Skip to main content

Advertisement

Log in

Evolutionary-based return forecasting with nonlinear STAR models: evidence from the Eurozone peripheral stock markets

  • S.I.: Financial Economics
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Traditional linear regression and time-series models often fail to produce accurate forecasts due to inherent nonlinearities and structural instabilities, which characterize financial markets and challenge the Efficient Market Hypothesis. Machine learning techniques are becoming widespread tools for return forecasting as they are capable of dealing efficiently with nonlinear modeling. An evolutionary programming approach based on genetic algorithms is introduced in order to estimate and fine-tune the parameters of the STAR-class models, as opposed to conventional techniques. Using a hybrid method we employ trading rules that generate excess returns for the Eurozone southern periphery stock markets, over a long out-of-sample period after the introduction of the Euro common currency. Our results may have important implications for market efficiency and predictability. Investment or trading strategies based on the proposed approach may allow market agents to earn higher returns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abiyev, R. H., & Abiyev, V. H. (2012). Differential evaluation learning of fuzzy wavelet neural networks for stock price prediction. Journal Information Computational Science, 7(2), 21–130.

    Google Scholar 

  • Arumugam, M. S., & Rao, M. V. C. (2008). On the improved performances of the partical swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Applied Soft Computing, 8, 324–336.

    Article  Google Scholar 

  • Austin, M., Bates, G., Dempster, M., & Williams, S. (2004). Adaptive systems for foreign exchange trading. Eclectic, 18, 21–26.

    Google Scholar 

  • Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford: Oxford University Press.

    Google Scholar 

  • Bacon, D. W., & Watts, D. G. (1971). Estimating the transition between two intersecting straight lines. Biometrika, 58, 525–534.

  • Balke, N., & Fomby, T. (1994). Large shocks, small shocks, and economic fluctuations: Outliers in macroeconomic time series. Journal of Applied Econometrics, 9, 181–200.

    Article  Google Scholar 

  • Balvers, R. J., Cosimano, T. F., & McDonald, B. (1990). Predicting stock returns in an efficient market. Journal of Finance, 45, 1109–1128.

    Article  Google Scholar 

  • Bekiros, S. (2009). A Robust algorithm for parameter estimation in Smooth Transition Autoregressive models. Economics Letters, 103, 36–38.

    Article  Google Scholar 

  • Beller, K., & Nofsinger, J. R. (1998). On stock return seasonality and conditional heteroskedasticity. The Journal of Financial Research, 21, 229–246.

    Article  Google Scholar 

  • Bernhardt, D., Campello, D., & Kutsoati, E. (2006). Who herds. Journal of Financial Economics, 80, 657–676.

    Article  Google Scholar 

  • Bollerslev, T., & Ghysels, E. (1996). Periodic autoregressive conditional heteroskedasticity. Journal of Business and Economic Statistics, 14, 139–152.

    Google Scholar 

  • Bradleya, M. D., & Jansen, D. W. (2004). Forecasting with a nonlinear dynamic model of stock returns and industrial production. International Journal of Forecasting, 20(2), 321–342.

    Article  Google Scholar 

  • Breen, W., Glosten, L. R., & Jagannathan, R. (1990). Predictable variations in stock index returns. Journal of Finance, 44, 1177–1189.

    Article  Google Scholar 

  • Brock, W. A., Dechert, D., & Scheinkman, J. (1987). A test for independence based on the correlation dimension’. University of Wisconsin-Madison, Social Science Research Working Paper, no. 8762.

  • Burridge, P., & Taylor, A. M. R. (1999). On Regression-based Tests for Seasonal Unit Roots in the Presence of Periodic Heteroskedasticity, Discussion Paper, No. 9910. Department of Economics, University of Birmingham.

  • Campbell, J. Y., & Hamao, Y. (1992). Predictable stock returns in the United States and Japan: A study of long term capital integration. Journal of Finance, 47, 43–67.

    Article  Google Scholar 

  • Chan, K., & Tong, H. (1986). On estimating thresholds in autoregressive models. Journal of Time Series Analysis, 7, 179–194.

