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Abstract

Pairwise comparisons between alternatives are a well-established tool to decompose decision problems into smaller

and more easily tractable sub-problems. However, due to our limited rationality, the subjective preferences ex-

pressed by decision makers over pairs of alternatives can hardly ever be consistent. Therefore, several inconsistency

indices have been proposed in the literature to quantify the extent of the deviation from complete consistency.

Only recently, a set of properties has been proposed to define a family of functions representing inconsistency

indices. The scope of this paper is twofold. Firstly, it expands the set of properties by adding and justifying a

new one. Secondly, it continues the study of inconsistency indices to check whether or not they satisfy the above

mentioned properties. Out of the four indices considered in this paper, in its present form, two fail to satisfy some

properties. An adjusted version of one index is proposed so that it fulfills them.

Keywords: pairwise comparisons, consistency, inconsistency indices, analytic hierarchy process.

In decision making problems it is often common practice to use pairwise comparisons between alter-

natives as a basis to assign scores to the same alternatives. Pairwise comparisons allow the decision

maker to decompose the problem of assigning scores to alternatives into smaller problems, where only

two alternatives are considered at a time.

Another reason for using pairwise comparisons is that their use allows an estimation of the inconsistency

of the preferences of a decision maker. In the literature, consistency of preferences is commonly related

with the rationality of a decision maker and his ability in discriminating between alternatives (Irwin,

1958). Consider, for sake of illustration, three stones (alternatives) x1, x2, x3. If, for instance, x1 is

reputed twice as heavy as x2, and x2 twice as heavy as x3, then it is reasonable to assume that x1 should

be four times as heavy as x3. This situation is called consistent, as the pairwise comparisons of the

decision maker respect a principle of transitivity/rationality, and is depicted in Figure 1(a). An example

of inconsistent pairwise comparisons is illustrated in Figure 1(b).

There is a meeting of minds on accepting preferences which are not consistent, but not too inconsistent

either. In this paper, with the term inconsistency we mean a deviation from the condition of full

consistency. In the theory of the AHP, Saaty (1993, 2013) required pairwise comparisons to be near

consistent, i.e. not too inconsistent. As recalled by Gass (2005), Luce and Raiffa (1957) shared the same

opinion in accepting inconsistencies and wrote “No matter how intransitivities arise, we must recognize
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(a) Consistent triad of

pairwise compar-

isons.
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2 2

1/2

(b) Inconsistent triad

of pairwise compar-

isons.

Figure 1: Example of consistent and inconsistent triads of pairwise comparisons on x1, x2, x3.

that they exist, and we can take a little comfort in the thought that they are an anathema to most of

what constitutes theory in the behavioral sciences today”. On a similar note, Fishburn (1999) wrote

that “Transitivity is obviously a great practical convenience and a nice thing to have for mathematical

purposes, but long ago this author ceased to understand why it should be a cornerstone of normative

decision theory”.

It is in this context—where consistency is an auspicable but hardly ever achievable condition—that it

becomes crucial to quantify inconsistency. Such quantification is indeed possible, since it is natural to

envision that the notion of inconsistency is a matter or degree. Consequently, a wealth of inconsistency in-

dices has been proposed in the literature; for instance the Consistency Index (Saaty, 2013), the Harmonic

Consistency Index (Stein and Mizzi, 2007), the Geometric Consistency Index (Aguarón and Moreno-Jiménez,

2003), the statistical index by Lin et al. (2013), and the index by Ku lakowski (2015), just to cite few.

It is worth noting that the study of inconsistency of preferences is not limited to the single mathe-

matical methods employing pairwise comparisons, as for instance the AHP. It is the case to remark that

the study of inconsistency is immune from many of the criticisms moved against specific mathematical

methods employing them. For instance, one of the critical points of the Analytic Hierarchy Process

(AHP) is the rank reversal, which was discovered by Belton and Gear (1983) and recently surveyed by

Maleki and Zahir (2013). Similarly, already Watson and Freeling (1982, 1983) questioned the interpre-

tation of the weights in the AHP and their use in the aggregation of different priority vectors. In part,

also the criticisms by Dyer (1990a,b) were triggered by the interpretation of the weights. Nevertheless,

even though the above mentioned criticisms are to be taken into account, they are connected with the

aggregation and interpretation of priority vectors proposed for the AHP, and therefore they will not

affect the subject matter of inconsistency evaluation. Further support to the use of pairwise comparison

matrices and their interpretation comes from the fact that pairwise comparison matrices as defined in

this paper are group isomorphic (Cavallo and D’Apuzzo, 2009)—and thus structurally identical—to the

probabilistic preference relations studied by Luce and Suppes (1965). Such a strict connection between

these two representations of valued preferences does not only make them mutually supportive, but in-

creases the relevance of studying one of them—as it is going to be done in this paper—since abstract

results are then extendible to the other one.

The use of the notion of inconsistency has gone beyond its mere quantification. One prominent use

of inconsistency indices is that of localizing the inconsistency and detect what comparisons are the

most contradictory (Ergu et al., 2011) and guide the decision maker when he tries to obtain sufficiently

consistent preferences (Pereira and Costa, 2015). This process was also advocated by Fishburn (1968) in

a discussion on decision theory: “If the individual’s preferences appear to violate a “rational” preference

assumption, the theory suggests that he reexamine and revise one or more preference judgments to

eliminate the inconsistency.”. Another use of inconsistency indices regards pairwise comparison matrices

with missing entries. In these situations, inconsistency indices have been used as objective functions to be

minimized to find the most plausible values of the missing comparisons with respect to the elicited ones

(Koczkodaj et al., 1999; Lamata and Pelaez, 2002; Shiraishi et al., 1999; Chen et al., 2015). All this can

be seen as evidence on the role played by inconsistency indices in the decision process, and consequently

on the importance of having realiable indices.

