Skip to main content
Log in

Service outsourcing under different supply chain power structures

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper studies the impact of service outsourcing under three supply chain power structures: manufacturer-Stackelberg, vertical-Nash and retailer-Stackelberg supply chains. We first investigate price and service decisions by comparing the integrated channel and the decentralized channel with service outsourcing. It is found that a lower retail price or a higher service level could occur in the decentralized channel with service outsourcing compared to those in the integrated channel, but they never occur simultaneously. Next, we examine the manufacturer’s channel strategies, and demonstrate that service outsourcing can always help the manufacturer earn more profit from the decentralized channel than from the integrated channel in the manufacturer-Stackelberg and retailer-Stackelberg markets, as long as the retailer’s service investment is sufficiently efficient. However, in the vertical-Nash supply chain, this occurs only when the manufacturer is inefficient and the retailer is efficient enough in service provision. Finally, comparisons of channel efficiency and numerical analysis are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amrouche, N., & Yan, R. (2012). Implementing online store for national brand competing against private label. Journal of Business Research, 65, 325–332.

    Article  Google Scholar 

  • Bernstein, F., & Federgruen, A. (2004). A general equilibrium model for industries with price and service competition. Operations Research, 52, 868–886.

    Article  Google Scholar 

  • Cachon, G. (2003). Supply chain coordination with contracts. In S. Graves & T. de Kok (Eds.), Handbooks in operations research and management science: Supply chain management (pp. 229–340). North Holland: Amsterdam.

    Google Scholar 

  • Chen, T., Kalra, A., & Sun, B. (2010). Why do consumers buy extended service contracts. Journal of Consumer Research, 36, 611–623.

    Article  Google Scholar 

  • Choi, S. C. (1991). Price competition in a channel structure with a common retailer. Marketing Science, 10, 271–296.

    Article  Google Scholar 

  • Choi, S. C. (1996). Price competition in a duopoly common retailer channel. Journal of Retailing, 72, 117–134.

    Article  Google Scholar 

  • Corbett, C. J., Zhou, D., & Tang, C. S. (2004). Designing supply contracts: Contract type and information asymmetry. Management Science, 50, 550–559.

    Article  Google Scholar 

  • Dorfman, R. B., & Steiner, P. D. (1954). Optimal advertising and optimal quality. American Economic Review, 44, 826–836.

    Google Scholar 

  • Ertek, G., & Griffin, P. M. (2002). Supplier- and buyer-driven channels in a two-stage supply chain. IIE Transactions, 34, 691–700.

    Google Scholar 

  • Gavious, A., & Lowengart, O. (2012). Price–quality relationship in the presence of asymmetric dynamic reference quality effects. Marketing Letters, 23, 137–161.

    Article  Google Scholar 

  • Huemer, L. (2012). Unchained from the chain: Supply management from a logistics service provider perspective. Journal of Business Research, 65, 258–264.

    Article  Google Scholar 

  • Lau, A. H. L., Lau, H. S., & Zhou, Y. W. (2007a). A stochastic and asymmetric-information framework for a dominant-manufacturer supply chain. European Journal of Operational Research, 176, 295–316.

    Article  Google Scholar 

  • Lau, A. H. L., Lau, H. S., & Wang, J. C. (2007b). Pricing and volume discounting for a dominant retailer with uncertain manufacturing cost information. European Journal of Operational Research, 183, 848–870.

    Article  Google Scholar 

  • Lau, A. H. L., Lau, H. S., & Wang, J. C. (2008). How a dominant retailer might design a purchase contract for a newsvendor-type product with price-sensitive demand. European Journal of Operational Research, 190, 443–458.

    Article  Google Scholar 

  • Lu, J. C., Tsao, Y. C., & Charoensiriwath, C. (2011). Competition under manufacturer service and retail price. Economic Modelling, 28, 1256–1264.