    Article  Google Scholar 

  • Daniel, K., & Titman, S. (2006). Market reactions to tangible and intangible information. The Journal of Finance, 61, 1605–1643.

    Article  Google Scholar 

  • Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13, 253–265.

    Google Scholar 

  • De Lima, P. J. F. (1996). Nuisance parameter free properties of correlation integral based statistics. Econometric Reviews, 15, 237–259.

    Article  Google Scholar 

  • Ferson, W. E., & Harvey, C. R. (1993). The risk and predictability of international equity returns. Review of Financial Studies, 6, 527–566.

    Article  Google Scholar 

  • Franses, P., Van Dijk, D., & Lucas, A. (2004). Short patches of outliers, ARCH and volatility modelling. Applied Financial Economics, 14, 221–231.

    Article  Google Scholar 

  • Franses, P., & Van Dijk, D. (2000). Non-linear time series models in empirical finance. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779–1801.

    Article  Google Scholar 

  • Granger, C. W. J., & Teräsvirta, T. (1993). Modelling nonlinear economic relationships. Oxford: Oxford University Press.

    Google Scholar 

  • Hamilton, J. D. (1994). Time series analysis. Princeton: Princeton University Press.

  • Hendry, D. F. (1995). Dynamic econometrics. Oxford: Oxford University Press.

  • Hirschleifer, D., Subrahmanyam, A., & Titman, S. (2006). Feedback and the success of irrational investors. Journal of Financial Economics, 81, 311–338.

    Article  Google Scholar 

  • Leybourne, S., Newbold, P., & Vougas, D. (1998). Unit roots and smooth transitions. Journal of Time Series Analysis, 19, 83–97.

  • Majhi, R., Panda, G., Sahoo, G., Dash, P. K., & Das, D. P. (2007). Stock market prediction of S&P 500 and DJIA using bacterial foraging optimization technique. In: Evolutionary computation CEC 2007, IEEE congress, pp 2569-2575.

  • Miao, K., Chen, F., & Zhao, Z. G. (2007). Stock price forecast based on bacterial colony RBF neural network. Journal of Qingdao University (Natural Science Edition), 20(2), 50–54.

    Google Scholar 

  • Mitchell, M. (1996). An introduction to genetic algorithms. Massachusetts: MIT Press Cambridge.

    Google Scholar 

  • Nevmyvaka, Y., Feng, Y., & Kearns, M. (2006). Reinforcement learning for optimized trade execution. ICML ’06 in: Proceedings of the 23rd international conference on Machine learning. ACM Press, pp 673–680.

  • Newey, W. K., & West, K. D. (1994). Automatic lag selection in covariance matrix estimation. Review of Economic Studies, 61, 631–653.

  • Peralta, J., Li, X., Gutierrez, G., & Sanchis, A. (2010). Time series forecasting by evolving artificial neural networks using genetic algorithms and differential evolution. Proceedings of the International Joint Conference on Neural Networks (IJCNN ’10) 1-8, IEEE.

  • Pérez-Rodríguez, J. V., Torra, S., & Andrada-Félix, J. (2005). STAR and ANN models: forecasting performance on the Spanish “Ibex-35” stock index. Journal of Empirical Finance, 12(3), 490–509.

    Article  Google Scholar 

  • Pérez-Rodríguez, J. V., Torra, S., & Andrada-Félix, J. (2005). Are Spanish Ibex35 stock future index returns forecasted with non-linear models? Applied Financial Economics, 14, 963–975.

    Article  Google Scholar 

  • Peel, D. A., & Speight, A. E. H. (1996). Is the US business cycle asymmetric? Some further evidence. Applied Economics, 28, 405–415.

  • Pesaran, M. H., & Timmermann, A. (1995). Predictability of stock returns: Robustness and economic significance. Journal of Finance, 50, 1201–1228.

    Article  Google Scholar 

  • Pesaran, M. H., & Timmermann, A. (2000). A recursive modelling approach to predicting UK stock returns. Economic Journal, 110, 159–191.