Inconsistency of preferences has been studied empirically (Bozóki et al, 2013), and existing studies on
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inconsistency indices compared them numerically (Brunelli et al, 2013a) and showed that some indices

are very different and therefore can lead to very different evaluations of the inconsistency of preferences.

Conversely, it was proven that some of them are in fact proportional to each other (Brunelli et al.,

2013b). Recently, Brunelli and Fedrizzi (2015a) and Koczkodaj and Szwarc (2014) proposed two formal

approaches. Brunelli and Fedrizzi (2015a) proposed five properties in the form of axioms to formalize

the concept of inconsistency index and then tested on some well-known indices.

In the pursuit of a formal treatment of inconsistency quantification, this paper presents some de-

velopments concerning the aforementioned set of properties. Firstly, in Section 2, a new property, of

invariance under inversion of preferences, is introduced and its role is discussed. Secondly, Section 3

contains further results on the satisfaction of the properties by some known inconsistency indices. More

specifically, we shall study four indices and discover that, in its present form, two do not fully satisfy the

set of properties. An adjustment of one index is then proposed so that it satisfies them. Finally, Section

4 offers a concise discussion on the role of inconsistency quantification and on the results obtained in

this paper.

1 Pairwise comparison matrices and inconsistency indices

Given a set X = {x1, . . . , xn} of n alternatives, a pairwise comparison matrix is a positive square matrix

A = (aij)n×n such that aijaji = 1, where aij > 0 is the subjective assessment of the relative importance of

the ith alternative with respect to the jth one. A pairwise comparison matrix can be seen as a convenient

mathematical structure into which valued pairwise comparisons between alternatives are collected. Its

general and its simplified (thanks to aijaji = 1) forms are the following,

A = (aij)n×n =









a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann









=









1 a12 · · · a1n
1
a12

1 · · · a2n
...

...
. . .

...
1
a1n

1
a2n

· · · 1









.

The rest of the paper will follow the usual interpretation of entries aij in terms of ratios between quantities

expressible on a ratio scale with a zero element. The classical example is that of x1 and x2 being stones

and aij being the numerical estimation of the ratio between their weights. Note that this approach

considers entries aij > 0 taking values from an unbounded scale and complies with the formal treatment

given by Herman and Koczkodaj (1996) and Koczkodaj and Szwarc (2014). Furthermore, with this

interpretation, a pairwise comparison matrix is consistent if and only if

aik = aijajk ∀i, j, k, (1)

which means that each direct comparison aik is exactly backed up by all indirect comparisons aijajk ∀j.

For notational convenience, the set of all pairwise comparison matrices is defined as

A = {A = (aij)n×n|aij > 0, aijaji = 1 ∀i, j, n > 2} .

The set of all consistent pairwise comparison matrices A∗ ⊂ A is defined accordingly,

A∗ = {A = (aij)n×n|A ∈ A, aik = aijajk ∀i, j, k}.

An inconsistency index is a function I : A → R which evaluates the intensity of deviation of a pairwise

comparison matrix A from its consistent form (1). In other words, the value I(A) is an estimation of

how much irrational the preferences collected in A are. Up to now, various inconsistency indices have

been introduced heuristically, and an open question relates to what set of properties should be used

to characterize them. That is, all the reasonable properties for a function I to fairly capture inconsis-

tency could be used for various purposes; for example to check the validity of already proposed indices

3
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Figure 2: The set of properties can be used to define a family of functions which can be used to estimate

inconsistency, and discards functions which do not make sense if used as inconsistency indices,

e.g. the trace and the determinant of A.

(Brunelli and Fedrizzi, 2015a), devise new ones, and derive further properties (Brunelli and Fedrizzi,

2015b). Figure 2 offers a snapshot of the meaning of the set of properties.

Brunelli and Fedrizzi (2015a) proposed five properties to characterize inconsistency indices. Since these

properties were already justified and defined in the original work, they are here only briefly recalled.

Note that they were organized in the form of an axiomatic systems, meaning that the soundness of single

properties implies the soundness of the entire set of properties, i.e. the “logical intersection” of the

properties.

P1: There exists a unique ν ∈ R representing the situation of full consistency, i.e.

∃!ν ∈ R such that I(A) = ν ⇔ A ∈ A∗.

P2: Changing the order of the alternatives does not affect the inconsistency of preferences. That is,

I(PAPT ) = I(A),

for any permutation matrix P.

P3: If preferences in A are intensified, then the inconsistency cannot decrease. More formally, since the

power is the only meaningful function to intensify preferences, we defined A(b) =
(

abij

)

n×n
. Then,

the property is as follows,

I(A(b)) ≥ I(A) ∀A ∈ A, b ≥ 1.

