Skip to main content
Log in

Multiobjective variable mesh optimization

  • S.I.: CLAIO 2014
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this article we introduce a new multiobjective optimizer based on a recently proposed metaheuristic algorithm named Variable Mesh Optimization (VMO). Our proposal (multiobjective VMO, MOVMO) combines typical concepts from the multiobjective optimization arena such as Pareto dominance, density estimation and external archive storage. MOVMO also features a crossover operator between local and global optima as well as dynamic population replacement. We evaluated MOVMO using a suite of four well-known benchmark function families, and against seven state-of-the-art optimizers: NSGA-II, SPEA2, MOCell, AbYSS, SMPSO, MOEA/D and MOEA/D.DRA. The statistically validated results across the additive epsilon, spread and hypervolume quality indicators confirm that MOVMO is indeed a competitive and effective method for multiobjective optimization of numerical spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The parameter values for each benchmarking algorithm have been drawn from their original articles.

References

  • Deb, K. (2014). Multi-objective Optimization. In E. K. Burke & G. Kendall (Eds.), Search Methodologies. Introductory tutorials in optimization and decision support techniques, chap. 15 (pp. 403–449). New York: Springer Science and Business Media.

    Google Scholar 

  • Deb, K. (2008). Introduction to Evolutionary Multiobjective Optimization. In J. Branke, K. Deb, K. Miettinen, & R. Sowiski (Eds.), Multiobjective Optimization, LNCS, chap. 3 (Vol. 5252, pp. 59–96). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Deb, K., Thiele, L., Laumanns, M., Zitzler, E., Abraham, A., Jain, L., Goldberg, R. (2005). Scalable test problems for evolutionary multiobjective optimization. Evolutionary multi-objective optimization, pp. 105–145.

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Derrac, J., Garca, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.

    Article  Google Scholar 

  • Durillo, J. J., & Nebro, A. J. (2011). JMetal: A Java framework for multi-objective optimization. Advances in Engineering Software, 42(10), 760–771.

    Article  Google Scholar 

  • Huband, S., Barone, L., While, L., & Hingston, P. (2005). A Scalable Multi-objective Test Problem Toolkit. In C. A. Coello, A. H. Aguirre, & E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimization, LNCS (Vol. 3410, pp. 280–295). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Knowles, J., Thiele, L., Zitzler, E. (2006). A tutorial on the performance assessment of stochastic multiobjective optimizers. Technical Report 214.

  • Li, H., & Zhang, Q. (2009). Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation, 13(2), 284–302.

    Article  Google Scholar 

  • Mezura-Montes, E., Reyes-Sierra, M., & Coello, C. (2008). Multi-objective Optimization Using Differential Evolution: A Survey of the State-of-the-Art. In U. Chakraborty (Ed.), Advances in Differential Evolution, Studies in Computational Intelligence (Vol. 143, pp. 173–196). Berlin Heidelberg: Springer.

    Google Scholar 

  • Molina, D., Puris, A., Bello, R., Herrera, F. (2013). Variable mesh optimization for the 2013 CEC special session niching methods for multimodal optimization. In IEEE Congress on Evolutionary Computation (CEC ’13), pp. 87–94.

  • Navarro, R., Falcon, R., Murata, T., Hae, K.C. (2015). A generic niching framework for variable mesh optimization. In 2015 IEEE Congress on Evolutionary Computation (CEC ’15), pp. 1994–2001. Sendai, Japan.

  • Nebro, A.J., Durillo, J.J., Garcia-Nieto, J., Coello Coello, C.A., Luna, F., Alba, E. (2009). SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In IEEE Symposium on Computational intelligence in Multi-criteria Decision-Making, 2009. mcdm ’09, pp. 66–73.

  • Nebro, A. J., Durillo, J. J., Luna, F., Dorronsoro, B., & Alba, E. (2009). MOCell: A cellular genetic algorithm for multiobjective optimization. International Journal of Intelligent Systems, 24(7), 726–746.

    Article  Google Scholar 

  • Nebro, A. J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J. J., & Beham, A. (2008). AbYSS: Adapting scatter search to multiobjective optimization. IEEE Transactions on Evolutionary Computation, 12(4), 439–457.

    Article  Google Scholar 

  • Ono, I., Kita, H., & Kobayashi, S. (2003). A Real-coded Genetic Algorithm using the Unimodal Normal Distribution Crossover. In A. Ghosh & S. Tsutsui (Eds.), Advances in Evolutionary Computing, chap. 8 (pp. 213–237). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Price, K. V., Storn, R. M., & Lampinen, J. A. (2005). Differential Evolution: A Practical Approach to Global Optimization. New York: Springer.

    Google Scholar 

  • Puris, A., Bello, R., Molina, D., & Herrera, F. (2012). Variable mesh optimization for continuous optimization problems. Soft Computing, 16(3), 511–525.

    Article  Google Scholar 

  • Wolper, D. H., & Macready, W. G. (1996). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

    Article  Google Scholar 

  • Zhang, Q., Liu, W., Li, H. (2009). The performance of a new version of MOEA/D on CEC’09 unconstrained MOP test instances. In IEEE Congress on Evolutionary Computation (CEC ’09), pp. 203–208.

  • Zhang, Q. Z. Q., & Li, H. L. H. (2007). MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731.

    Article  Google Scholar 

  • Zhou, A., Qu, B. Y., Li, H., Zhao, S. Z., Suganthan, P. N., & Zhang, Q. (2011). Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1), 32–49.

    Article  Google Scholar 

  • Zitzler, E., Knowles, J. D., & Thiele, L. (2008). Quality assessment of pareto set approximations. In K. Branke, K. Deb, K. Miettinen, & R. Sowiski (Eds.), Multiobjective optimization: interactive and evolutionary approaches, LNCS chap. 14 (Vol. 5252, pp. 373–404). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & da Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132.

    Article  Google Scholar 

  • Zitzler Eckart, L.M.T.L. (2001). Spea2: improving the strength pareto evolutionary algorithm for multiobjective optimization. Evolutionary methods for design optimization and control with applications to industrial problems, pp. 95–100.

  • Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2), 173–195.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the eureka SD project (agreement number 2013-2591), that is supported by the Erasmus Mundus programme of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamisleydi Salgueiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgueiro, Y., Toro, J.L., Bello, R. et al. Multiobjective variable mesh optimization. Ann Oper Res 258, 869–893 (2017). https://doi.org/10.1007/s10479-016-2221-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2221-5

Keywords

Navigation