Skip to main content
Log in

Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria

  • Original-Comparative Computational Study
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We study an extended set of Mean-Gini portfolio optimization models that encompasses a general version of the mean-risk formulation, the Minimal Gini model (MinG) that minimizes Gini’s Mean Differences, and the new risk-adjusted Mean-Gini Ratio (MGR) model. We analyze the properties of the various models, prove that a performance measure based on a Risk Adjusted version of the Mean Gini Ratio (RAMGR) is coherent, and establish the equivalence between maximizing this performance measure and solving for the maximal Mean-Gini ratio. We propose a linearization approach for the fractional programming formulation of the MGR model. We also conduct a thorough evaluation of the various Mean-Gini models based on four data sets that represent combinations of bullish and bearish scenarios in the in-sample and out-of-sample phases. The performance is (i) analyzed with respect to eight return, risk, and risk-adjusted criteria, (ii) benchmarked with the S&P500 index, and (iii) compared with their Mean-Variance counterparts for varying risk aversion levels and with the Minimal CVaR and Minimal Semi-Deviation models. For the data sets used in our study, our results suggest that the various Mean-Gini models almost always result in solutions that outperform the S&P500 benchmark index with respect to the out-of-sample cumulative return. Further, particular instances of Mean-Gini models result in solutions that are as good or better (for example, MinG in bullish in-sample scenarios, and MGR in bearish out-of-sample scenarios) than the solutions obtained with their counterparts in Mean-Variance, Minimal CVaR and Minimal Semi-Deviation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. FORS is an abbreviation for the initials of the surnames of the authors of the paper—Fabozzi, Ortobelli, Rachev, and Shalit [see note #3 in Ortobelli et al. (2009)].

References

  • Aragon, G. O., & Ferson, W. E. (2006). Portfolio performance evaluation. Foundations and Trends in Finance, 2(2), 83–190.

    Article  Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measure of risk. Mathematical Finance, 9(3), 203–228.

    Article  Google Scholar 

  • Basel Committee on Banking Supervision (2004). In International convergence of capital measurement and capital standards: A revised framework. Basel: BIS.

  • Bey, R., & Howe, K. (1984). Gini’s mean difference and portfolio selection: An empirical evaluation. Journal of Financial and Quantitative Analysis, 3, 329–338.

    Article  Google Scholar 

  • Biglova, A., Ortobelli, S., Rachev, S. T., & Stoyanov, S. V. (2004). Different approaches to risk estimation in portfolio theory. The Journal of Portfolio Management, 31(1), 103–112.

    Article  Google Scholar 

  • Bonami, P., & Lejeune, M. A. (2009). An exact solution approach for portfolio optimization problems under stochastic and integer constraints. Operations Research, 57(3), 650–670.

    Article  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research logistics quarterly, 9(3–4), 181–186.

    Article  Google Scholar 

  • Cheung, C. S., Kwan, C. C., & Miu, P. C. (2007). Mean-Gini portfolio analysis: A pedagogic illustration. Spreadsheets in Education, 2(2), 194–207.

    Google Scholar 

  • DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798–812.

    Article  Google Scholar 

  • Dentcheva, D., & Ruszczyński, A. (2003). Optimization with stochastic dominance constraints. SIAM Journal on Optimziation, 14, 548–566.

    Article  Google Scholar 

  • Dentcheva, D., & Ruszczyński, A. (2006). Portfolio optimization with stochastic dominance constraints. Journal of Banking and Finance, 30(2), 433–451.

    Article  Google Scholar 

  • Disatnik, D. J., & Benninga, S. (2007). Shrinking the covariance matrix. The Journal of Portfolio Management, 33(4), 55–63.

    Article  Google Scholar 

  • Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1), 1–26.

  • Elton, E. J., Gruber, M. J., & Blake, C. R. (1996). Survivor bias and mutual fund performance. Review of Financial Studies, 9(4), 1097–1120.

    Article  Google Scholar 

  • Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007). Robust portfolio optimization and management. Hoboken, NJ: Wiley.

    Google Scholar 

  • Fabozzi, F. J., Huang, D., & Zhou, G. (2010). Robust portfolios: Contributions from operations research and finance. Annals of Operations Research, 176, 191–220.