P4: Given a consistent pairwise comparison matrix and considering an arbitrary non-diagonal element

apq (and its reciprocal aqp) such that apq 6= 1, then, as we push its value far from its original

one, the inconsistency of the matrix should not decrease. More formally, given a consistent matrix

A ∈ A∗, let Apq(δ) be the inconsistent matrix obtained from A by replacing the entry apq with

aδpq, where δ 6= 1. Necessarily, aqp must be replaced by aδqp in order to preserve reciprocity. Let

Apq(δ
′) be the inconsistent matrix obtained from A by replacing entries apq and aqp with aδ

′

pq and

aδ
′

qp respectively. The property can then be formulated as

δ′ > δ > 1 ⇒ I(Apq(δ
′)) ≥ I(Apq(δ))

δ′ < δ < 1 ⇒ I(Apq(δ
′)) ≥ I(Apq(δ)),

(2)

for all δ 6= 1, p, q = 1, . . . , n, and A ∈ A∗.

P5: Function I is continuous with respect to the entries of A.

2 A new property of invariance under inversion of preferences

Preferences expressed in the form of a pairwise comparison matrix A can be inverted by taking its

transpose AT . For instance, if aij = 2 in A is inverted into aij = 1/2 we have that the intensity
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of preference is the same, but the direction is inverted. Clearly, by inverting all the preferences we

change their polarity, but leave their structure unchanged. Thus, it is reasonable to expect a structural

property of preferences—as inconsistency is—to be invariant under inversion. This can be formalized in

the following property of invariance under inversion of preferences (P6).

Property 6 (P6). An inconsistency index satisfies P6, if and only if I(A) = I(AT ) ∀A ∈ A.

The previous justification of this property can be transposed into an example. Consider the following

matrix A and its transpose AT .

A =






1 1/2 1/4

2 1 1/3

4 3 1




 AT =






1 2 4

1/2 1 3

1/4 1/3 1




 (3)

One can equivalently express the structure of the preferences by means of directed weighted graphs with

nodes xi and values of the edges aij . Figure 3 represents these graphs for A and AT , respectively.

x1

x2

x3

2 3

4

1

2

1

3

1

4

(a) Graph of A.

x1

x2

x3

2 3

4

1

2

1

3

1

4

(b) Graph of AT .

Figure 3: Graphs of A and AT .

The two graphs are identical, with the only exception of the directions of the arrows. Now, if we do not

impose P6, we might end up with inconsistency indices which consider the violation of the condition of

consistency in the direction 1 → 2 → 3 → 1 more or less (but not equally) important than the violation

in the direction 1 → 3 → 2 → 1, although both directions equivalently reflect the same structure of

preferences.

The justification of P6 comes from theoretical intuition, but in some decision processes both a matrix

A ad its transpose AT can actually appear. Examples are applications in group decision making where

pairwise comparison matrices are used in surveys on customers’ needs and users’ satisfactions, as for

instance done by Nikou and Mezei (2013) and Nikou et al. (2015). In these contexts there are as many

pairwise comparison matrices as responding customers (usually a large number) and therefore it is not

completely unlikely to find both preferences represented by A and AT , especially when there are few

alternatives and intensities of preference are weak. i.e., values of entries are close to 1.

Note that, in general, an inversion of preferences cannot be obtained by row-column permutations.

For example, given the matrices A and AT in (3), there does not exist a permutation matrix P such

that PAPT = AT .

One natural question is whether or not this new property, P6, is implied by a conjoint application of

the others (independence) and if, when added to the set P1–P5, does not make it contradictory (logical

consistency). The following theorem claims the independence and the logical consistency of the properties

P1–P6.

Theorem 1. Properties P1–P6 are independent and form a logically consistent axiomatic system.

Proof. See Appendix.

In light of the previously offered justification and Theorem 1, one concludes that P6 is another inter-

esting property of inconsistency indices, and is independent from P1–P5.
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3 Extending the analysis of the satisfaction of the axioms

Previous research (Brunelli and Fedrizzi, 2015a; Cavallo and D’Apuzzo, 2012) has made the effort of

proving whether or not some known inconsistency indices satisfy the set of properties. This section

continues the investigation on the satisfaction of the set of properties by testing four indices proposed

in the literature and used in real-world decision making problems. For each index we shall recall the

definition and highlight its relevance in both theory and practice.

3.1 Index K by Koczkodaj

The following index, K, was introduced by Koczkodaj (1993) and extended by Duszak and Koczkodaj

(1994).

Definition 1 (Index K (Duszak and Koczkodaj, 1994)). Given a pairwise comparison matrix A, the

index K is

K(A) = max

{

min

{∣
∣
∣
∣
1 −

aik
aijajk

∣
∣
∣
∣
,

∣
∣
∣
∣
1 −

aijajk
aik

∣
∣
∣
∣

}

: 1 ≤ i < j < k ≤ n

}

. (4)

This index has been used to estimate missing entries of incomplete pairwise comparisons (Koczkodaj et al.,

1999) and in real-world applications in problems such as the evaluation of research institutions in Poland

(Koczkodaj et al., 2014) and medical diagnosis (Kakiashvili et al., 2012). It was also compared to

Saaty’s Consistency Index (Bozóki and Rapcsák, 2008) and on occasions even claimed superior to it

(Koczkodaj and Szwarc, 2014). Given its theoretical and practical relevance, it is therefore important to

check what properties it satisfies. Here we show that index K satisfies the six properties P1–P6.

Proposition 1. Index K satisfies the properties P1–P6.

Proof. It is straightforward, and thus omitted, to show that properties P1, P2, P5, and P6 are satisfied.