    Article  Google Scholar 

  • Ma, P., Wang, H., & Shang, J. (2013). Supply chain channel strategies with quality and marketing effort-dependent demand. International Journal of Production Economics, 144(2), 572–581.

    Article  Google Scholar 

  • Mukhopadhyay, S. K., Yao, D. Q., & Yue, X. (2008). Information sharing of value-adding retailer in a mixed channel hi-tech supply chain. Journal of Business Research, 61, 950–958.

    Article  Google Scholar 

  • Pal, B., Sana, S. S., & Chaudhuri, K. (2015). Two-echelon manufacturer-retailer supply chain strategies with price, quality, and promotional effort sensitive demand. International Transactions in Operational Research, 22(6), 1071–1095.

    Article  Google Scholar 

  • Pan, K., Lai, K. K., Leung, S. C. H., & Xiao, D. (2010). Revenue-sharing versus wholesale price mechanisms under different channel power structures. European Journal of Operational Research, 203, 532–538.

    Article  Google Scholar 

  • Raju, J. S., & Zhang, Z. J. (2005). Channel coordination in the presence of a dominant retailer. Marketing Science, 24, 254–262.

    Article  Google Scholar 

  • Rosen, L. D. (1998). Service: The next frontier. Hospital Material Management Quarterly, 19, 29–34.

    Google Scholar 

  • Spence, A. M. (1975). Monopoly, quality and regulation. Bell Journal of Economics, 6, 417–429.

    Article  Google Scholar 

  • Tsay, A. A., & Agrawal, N. (2000). Channel dynamics under price and service competition. Manufacturing & Service Operations Management, 2, 372–391.

    Article  Google Scholar 

  • Xia, Y., & Gilbert, S. M. (2007). Strategic interactions between channel structure and demand enhancing services. European Journal of Operational Research, 181, 252–265.

    Article  Google Scholar 

  • Xiao, T., Yu, G., Sheng, Z., & Xia, Y. (2005). Coordination of a supply chain with one-manufacturer and two-retailers under demand promotion and disruption management decisions. Annals of Operations Research, 135, 87–109.

    Article  Google Scholar 

  • Xiao, T., & Yang, D. (2008). Price and service competition of supply chains with risk-averse retailers under demand uncertainty. International Journal of Production Economics, 114, 187–200.

    Article  Google Scholar 

  • Yan, R., & Ghose, S. (2010). Forecast information and traditional retailer performance in a dual-channel competitive market. Journal of Business Research, 63, 77–83.

    Article  Google Scholar 

  • Zhao, J., & Wei, J. (2014). The coordinating contracts for a fuzzy supply chain with effort and price dependent demand. Applied Mathematical Modelling, 38, 2476–2489.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the editor and the reviewing team for their time and efforts, which have significantly improved the paper. The authors also thank Dr. Yelin Fu for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsong Bian.

Appendix: Proofs of Lemmas and Propositions

Appendix: Proofs of Lemmas and Propositions

Proof of Lemma 1:

The Hessian matrix of the profit function \(\Pi ^{C}\) with respect to \(p^{C}\) and \(s^{C}\) is given by \(H_1 =\left[ {{\begin{array}{ll} {-2\beta }&{} \gamma \\ \gamma &{} {-\lambda _M } \\ \end{array} }} \right] \). Since \(-2\beta <0\) and \(-\lambda _M <0\), so if \(2\lambda _M \beta -\gamma ^{2}>0\), profit function \(\Pi ^{C}\) is strictly jointly concave with respect to \(p^{C}\) and \(s^{C}\).

Proof of Lemma 2:

Profit function \(\Pi _R^M \), with respect to \(u^{M}\) and \(s^{M}\), has a Hessian matrix \(H_2 =\left[ {{\begin{array}{ll} {-2\beta }&{} \gamma \\ \gamma &{} {-\lambda _R } \\ \end{array} }} \right] \). Similar to Lemma 1, it is easy to check if \(2\lambda _R \beta -\gamma ^{2}>0\) holds, then \(H_2 \) is strictly jointly concave in \(u^{M}\) and \(s^{M}\).