    Article  Google Scholar 

  • Fama, E. F. (1965). The behavior of stock-market prices. The Journal of Business, 38(1), 34–105.

    Article  Google Scholar 

  • Farinelli, S., Rossello, D., & Tibiletti, L. (2006). Computational asset allocation using one-sided and two-sided variability measures. In Computational Science–ICCS 2006, Springer, pp. 324–331.

  • Farinelli, S., Ferreira, M., Rossello, D., Thoeny, M., & Tibiletti, L. (2008). Beyond sharpe ratio: Optimal asset allocation using different performance ratios. Journal of Banking & Finance, 32(10), 2057–2063.

    Article  Google Scholar 

  • Filomena, T. P., & Lejeune, M. A. (2012). Stochastic portfolio optimization with proportional transaction costs: Convex reformulations and computational experiments. Operations Research Letters, 40(1), 203–228.

    Google Scholar 

  • Filomena, T. P., & Lejeune, M. A. (2014). Warm-start heuristic for stochastic portfolio optimization with fixed and proportional transaction costs. Journal of Optimization Theory and Applications, 161(1), 308–329.

    Article  Google Scholar 

  • Fishburn, P. C. (1964). Decision and value theory. New York: Wiley.

    Google Scholar 

  • Fisher, L., & Lorie, J. H. (1970). Some studies of variability of returns on investments in common stocks. Journal of Business, 43, 99–135.

    Article  Google Scholar 

  • Gaivoronski, A. A., & Pflug, G. (2004). Value-at-Risk in portfolio optimization: Properties and computational approach. The Journal of Risk, 7, 1–31.

    Article  Google Scholar 

  • Hanoch, G., & Levy, H. (1969). The efficiency analysis of choices involving risk. Review of Economic, 36, 335–346.

    Google Scholar 

  • Israelsen, C. L. (2005). A refinement to the Sharpe ratio and information ratio. Journal of Asset Management, 5(6), 423–427.

    Article  Google Scholar 

  • Konno, H., & Yamazaki, H. (1991). Mean absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management Science, 37, 519–531.

    Article  Google Scholar 

  • Kunsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. The Annals of Statistics, 17(3), 1217–1241.

  • Lahiri, S. N. (2003). Resampling methods for dependent data. New York: Springer.

    Book  Google Scholar 

  • Mansini, R., Ogryczak, W., & Speranza, M. G. (2003). On LP solvable models for portfolio selection. Informatica, 14(1), 37–62.

    Google Scholar 

  • Mansini, R., Ogryczak, W., & Speranza, M.G. (2007). Tail Gini’s risk measures and related linear programming models for portfolio optimization. In HERCMA Conference Proceedings, CD, LEA Publishers, Athens.

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91.

    Google Scholar 

  • Markowitz, H. M. (1959). Portfolio selection: Efficient diversification of investments. New York: Wiley.

    Google Scholar 

  • Markowitz, H. M., Todd, P., Xu, G., & Yamane, Y. (1993). Computation of mean-semivariance efficient sets by the critical line algorithm. Annals of Operations Research, 45, 307–317.

    Article  Google Scholar 

  • Ogryczak, W., & Ruszczyński, A. (1999). From stochastic dominance to mean-risk models: Semi-deviations as risk measures. European Journal of Operational Research, 116, 33–50.

    Article  Google Scholar 

  • Ogryczak, W., & Ruszczyński, A. (2001). On consistency of stochastic dominance and mean-semideviations models. Mathematical Programming, 89, 217–232.

    Article  Google Scholar 

  • Ogryczak, W., & Ruszczyński, A. (2002). Dual stochastic dominance and related mean-risk models. SIAM Journal on Optimization, 13, 60–78.

    Article  Google Scholar 

  • Okunev, J. (1988). A comparative study of Gini’s mean difference and mean variance in portfolio analysis. Accounting and Finance, 28, 1–15.

    Article  Google Scholar 

  • Okunev, J. (1991). The generation of Mean Gini efficient sets. Journal of Business and Accounting, 18(2), 209–218.

    Article  Google Scholar 

  • Ortobelli, S., Rachev, S. T., Shalit, H., & Fabozzi, F. J. (2008). Orderings and risk probability functionals in portfolio theory. Probability and Mathematical Statistics, 28, 203–234.