For P3 we need to show that the local inconsistency for the generic transitivity (i, j, k),

min

{∣
∣
∣
∣
∣
1 −

abik
abija

b
jk

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣
1 −

abija
b
jk

abik

∣
∣
∣
∣
∣

}

, (5)

is non-decreasing for b ≥ 1. We can do it by proving that ∂K
∂b ≥ 0 ∀b > 1. With xb :=

ab
ik

abija
b
jk

, we study

the two quantities

I = |1 − xb| II = |1 − x−b|.

If the triple (i, j, k) is consistent, then x = 1 and P3 is satisfied. If the triple (i, j, k) is not consistent,

then x 6= 1 and positive, and the derivatives of I and II in b are:

∂I

∂b
= −xb log(x)sgn

(

1 − xb
)

∂II

∂b
= x−b log(x)sgn

(

1 − x−b
)

.

Given b ≥ 1, if x 6= 1, then ∂I
∂b and ∂II

∂b are positive, which proves that (5) is a non-decreasing function

for b ≥ 1. It follows that also K is a non-decreasing function of b ≥ 1.

To prove the satisfaction of P4 we start considering

min

{∣
∣
∣
∣
1 −

aδik
aijajk

∣
∣
∣
∣
,

∣
∣
∣
∣
1 −

aijajk

aδik

∣
∣
∣
∣

}

(6)

with aik = aijajk. By setting y = aik = aijajk we can rewrite it as

min
{∣
∣
∣1 − yδ−1

∣
∣
∣ ,
∣
∣
∣1 − y1−δ

∣
∣
∣

}

6



and show that it is a non-decreasing function for b ≥ 1 and a non-increasing function for 0 < b ≤ 1. We

then need to study the following quantities:

I = |1 − yδ−1| II = |1 − y1−δ|

and their derivatives in δ

∂I

∂δ
= −yδ−1 log(y)sgn

(

1 − yδ−1
) ∂II

∂δ
= y1−δ log(y)sgn

(

1 − y1−δ
)

.

By studying their sign we can derive that

0 < δ < 1 ⇒
∂I

∂δ
,
∂II

∂δ
≤ 0 ⇒

∂K

∂δ
< 0

δ > 1 ⇒
∂I

∂δ
,
∂II

∂δ
≥ 0 ⇒

∂K

∂δ
> 0.

Similarly, P4 can be proven also in the case when the exponent δ is at the denominator of aik
aijajk

in

(6).

3.2 Index AI by Salo and Hämäläinen

Salo and Hämäläinen (1995, 1997) proposed their inconsistency index, AI, which stands for ambiguity

index. Their inconsistency index has been implemented in the online decision making platform Web-

HIPRE (Mustajoki and Hämäläinen, 2000) and has been used, for instance, in the analysis of a real-world

governmental decision on energy production alternatives (Salo and Hämäläinen, 1995) and in traffic

planning (Hämäläinen and Pöyhönen, 1996).

Definition 2. Given a pairwise comparison matrix A and an auxiliary matrix R = (rij)n×n with rij =

{aikakj|k = 1, . . . , n}, then the index AI is

AI(A) =
2

n(n− 1)

n−1∑

i=1

n∑

j=i+1

max(rij) − min(rij)

(1 + max(rij))(1 + min(rij))
. (7)

The interpretation of AI is original and different from those of other indices. Consider that rij is not a

real number but, instead, the set of possible values of aij as could be deduced from indirect comparisons

aikakj ∀k.

For example, given the matrix

A =








1 2 3 1/2

1/2 1 4 1/3

1/3 1/4 1 2

2 3 1/2 1







,

we have

r14 = {a11a14, a12a24, a13a34, a14a44} =

{
1

2
,

2

3
, 6

}

,

from which we obtain max(r14) = 6 and min(r14) = 1/2.

It is possible to build an interval-valued matrix

Ā = (āij)n×n = ([min(rij),max(rij)])n×n

such that the ‘true value’ of the comparison between xi and xj shall lie in the interval āij. The larger

the intervals are, the more inconsistent the matrix, and in fact AI is a normalized sum of the lengths of

the intervals āij . The following shows that AI satisfies all properties except P3.

Proposition 2. Index AI satisfies P1, P2 and P4–P6, but not P3.

7



Proof. We shall prove all the properties separately.

P1 : Assuming ν = 0, then we should prove AI(A) = 0 ⇔ A ∈ A∗.

(⇒): As all the terms of the sum in (7) are non-negative, if AI(A) = 0, then they must all

be equal to zero. Such terms equal zero only when all the numerators equal zero, i.e. when

max(rij) = min(rij) ∀i < j, which implies that A ∈ A∗.

(⇐): If A ∈ A∗, then all the elements rij are singletons and therefore max(rij) = min(rij) ∀i < j,

implying that the numerators in (7) equals zero and AI(A) = 0

P2 : Straightforward.

P3 : It is sufficient to consider the following matrix A and its derived A(2) and A(3)

A =






1 2 8

1/2 1 2

1/8 1/2 1




 A(2) =






1 22 82

1/22 1 22

1/82 1/22 1




 A(3) =






1 23 83

1/23 1 23

1/83 1/23 1




 (8)

and observe that I(A(2)) ≈ 0.108 and I(A(3)) ≈ 0.068. Hence I(A(2)) > I(A(3)) and P3 is not

satisfied.

