the second summation is over both
n and n — 1 since the associated vertices are both leaves of the graphs. On the other hand in equation @)
there is no term ifr, since its father has index n — 1. More generally, for j € [n], i’ can be written as the
linear combination of the following two summations:

— the first over the indices i in Le(9) N [j—1] of u?;
— the second over the indices k in B; = {k>j:F. <j}of itT k., where Fy is the index of the father of YkT,.

Therefore, for a j € [n], we have that

=Y ul(ra)+ Y e (y/f;,y[’],y[);j,dT), (25)
ie{Le( @1} KeB,

where Dny is the set of the indices of the descendants of ¥ Z In particular for ¥»(7) we can write equation

) as
a2 = Y e (v g dT), 6)
kES;

since, by the connectedness of the time slice DAG, Y| (T) is the father of all the vertices whose father’s index
is not [n] \ {1}. It then follows that equation corresponds to it 1, as defined in equation , and therefore
i’ can be written as in equation . Thus Theoremmholds for time 7.

Now, since Y1 (7') is the unique root of the time slice DAG, if i, j € Si, then

AlNAL ={1}. 27

Suppose that any vertex Y j(T) , for j € Sy, is either connected by a path to one only leaf of the DAG or is a
leaf of the graph itself. Because of the identity in equation @) and because of the algebraic form of equation

, which consists of a linear combination of the terms iir ;, for j € Sy, we can deduce that equation @
holds for the last time slice. Now, consider the case where one vertex ¥ ;(7') with index in S; is connected to
more than one leaf. Equation (4) guarantees the existence of a vertex ¥;(T), i > j, connected to both Y ;(T')
and the above mentioned leaves, such that iir; can be written as a linear combination of terms it x, for which
each of these terms is a function of one of the leaves only. It therefore follows that equation @ also holds in
this case.

Therefore equation (@) guarantees that can be written as a linear combination of terms involving
only variables in the same ancestral set. Since also the probability factorisation does not change as formalised
in PropositionE the exact same recursions we explicated at time 7 can then be followed at time 7 — 1 by
substituting u with fiy_;;, i € Le(%), in equations — and by changing the time index. This then
also holds for any time slice 7, 1 <t < T — 1, since ! will be again a linear combination of terms 7, ;,
i € Le(¢), and the probability density function factorizes as in Proposition

ﬁT.l

B Proof of Theorem 2.

To prove Theoremmwe proceed as follows:

— We relate the lines of the pseudo-code of Algorithm [3-1]to the equations (3)-(€) of Theorem [T]and their
variations which include optimization steps in equations (m) and @);

— We then show that each panel and the SB have sufficient information to perform the steps of the algorithm
they are responsible for;

— We conclude by showing that the optimization steps, which in the algorithm correspond to lines (8) and
(15), are able to identify optimal decisions using only combinations of quantities individual panels are
able to calculate.

We start with the first two bullets. Line (1) describes the backward induction step over the time index,
t, while line (2) does the same over the index of the vertices of the graph, i. Now note that in lines (5)-(7),
Panel G; : ii; ; using equation @ Each panel has enough information to do this, since line (10) guarantees
that the scores are communicated to the panels overseeing father vertices and line (14) denotes the fact that
the SB transmits #;; to the appropriate panels. The functions i ; are then sent to the SB, who performs an
optimization step in line (8) and communicates the result back to the panel. We address the validity of this
step below.

Since the SB : u;; — G, each panel is able to compute ﬁ: ; (lines 10-11) following equation (8). As

noted before, if i is not the root of the DAG, ity ; is sent to the appropriate panel, whilst if i = 1, as specified
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by the if statement in line (9), — SB. For each time slice with time index 7 # 1 lines (13)-(14) compute 4, ;,
as in equation @ These are sent to the appropriate panels, which can then continue the backward inductive
process from the time slice with a lower time index. If on the other hand # = 1, then the expected utility is a
function of the initial decision space Z(0) only. The SB can then perform a final optimization step over this
space and thus conclude the algorithm (line 15).

We now address the optimization steps. The influence on the scores associated with time slices with
index bigger than ¢ of a decision space Z;(t) are included, by construction, only in the terms &, ¢, where k is
either the index of a descendant ¥ (¢) of ¥;() or k = i. Further note that the same decision space Z;(r) can
affect the scores of terms including descendants of ¥;(r) at the same time point. Thus the whole contribution
of Z;(t) is summarized within & ;, as it can be seen by recursively using equations (4) and .

Now, as specified by equation , the optimization step over Z;(t) is performed by maximizing i, ;,
which carries all the information concerning this decision space. More specifically, no other term is an explicit
function of Z;(¢) at this stage of the algorithm, as guaranteed by equations . Finally, Structural Assumption
|Z| guarantees that all the elements that appears as arguments of i ; are observed and therefore known at the

time the decision associated to this decision space needs to be made.
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