    Google Scholar 

  • Ortobelli, S., Rachev, S. T., Shalit, H., & Fabozzi, F. J. (2009). Orderings and probability functionals consistent with preferences. Applied Mathematical Finance, 16(1), 81–102.

    Article  Google Scholar 

  • Ortobelli, S., Shalit, H., & Fabozzi, F. J. (2013). Portfolio selection problems consistent with given preference orderings. International Journal of Theoretical and Applied Finance, 16(5), 1350,029.

    Article  Google Scholar 

  • Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical Association, 89(428), 1303–1313.

    Article  Google Scholar 

  • Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica, 32, 122–136.

    Article  Google Scholar 

  • Rachev, S. T., Ortobelli, S., Stoyanov, S. V., Fabozzi, F. J., & Biglova, A. (2008). Desirable properties of an ideal risk measure in portfolio theory. International Journal of Theoretical and Applied Finance, 11(01), 19–54.

    Article  Google Scholar 

  • Ringuest, J. L., Graves, S. B., & Case, R. H. (2004). Mean-Gini analysis in R&D portfolio selection. European Journal of Operational Research, 154, 157–169.

    Article  Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2000). Optimization of Conditional Value-at-Risk. The Journal of Risk, 2, 21–41.

    Article  Google Scholar 

  • Sanfilippo, G. (2003). Stocks, bonds and the investment horizon: A test of time diversification on the French market. Quantitative Finance, 3(4), 345–351.

    Article  Google Scholar 

  • Shalit, H., & Greenberg, D. (2013). Hedging with stock index options: A Mean-Extended Gini approach. Journal of Mathematical Finance, 3, 119–129.

    Article  Google Scholar 

  • Shalit, H., & Yitzhaki, S. (1984). Mean-Gini, portfolio theory, and the pricing of risky assets. Journal of Finance, 39, 1449–1468.

    Article  Google Scholar 

  • Shalit, H., & Yitzhaki, S. (2005). The Mean-Gini efficient portfolio frontier. The Journal of Financial Research, 18, 59–95.

    Article  Google Scholar 

  • Stoyanov, S. V., Rachev, S. T., & Fabozzi, F. J. (2007). Optimal financial portfolios. Applied Mathematical Finance, 14(5), 401–436.

    Article  Google Scholar 

  • Tasche, D. (2004). Allocating portfolio economic capital to sub-portfolios (pp. 275–302). Economic Capital: A Practitioner’s Guide, Risk Books.

  • Urbán, A., & Ormos, M. (2012). Performance analysis of equally weighted portfolios: USA and Hungary. Acta Polytechnica Hungarica, 9(2), 155–168.

    Google Scholar 

  • Yitzhaki, S. (1982). Stochastic dominance, mean variance and Gini’s mean difference. American Economic Review, 72, 178–185.

    Google Scholar 

  • Yitzhaki, S. (1983). On an extension of the Gini inequality index. International Economic Review, 24, 617–628.

    Article  Google Scholar 

  • Yitzhaki, S., & Schechtman, E. (2013). The Gini methodology: A primer on a statistical methodology. New York: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Ji.

Appendix

Appendix

1.1 Model comparisons

See Tables 3, 4, 5, 6, 7, 8 and 9.

Table 3 Performance of \(\mathbf{MV}_{\lambda }\) models as a function of risk aversion \(\lambda \)—part I
Table 4 Performance of \(\mathbf{MV}_{\lambda }\) models as a function of risk aversion \(\lambda \)—part II
Table 5 Performance of \(\mathbf{MG}_{\lambda }\) models as a function of risk aversion \(\lambda \)—part I
Table 6 Performance of \(\mathbf{MG}_{\lambda }\) models as a function of risk aversion \(\lambda \)—part II
Table 7 Statistical results of cumulative returns differences
Table 8 MinCVaR and MinSD models
Table 9 Results for normality tests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, R., Lejeune, M.A. & Prasad, S.Y. Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria. Ann Oper Res 248, 305–343 (2017). https://doi.org/10.1007/s10479-016-2230-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2230-4

Keywords

Navigation