P4 : Given a12, a23, . . . , an−1n, a consistent pairwise comparison matrix of order n can be equivalently

written as

A =











1 a12 a12a23 · · · a12 · . . . · an−1n
1
a12

1 a23 · · · a23 · . . . · an−1n

· · · · · · · · · · · · · · ·
1

a12·...·an−2 n−1

1
a23·...·an−2n−1

1
a34·...·an−2n−1

· · · an−1n

1
a12·...·an−1n

1
a23·...·an−1n

1
a34·...·an−1 n

· · · 1











∈ A∗ (9)

or, more compactly, as B = (bij)n×n where

bij =







∏j−1
p=i ap p+1, ∀i < j

1, ∀i = j

1/
∏j−1
p=i ap p+1, ∀i > j

Then, each element of the auxiliary matrix R is as follows

rij = {bikbkj|k = 1, . . . , n} ∀i, j.

Now, to test P4, without loss of generality, we fix the pair (1, n) and replace a1n and an1 with aδ1n
and aδn1, respectively. Consequently, b1n and bn1 are replaced by bδ1n and bδn1. Hence, for all i < j

rij =







{bij} , ∀i, j /∈ {1, n}
{

bij , b
δ
1n

bij
b1n

}

, otherwise.

Considering the definition of AI we reckon that the terms associated with rij for i, j /∈ {1, n} equals

zero. Therefore, we shall prove that all the other terms are non-decreasing functions of δ. We can

rewrite {

bij , b
δ
1n

bij
b1n

}

=
{

bij, bijb
δ−1
1n

}

and with x := bij, y := b1n, µ = δ − 1, it boils down to prove that

max{x, xyµ} − min{x, xyµ}

(1 + max{x, xyµ})(1 + min{x, xyµ})
(10)

is a non-decreasing function of µ > 0 when also x, y > 0. Now we should examine the two cases (i)

x < xyµ and (ii) x > xyµ. We start with x < xyµ and, considering that

xyµ > x⇔ yµ > 1 ⇔ y > 1

8



and that therefore, for the case xz > x, yµ is always an increasing function of µ. Hence, we can

substitute yµ with z > 1 and (10) can be replaced by

max{x, xz} − min{x, xz}

(1 + max{x, xz})(1 + min{x, xz})
(x > 0, z > 1). (11)

Considering that we are in the case with xy > x, we simplify (11), and obtain

φ(i) =
xz − x

(1 + xz)(1 + x)
. (12)

So now we shall prove that
∂φ(i)
∂z is positive for all x > 0, z > 1.

∂φ(i)

∂z
=

x

(1 + x)(1 + xz)
−

x(xz − x)

(1 + x)(1 + xz)2

=
x(1 + xz) − x(xz − x)

(1 + x)(1 + xz)2

=
x(1 + x)

(1 + x)(1 + xz)2

=
x

(1 + xz)2
.

This last quantity is always positive for x > 0. A very similar result can be derived for the case

(ii) x > xy and thus AI satisfies P4.

It can be checked that AI also satisfies properties P5 and P6.

Although in its present form index AI does not satisfy P3, the underlying idea is ingenious and it is

sufficient to adjust it, i.e. discard the normalization at the denominator, to make it satisfy P3.

Proposition 3. The inconsistency index

AI∗(A) =
1

n(n− 1)

n∑

i=1

n∑

j=1

(max(rij) − min(rij))

satisfies properties P1–P6.

Proof. It follows from the proof of Proposition 2 that AI∗ satisfies P1, P2, P4, P5, and P6. To show

that P3 is satisfied, it is sufficient to take the arguments of the sum
∑n

i=1

∑n
j=1 (max(rij) − min(rij))

and consider that they are all non-negative, since max(rij) ≥ min(rij) ∀i, j. Consequently, the terms
(
max(rij)

b − min(rij)
b
)
≥ 0 are monotone non-decreasing functions with respect to b > 1, and P3 is

satisfied.

Example 1. Consider the pairwise comparison matrix A in (8) and its associated A(b) =
(

abij

)

3×3
.

Figure 4 contains the plots of AI and AI∗ for A(b) as functions of b and shows their different behaviors.

3.3 Index by Wu and Xu

Wu and Xu (2012) defined their inconsistency index using some properties of the Hadamard product of

positive matrices.

Definition 3 (Index by Wu and Xu (2012)). The index defined by Wu and Xu is

CIH(A) =
1

n2

n∑

i=1

n∑

j=1

aijgji ,

where gij = (
∏n
k=1 aikakj)

1
n .

9



(a) Index AI can be decreasing w.r.t b, and even tend

to 0, when b → ∞.

(b) Index AI
∗ is monotone non-decreasing w.r.t. b.

Figure 4: Comparison between AI and AI∗ with respect to P3.

Note that the matrix G = (gij)n×n ∈ A∗ can be interpreted as a consistent approximation of A. In

the original paper CIH was used in a mathematical model to manage consistency and consensus at once.

Until now, no formal or numerical analysis has been made on CIH and there is no information on its

properties. However, with the following proposition we show that it satisfies P1–P6.

Proposition 4. Index CIH satisfies the properties P1–P6.

Proof. We shall show that P1 is satisfied, with ν = 1. First we need to prove that CIH(A) = 1 ⇒ A ∈ A∗.