Proof of Proposition 1:

  1. (a)

    Compare \(s^{M^{{*}}}\)and \(s^{C^{{*}}}\), expressions of which are summarized in Table 1, we have

    $$\begin{aligned} \Delta s^{M^{{*}}}=s^{M^{{*}}}-s^{C^{{*}}}=\frac{\gamma \alpha }{2\left( {2\lambda _R \beta -\gamma ^{2}} \right) }-\frac{\gamma \alpha }{2\lambda _M \beta -\gamma ^{2}}=\frac{\left( {2\lambda _M \beta -4\lambda _R \beta +\gamma ^{2}} \right) ca}{2\left( {2\lambda _R \beta -\gamma ^{2}} \right) \left( {2\lambda _M \beta -\gamma ^{2}} \right) }. \end{aligned}$$

    \(\Delta s^{M^{{*}}}\ge 0\) if \(\frac{\gamma ^{2}}{2\beta }<\lambda _R \le \frac{2\lambda _M \beta +\gamma ^{2}}{4\beta }\); otherwise, \(\Delta s^{M^{{*}}}<0\). Note that \(\frac{2\lambda _M \beta +\gamma ^{2}}{4\beta }>\frac{\gamma ^{2}}{2\beta }\) is guaranteed by \(\lambda _M >\frac{\gamma ^{2}}{2\beta }\).

  2. (b)

    First, comparing \(s^{N^{{*}}}\) and \(s^{C^{{*}}}\), we have

    $$\begin{aligned} \Delta s^{N^{{*}}}=s^{N^{{*}}}-s^{C^{{*}}}=\frac{\gamma \alpha }{3\lambda _R \beta -\gamma ^{2}}-\frac{\gamma \alpha }{2\lambda _M \beta -\gamma ^{2}}=\frac{\left( {2\lambda _M -3\lambda _R } \right) \beta \gamma \alpha }{\left( {3\lambda _R \beta -\gamma ^{2}} \right) \left( {2\lambda _M \beta -\gamma ^{2}} \right) }. \end{aligned}$$

    \(\Delta s^{N^{{*}}}\ge 0\) if \(\frac{\gamma ^{2}}{2\beta }<\lambda _R \le \frac{2}{3}\lambda _M \), and \(\Delta s^{N^{{*}}}<0\) otherwise. Based on the range of \(\lambda _M \), we divide the discuss into two cases below:

  3. (i)

    if \(\lambda _M \le \frac{3\gamma ^{2}}{4\beta }\), then \(\lambda _R >\frac{2}{3}\lambda _M \), which indicates \(\Delta s^{N^{{*}}}<0\);

  4. (ii)

    if \(\lambda _M >\frac{3\gamma ^{2}}{4\beta }\), then either \(\frac{\gamma ^{2}}{2\beta }<\lambda _R \le \frac{2}{3}\lambda _M \) or \(\lambda _R >\frac{2}{3}\lambda _M \) holds, corresponding to \(\Delta s^{N^{{*}}}\ge 0\) or \(\Delta s^{N^{{*}}}<0\), respectively.

  5. (c)

    Similar to the proof of Proposition 1(a) and therefore omitted.