    Article  Google Scholar 

  • Qiu, X., Zhang, L., Ren, Y., Suganthan, P. N., & Amaratunga, G. (2014). Ensemble deep learning for regression and time series forecasting. Proceedings of the IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL), 1-6.

  • Quandt, R. (1983). Computational problems and methods. In Z. Griliches & M. D. Intriligator (Eds.), Handbook of Econometrics (Vol. 1, pp. 699–746). Amsterdam: Elsevier Science.

  • Sapankevych, N., & Sankar, R. (2013). Constrained motion particle swarm optimization and support vector regression for non-linear time series regression and prediction applications. Proceedings of the 12th International Conference on Machine Learning and Applications (ICMLA), 473-477.

  • Stock, J., & Watson, M. W. (2003). Introduction to econometrics. New York: Prentice Hall.

  • Takahama, T., Sakai, S., Hara, A., & Iwane, N. (2009). Predicting stock price using neural networks optimized by differential evolution with degeneration. International Journal of Innovative Computing, Information and Control, 5(12), 5021–5031.

    Google Scholar 

  • Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 89, 208–218.

    Google Scholar 

  • Teräsvirta, T., & Anderson, H. M. (1992). Characterizing nonlinearities in business cycles using smooth transition autoregressive models. Journal of Applied Econometrics, 7, S119–S136.

    Article  Google Scholar 

  • Tong, H. (1978). On a threshold model. In C. H. Chen (Ed.), Pattern recognition and signal processing (pp. 101–141). Amsterdam: Sijthoff & Noordhoff.

  • Tong, H. (1990). Non-linear time series: A dynamical systems approach. Oxford: Oxford University Press.

  • Tong, H., & Lim, K. S. (1980). Threshold autoregressions, limit cycles, and data. Journal of the Royal Statistical Society B, 42, 245–292.

  • Vega, C. (2006). Stock price reaction to public and private information. Journal of Financial Economics, 82, 103–133.

    Article  Google Scholar 

  • Van Dijk, D., Franses, P., & Lucas, A. (1999). Testing for ARCH in the presence of additive outliers. Journal of Applied Econometrics, 14, 539–562.

    Article  Google Scholar 

  • Worasucheep, C. (2007). A new self adaptive differential evolution: Its application in forecasting the index of stock exchange of Thailand. Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’07), 1918-1925, Singapore.

  • Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stelios Bekiros.

Additional information

The first author has received funding from the EU Horizon 2020 research and innovation programme under the MS-C Grant No 656136.

Appendix

Appendix

For the DM test we use the squared forecast errors \((e_{0,t}^2 ,e_{i,t}^{2}), t=1,\ldots , n\). The null hypothesis of equality of expected forecast performance is given by

$$\begin{aligned} \hbox {E}(e_{0,t}^2 ,e_{i,t}^2 )=0 \end{aligned}$$
(23)

Defining \(d_t =(e_{0,t}^2 ,e_{i,t}^{2}), t=1,\ldots , n\), the test is based on the sample mean

$$\begin{aligned} \bar{{d}}=n^{-1}\sum \nolimits _{t=1}^{n} d_t \end{aligned}$$
(24)

As the sequence of forecast errors follows a moving average process of order (h–1) the autocorrelations of order h or higher are zero (Harvey et al. 1997). The variance of \(\bar{d}\) is asymptotically given

$$\begin{aligned} V(\bar{d})\approx n^{-1}\left[ \gamma _0 +2\sum \nolimits _{k=1}^{h-1}\gamma _\kappa \right] \end{aligned}$$
(25)

where \(\gamma _{\kappa }\) is the k-th autocovariance of \(d_t\). The Diebold–Mariano test statistic is provided by the following score function

$$\begin{aligned} DM=\left[ \hat{V}(\bar{d})\right] ^{-1/2}\bar{d}\;\hbox { with }\; DM \sim N(0, 1) \end{aligned}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdoulas, C., Bekiros, S. & Boubaker, S. Evolutionary-based return forecasting with nonlinear STAR models: evidence from the Eurozone peripheral stock markets. Ann Oper Res 262, 307–333 (2018). https://doi.org/10.1007/s10479-015-2078-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-2078-z

Keywords

JEL Classification

Navigation