CIH(A) =
1

n2

n∑

i=1

n∑

j=1

aijgji =
1

n
+

1

n2

n−1∑

i=1

n∑

j=i+1

(

aijgji +
1

aijgji

)

︸ ︷︷ ︸

ψ(aij ,gji)

Now it can be seen that each function ψ(aij , gji) attains its global minimum, equal to 2, when aijgji = 1,

which is a restatement of the consistency condition. In this case, to receive the hint that ν = 1, it is

enough to simplify the sum,

CIH(A) =
1

n
+

1

n2

n−1∑

i=1

n∑

j=i+1

2 =
1

n
+

1

n2
·
n(n− 1)

2
· 2 = 1

Now in the other direction, A ∈ A∗ ⇒ CIH(A) = 1, it suffices to expand CIH(A)

CIH(A) =
1

n2

n∑

i=1

n∑

j=1



aij

(
n∏

k=1

1

aikakj

)1/n


 .

Since consistency implies aikakj = aij we have

CIH(A) =
1

n2

n∑

i=1

n∑

j=1

(

aij
1

aij

)

=
1

n2

n∑

i=1

n∑

j=1

1 = 1.

It is simple, and thus omitted, to show that P2, P5 and P6 hold. To prove P3, we shall call (ag)ij = abijg
b
ji.

By expanding gji,

(ag)ij = abij

(

abj1a
b
1i · a

b
j2a

b
2i · . . . · a

b
jna

b
ni

)1/n
= (aijgji
︸ ︷︷ ︸

>0

)b.

Since (ag)ij = 1/(ag)ji, by summing (ag)ij and (ag)ji we obtain

(ag)ij + (ag)ji = (aijgji)
b +

1

(aijgji)
b

∀i, j,

10



which is an increasing function for b > 0. Since this holds for the general pair of indices {i, j}, the index

satisfies P3.

To prove P4, assume, without loss of generality, that the element to be modified is a1n. For sake of

simplicity, we can modify it and its reciprocal by multiplying them by β > 0. All the (ag)ij with

i, j /∈ {1, n} will be equal to 1. For the entries with one index i, j equal to either 1 or n we have

(ag)ij = aij(aj1a1i · aj2a2i · . . . · ajnani
︸ ︷︷ ︸

anji

β)1/n,

meaning that gji = ajiβ
1/n. As we know that gij = 1/gji, by summing (ag)ij and (ag)ji and simplifying,

one obtains
1

β1/n
+ β1/n,

which is a strictly convex function for β > 0 with minimum in β = 1. Similarly, for (ag)1n and (ag)n1,

it is

(ag)1n + (ag)n1 =
1

β2/n
+ β2/n,

which shares the same property.

3.4 Cosine Consistency Index and other indices

Many times it is not easy to prove whether an index satisfies some properties, but numerical tests and

counterexamples can always be used to show that the index does not. This was the case with the Cosine

Consistency Index.

Definition 4 (Cosine Consistency Index (Kou and Liu, 2014)). The Cosine Consistency Index is

CCI(A) =

√
√
√
√
√

n∑

i=1





n∑

j=1

bij





2/

n,

where bij = aij
/√∑n

k=1 a
2
kj .

Note that CCI(A) ∈ [0, 1] and its interpretation is reversed, meaning that the greater its value the

less inconsistent A is. It is simple, and it can also be found in the original paper, to show that CCI

satisfies P1, P2, P5, and P6. For instance, in the case of P1, the proof comes directly from Equation 6

and Theorem 3 in the paper by Kou and Liu (2014). However, the following counterexample suffices to

show that CCI does not satisfy P3.

Example 2. Consider the matrix

A =






1 3 7

1/3 1 1/2

1/7 2 1




 (13)

and its associated A(b) = (abij)n×n. The plot of CCI(A(b)) is reported in Figure 5 and shows that CCI

does not satisfy P3.

Often, although in their present forms they do not satisfy P1–P6, ideas behind indices are valid and

slight modifications are sufficient to make them satisfy a set of properties. One example is the index

NIσn proposed by Ramı́k and Korviny (2010) which was later studied (Brunelli, 2011). Another concrete

example is the Relative Error index by Barzilai (1998) which does not satisfy P4 and P5. In its original

formulation such index is

RE(A) =

∑n
i=1

∑n
j=1 (pij − di + dj)

2

∑n
i=1

∑n
j=1 (pij)

2 ,

11



Figure 5: For the matrix A in (13), an intensification of preferences decreases the inconsistency.

where pij = log aij and di = 1
n

∑n
k=1 pik, and where the denominator acts as a normalization factor. Here

it can be proved that, if we discard the denominator, we obtain

RE∗(A) =

n∑

i=1

n∑

j=1

(pij − di + dj)
2 ,

which, unlike RE, satisfies all the properties.

Proposition 5. Index RE∗ satisfies all the properties P1–P6.

Proof. It is easy to show, and therefore omitted, that P1, P2, P5 and P6 are satisfied. We shall prove

P3 and P4 separately. To prove the satisfaction of P3 we consider A(b) =
(

abij

)

and note that applying

the logarithmic transformation to its entries, we obtain (b log aij)n×n = (pij · b)n×n. Hence,

RE∗(A(b)) =

n∑

i=1

n∑

j=1

(

b · pij −
1

n

n∑

k=1

b · pik +
1

n

n∑

k=1

b · pjk

)2

= b2 · RE∗(A),

which implies that RE∗(A(b)) is monotone non-decreasing for b > 1.