Proof of Proposition 2:

  1. (a)

    Comparing \(p^{C^{{*}}}\) and \(p^{M^{{*}}}\) in Sect. 3, we have

    $$\begin{aligned} \Delta p^{M^{{*}}}= & {} p^{M^{{*}}}-p^{C^{{*}}}=\frac{\left( {3\lambda _R \beta -\gamma ^{2}} \right) \alpha }{2\beta \left( {2\lambda _R \beta -\gamma ^{2}} \right) }-\frac{\lambda _M \alpha }{2\lambda _M \beta -\gamma ^{2}}\\= & {} \frac{\left( {2\lambda _M \lambda _R \beta ^{2}-3\lambda _R \beta \gamma ^{2}+\gamma ^{4}} \right) a}{2\beta \left( {2\lambda _R \beta -\gamma ^{2}} \right) \left( {2\lambda _M \beta -\gamma ^{2}} \right) }. \end{aligned}$$

    \(\Delta p^{M^{{*}}}>0\) if \(\beta \left( {3\gamma ^{2}-2\lambda _M \beta } \right) \lambda _R <\gamma ^{4}\), which always holds when \(\lambda _M \ge \frac{3\gamma ^{2}}{2\beta }\) (case (ii)). We next consider the case in which \(\lambda _M <\frac{3\gamma ^{2}}{2\beta }\) (case (i)). \(\Delta p^{M^{{*}}}>0\) holds when \(\frac{\gamma ^{2}}{2\beta }<\lambda _R <\frac{\gamma ^{4}}{\beta \left( {3\gamma ^{2}-2\lambda _M \beta } \right) }\), which entails \(\frac{\gamma ^{2}}{2\beta }<\frac{\gamma ^{4}}{\beta \left( {3\gamma ^{2}-2\lambda _M \beta } \right) }\), equivalent to \(\lambda _M >\frac{\gamma ^{2}}{2\beta }\).

  2. (b)

    Next, we prove the case for vertical-Nash market. First, comparing \(p^{N^{{*}}}\) and \(p^{C^{{*}}}\), we have \(\Delta p^{N^{{*}}}=p^{N^{{*}}}-p^{C^{{*}}}=\frac{2\lambda _R \alpha }{3\lambda _R \beta -\gamma ^{2}}-\frac{\lambda _M \alpha }{2\lambda _M \beta -\gamma ^{2}}=\frac{\left( {\lambda _M \lambda _R \beta -2\lambda _R \gamma ^{2}+\lambda _M \gamma ^{2}} \right) \alpha }{\left( {2\lambda _M \beta -\gamma ^{2}} \right) \left( {3\lambda _R \beta -\gamma ^{2}} \right) }\). \(\Delta p^{N^{{*}}}>0\) if \(\left( {2\gamma ^{2}-\lambda _M \beta } \right) \lambda _R <\lambda _M \gamma ^{2}\), which is always satisfied when \(\lambda _M \ge \frac{2\gamma ^{2}}{\beta }\). Note that inequality\(\lambda _R >\frac{\gamma ^{2}}{2\beta }\) must hold to guarantee the retailer’s participation. If \(\frac{\gamma ^{2}}{2\beta }<\lambda _M \le \frac{2\gamma ^{2}}{3\beta }\), then \(\frac{\lambda _M \gamma ^{2}}{2\gamma ^{2}-\lambda _M \beta }\le \frac{\gamma ^{2}}{2\beta }<\lambda _R \), which leads to \(p^{N^{{*}}}<p^{C^{{*}}}\). Finally, if \(\frac{2\gamma ^{2}}{3\beta }<\lambda _M <\frac{2\gamma ^{2}}{\beta }\), \(p^{N^{{*}}}\) can either be higher or lower than \(p^{C^{{*}}}\), depending on whether \(\frac{\gamma ^{2}}{2\beta }<\lambda _R <\frac{\lambda _M \gamma ^{2}}{2\gamma ^{2}-\lambda _M \beta }\) or \(\lambda _R \ge \frac{\lambda _M \gamma ^{2}}{2\gamma ^{2}-\lambda _M \beta }\) holds, i.e., \(p^{N^{{*}}}\left\{ {\begin{array}{l} \le \\ > \\ \end{array}} \right\} p^{C^{{*}}}\) for \(\left\{ {\begin{array}{l} \lambda _R \ge \frac{\lambda _M \gamma ^{2}}{2\gamma ^{2}-\lambda _M \beta } \\ \frac{\gamma ^{2}}{2\beta }<\lambda _R <\frac{\lambda _M \gamma ^{2}}{2\gamma ^{2}-\lambda _M \beta } \\ \end{array}} \right. \).