To show that P4 holds, let us consider the matrix A ∈ A∗, and its associated P = (pij)n×n = (log aij)n×n.

P4 can equivalently be restated as the property that, if we take an entry ppq and its reciprocal pqp and

substitute them with ppq+ξ and pqp−ξ, respectively, then the inconsistency index RE∗ is a quasi-convex

function of ξ with minimum in ξ = 0. From the proof of Proposition 5 in (Brunelli and Fedrizzi, 2015a)

one recovers that, by introducing ξ, it is

n∑

i=1

n∑

j=1

(pij − di + dj)
2 = 4(n − 2)

(
ξ

n

)2

+ 2

(
n− 2

n
ξ

)2

.

Thus one obtains,

RE∗(Apq(ξ)) = 4(n− 2)

(
ξ

n

)2

+ 2

(
n− 2

n
ξ

)2

=
2(−2 + n)ξ2

n
= ξ2

2(n − 2)

n
︸ ︷︷ ︸

>0

which is a decreasing function of ξ for ξ < 0 and an increasing function for ξ > 0.

4 Discussion and conclusions

Choosing the most suitable inconsistency index is of considerable importance, yet formal studies had not

been undertaken until very recently (Brunelli and Fedrizzi, 2015a; Koczkodaj and Szwarc, 2014). This

is in contrast with the existence of long-standing studies on other aspects of pairwise comparisons. One

12



of these is the choice of the method for deriving the priority vector, for which axiomatic studies have

been proposed in the literature already in the Eighties (Cook and Kress, 1988; Fichtner, 1986) and in

the Nineties (Barzilai, 1997). Nevertheless, it has been shown by numerical studies (Ishizaka and Lusti,

2006) that, excepts for some particular cases, such differences can be negligible and that therefore, in

most of the cases, choosing one method or another does not really influence the final outcome.

In light of the recently proposed five properties for inconsistency indices, the contribution of this

research is at least twofold:

• Firstly, it introduces and justifies a sixth property (P6) and shows that, together with the other

five, it forms an an independent and logically consistent set of properties.

• Secondly, the paper further analyzes the satisfaction of the properties P1–P6. Four inconsistency

indices have been considered from the literature and it was found that two of them fail to fully

satisfy the set of properties P1–P6. A simple adjustment of one of these indices was proposed to

make it fit P1–P6.

Table 1 presents a summary of the findings of this research and shows how they expanded the original

set of properties for inconsistency indices (Brunelli and Fedrizzi, 2015a). It is remarkable that, in the

form in which they were originally introduced in the literature, the majority of the indices satisfy only

some of them. This seems to indicate that the definition of the properties and the analysis of their

satisfaction is not a mere theoretical exercise.

P1 P2 P3 P4 P5 P6

CI ✓ ✓ ✓ ✓ ✓ ✓

GW ✓ ✓ ✗ — ✓ ✓

GCI ✓ ✓ ✓ ✓ ✓ ✓

RE ✓ ✓ ✓ ✗ ✗ ✓

CI∗ ✓ ✓ ✓ ✓ ✓ ✓

HCI ✓ ✓ ✗ ✓ ✓ ✓

NIσn ✓ ✓ — ✗ ✓ ✓

K (Definition 1) ✓ ✓ ✓ ✓ ✓ ✓

AI (Definition 2) ✓ ✓ ✗ ✓ ✓ ✓

CIH (Definition 3) ✓ ✓ ✓ ✓ ✓ ✓

CCI (Definition 4) ✓ ✓ ✗ — ✓ ✓

Table 1: Summary of propositions: ✓=property is satisfied, ✗=property is not satisfied, ‘—’=unknown.

The original results presented in this research are separated from previous ones

(Brunelli and Fedrizzi, 2015a) by the dashed lines.

The properties were here, and in previous research (Brunelli and Fedrizzi, 2015a), justified. Neverthe-

less, clearly, this should not prevent anyone from criticizing and improving them: it is indeed desirable

that a set of properties be openly discussed within a community. In this direction, if the system P1–P6

is considered too restrictive, it is worth noting that Theorem 1 implies that any subset of the properties

P1–P6 also forms an independent and logically consistent set or properties (just a more relaxed one)

which, indeed, can be used for the same purposes of P1–P6. In conclusion, it is the author’s belief that

a systematic study of inconsistency and inconsistency indices may bring new insights and more formal

order into the evergreen topic of rational decision making. Furthermore, in the future, it should be

possible to extend the set of properties to other types of numerical representations of preferences as,

for instance, reciprocal preference relations (Tanino, 1984) and skew-symmetric additive representations

(Fishburn, 1999).
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Hämäläinen, R. P., & Pöyhönen, M. (1996). On-line group decision support by preference programming in traffic

planning. Group Decision and Negotiation, 5(4–6), 485–500.

Herman, M. W., Koczkodaj, W. W. (1996). A Monte Carlo study of pairwise comparison. Information Processing

Letters, 57(1), 25–29.

Irwin, F. W. (1958). An analysis of the concepts of discrimination and preference. The American Journal of

Psychology, 71(1), 152–163.

Ishizaka, A., & Lusti, M. (2006). How to derive priorities in AHP: a comparative study. Central European Journal

of Operations Research, 14(4), 387–400.

Kakiashvili, T., Koczkodaj, W. W., & Woodbury-Smith, M. (2012). Improving the medical scale predictability

by the pairwise comparisons method: Evidence from a clinical data study. Computer Methods and Programs in

Biomedicine, 105(3):210–216.

Koczkodaj, W., & Szwarc, R. (2014). On axiomatization of inconsistency indicators in pairwise comparisons.

Fundamenta Informaticae, 132(4), 485–500.

Koczkodaj, W. W. (1993). A new definition of consistency of pairwise comparisons. Mathematical and Computer

Modelling, 18(7), 79–84.

Koczkodaj, W. W., Herman, M. W., & Orlowski, M. (1999). Managing null entries in pairwise comparisons.

Knowledge and Information Systems, 1(1), 119–125.

Koczkodaj, W. W., Kulakowski, K., & Ligeza, A. (2014). On the quality evaluation of scientific entities in Poland

supported by consistency-driven pairwise comparisons method. Scientometrics, 99(3), 911–926.

Kou, G., & Lin, C. (2014). A cosine maximization method for the priority vector derivation in AHP. European

Journal of Operational Research, 235(1), 225–232.

Ku lakowski, K. (2015). Notes on order preservation and consistency in AHP. European Journal of Operational

Research, 245(1), 333–337.
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Appendix: Proof of Theorem 1

To prove logical consistency, it is sufficient to find an instance of I : A → R which satisfies all the

properties P1–P6. One such instance is the following function

I∗(A) =

n−2∑

i=1

n−1∑

j=i+1

n∑

k=j+1

(
aik
aijajk

+
aijajk
aik

− 2

)

(14)

To prove the independence of P1–P6, it is sufficient to find a function satisfying all properties except one,

for all the properties. The examples of inconsistency indices proposed by Brunelli and Fedrizzi (2015a)

to prove the independence of the system P1–P5 are invariant under transposition. If follows that P1–P5

are logically independent within the system P1–P6. It remains to show that P6 does not depend on

P1–P5. Consider that, if A has one row, say H, whose non-diagonal elements are all greater than one,

i.e. aHj > 1 ∀j 6= H, then this property is shared by any matrix PAPT , where P is any permutation

matrix, but not by its transpose AT . Taking into account the inconsistency index I∗ in (14), and defining

H as the row with the greatest non-diagonal element, then the function

I¬6(A) = I∗(A) ·

(

1 + max

{

min
j 6=H

{aHj − 1}, 0

})

︸ ︷︷ ︸

M

(15)

is invariant under row-column permutation but not under transposition. Hence, I¬6 satisfies AP but

not P6. To prove the independence of P6, it remains to show that (15) satisfies P1 and P3–P5. It is

easy, and thus omitted, to show that P1, P3, and P5 are satisfied. To prove it for P4, we note that any

A ∈ A∗ can be rewritten as

A =











1 a12 a12a23 · · · a12 · . . . · an−1n
1
a12

1 a23 · · · a23 · . . . · an−1n

· · · · · · · · · · · · · · ·
1

a12·...·an−2n−1

1
a23·...·an−2 n−1

1
a34·...·an−2 n−1

· · · an−1n

1
a12·...·an−1 n

1
a23·...·an−1 n

1
a34·...·an−1 n

· · · 1











∈ A∗ (16)

Without loss of generality let us consider a1n and its reciprocal an1 and replace them with aδ1n and aδn1,

respectively. Then, by calling Aδ
1n the new matrix and bearing in mind that A ∈ A∗, we have

I∗(Aδ
1n) =

n−1∑

j=2

(
aδ1n
a1jajn

+
a1jajn

aδ1n
− 2

)

= (n − 2)

(

(a12 · . . . · an−1n)δ

a12 · . . . · an−1n
+

a12 · . . . · an−1n

(a12 · . . . · an−1n)δ
− 2

)

If H /∈ {1, n}, then, in (15) M is constant and P4 holds in this case. Also if H ∈ {1, n} and

minj 6=H{aHj} 6= a1n, then M is constant and P4 is satisfied. Finally, if H = 1 and minj 6=H{aHj} = a1n,

it is

I¬6(A
δ
1n) = I∗(Aδ

1n) ·
(

1 + aδ1n − 1
)

= I∗(Aδ
1n) · aδ1n (17)
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which can be reduced to

I¬6(Aδ
1n) =

I∗(Aδ
1n)

︷ ︸︸ ︷

(n− 2)

(

(a12 · . . . · an−1n)δ

a12 · . . . · an−1n
+

a12 · . . . · an−1n

(a12 · . . . · an−1n)δ
− 2

)

·

aδ1n
︷ ︸︸ ︷

(a12 · · · an−1n)δ

=(n− 2)

(
a2δ1n
a1n

+ a1n − 2aδ1n

)

.

Considering that, from A ∈ A∗ and H = 1, it follows that a1n ≥ 1 and the partial derivative in δ is

∂I¬6(Aδ
1n)

∂δ
=(n− 2)

(

2a2δ−1
1n log(a1n) − 2aδ1n log(a1n)

)

= (n− 2)
︸ ︷︷ ︸

>0

(

2aδ−1
1n

)

︸ ︷︷ ︸

>0

(

aδ1n − a1n

)

(log a1n)
︸ ︷︷ ︸

>0

,

which is always non-negative for δ > 1 and non-positive for 0 < δ < 1. Thus, P4 is satisfied and the

properties P1–P6 are logically independent.
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