  3. (c)

    Similar to case (a) above and, therefore, omitted.

Proof of Proposition 3:

Based on the equilibrium results of price and service in Sect. 3, we have the price-service ratios in different channel structures as follows:

$$\begin{aligned} p_S^{C*}= & {} \frac{p^{C^{{*}}}}{s^{C^{{*}}}}=\frac{\lambda _M }{\gamma },\hbox { with} \ \lambda _M>\frac{\gamma ^{2}}{2\beta };\\ p_S^{M*}= & {} \frac{p^{M^{{*}}}}{s^{M^{{*}}}}=\frac{3\lambda _R \beta -\gamma ^{2}}{\beta \gamma }, \hbox { with}\ \lambda _R>\frac{\gamma ^{2}}{2\beta }\\ p_S^{N*}= & {} \frac{p^{N^{{*}}}}{s^{N^{{*}}}}=\frac{2\lambda _R }{\gamma } ,\hbox { with }\ \lambda _R>\frac{\gamma ^{2}}{2\beta }\\ p_S^{R*}= & {} \frac{p^{R^{{*}}}}{s^{R^{{*}}}}=\frac{3\lambda _R }{\gamma },\hbox { with} \ \lambda _R >\frac{\gamma ^{2}}{4\beta } \end{aligned}$$

Comparing the price-service ratios, we have

  1. (a)

    In the manufacturer-Stackelberg supply chain, \(p_S^{M*} -p_S^{C*} =\frac{3\beta \lambda _R -\beta \lambda _M -\gamma ^{2}}{\gamma \beta }\le 0\) if \(\frac{\gamma ^{2}}{2\beta }<\lambda _R \le \frac{\beta \lambda _M +\gamma ^{2}}{3\beta }\), which implies \(\lambda _M >\frac{\gamma ^{2}}{2\beta }\).

  2. (b)

    In the vertical-Nash supply chain,

    \(p_S^{N*} -p_S^{C*} =\frac{2\lambda _R -\lambda _M }{\gamma }\le 0\) if \(\frac{\gamma ^{2}}{2\beta }<\lambda _R \le \frac{1}{2}\lambda _M \), which holds if and only if \(\lambda _M >\frac{\gamma ^{2}}{\beta }\); otherwise, \(p_S^{N*} -p_S^{C*} >0\) for \(\frac{\gamma ^{2}}{2\beta }<\lambda _M \le \frac{\gamma ^{2}}{\beta }\).

  3. (c)

    In the retailer-Stackelberg supply chain,

    \(p_S^{R*} -p_S^{C*} =\frac{3\lambda _R -\lambda _M }{\gamma }\le 0\) if \(\frac{\gamma ^{2}}{4\beta }<\lambda _R \le \frac{1}{3}\lambda _M \), which holds if and only if \(\lambda _M >\frac{3\gamma ^{2}}{4\beta }\); otherwise, \(p_S^{R*} -p_S^{C*} >0\) for \(\frac{\gamma ^{2}}{2\beta }<\lambda _M \le \frac{3\gamma ^{2}}{4\beta }\).

Proof of Proposition 5:

$$\begin{aligned} \Pi _M^{M^{{*}}} -\Pi ^{C^{{*}}}=\frac{\lambda _R \alpha ^{2}}{4\left( {2\lambda _R \beta -\gamma ^{2}} \right) }-\frac{\lambda _M \alpha ^{2}}{2\left( {2\lambda _M \beta -\gamma ^{2}} \right) }=\frac{\left( {2\lambda _M \gamma ^{2}-2\lambda _M \lambda _R \beta -\lambda _R \gamma ^{2}} \right) \alpha ^{2}}{4\left( {2\lambda _M \beta -\gamma ^{2}} \right) \left( {2\lambda _R \beta -\gamma ^{2}} \right) }. \end{aligned}$$

Combining with the concavity constraints in Lemma 1 and 2, we can easily see that \(\Pi _M^{M^{{*}}} -\Pi ^{C^{{*}}}>0\) if \(\lambda _M >\frac{\gamma ^{2}}{2\beta }\) and \(\frac{\gamma ^{2}}{2\beta }<\lambda _R <\frac{2\lambda _M \gamma ^{2}}{2\lambda _M \beta +\gamma ^{2}}\).

Proof of Proposition 6:

$$\begin{aligned} \Pi _M^{N^{{*}}} -\Pi ^{C^{{*}}}=\frac{\lambda _R^2 \beta \alpha ^{2}}{\left( {3\lambda _R \beta -\gamma ^{2}} \right) ^{2}}-\frac{\lambda _M \alpha ^{2}}{2\left( {2\lambda _M \beta -\gamma ^{2}} \right) }=\frac{\Phi \alpha ^{2}}{2\left( {2\lambda _M \beta -\gamma ^{2}} \right) \left( {3\lambda _R \beta -\gamma ^{2}} \right) ^{2}}, \end{aligned}$$

where \(\Phi =-\beta \left( {5\lambda _M \beta +2\gamma ^{2}} \right) \lambda _R^2 +6\lambda _M \beta \gamma ^{2}\lambda _R -\lambda _M \gamma ^{4}\). Solving the equation \(\Phi =0\) for \(\lambda _R \), we obtain \(\lambda _R^{*} =\frac{3\lambda _M \beta \gamma ^{2}\pm \gamma ^{2}\sqrt{2\lambda _M \beta \left( {2\lambda _M \beta -\gamma ^{2}} \right) }}{\beta \left( {5\lambda _M \beta +2\gamma ^{2}} \right) }\). Combining the concavities constraints of the respective profit functions, we conclude that \(\Pi ^{C^{{*}}}<\Pi _M^{N^{{*}}} \) if and only if \(\lambda _M \ge \frac{2\gamma ^{2}}{3\beta }\) and \(\frac{\gamma ^{2}}{2\beta }<\lambda _R <\bar{{\lambda }}_R \), where \(\bar{{\lambda }}_R \) is the larger value of the root of the quadratic function \(\Phi =0\).

Proof of Proposition 7:

We, again, compare profits from the integrated channel and the indirect one in which service is provided by the retailer. Then we have \(\Pi _M^{R^{{*}}} -\Pi ^{C^{{*}}}=\frac{\lambda _R^2 \beta \alpha ^{2}}{\left( {4\lambda _R \beta -\gamma ^{2}} \right) ^{2}}-\frac{\lambda _M \alpha ^{2}}{2\left( {2\lambda _M \beta -\gamma ^{2}} \right) }=\frac{a^{2}\Gamma }{2\left( {2\lambda _M \beta -\gamma ^{2}} \right) \left( {4\lambda _R \beta -\gamma ^{2}} \right) ^{2}},\) where \(\Gamma \) is given by \(\Gamma =-2\beta \left( {6\lambda _M \beta +\gamma ^{2}} \right) \lambda _R^2 +8\lambda _M \lambda _R \beta \gamma ^{2}-\lambda _M \gamma ^{4}\). It can be verified that \(\Gamma \) is non-negative if \(\lambda _M \ge \frac{\gamma ^{2}}{2\beta }\) and \(\frac{\gamma ^{2}}{4\beta }<\lambda _R <\mathop {\lambda _R }\limits ^= \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, J., Lai, K.K. & Hua, Z. Service outsourcing under different supply chain power structures. Ann Oper Res 248, 123–142 (2017). https://doi.org/10.1007/s10479-016-2228-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2228-y

Keywords

Navigation