Skip to main content
Log in

The challenge in managing new financial risks: adopting an heuristic or theoretical approach

  • S.I.: OR Confronting the Crisis
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The financial crisis began with the collapse of Lehman Brothers and the subprime asset backed securities debacle. Credit risk was turned into liquidity risk, resulting in a lack of confidence among financial institutions. In this article, we will propose a way to model liquidity risk and the credit risk in best practices. We will show that liquidity risk is a new type of risk and the current way to deal with it is based solely on observed variables without any theoretical link. We propose an heuristic approach to combine the numerous liquidity risk indicators with a logistic regression for the first time. In regards to credit risk, several articles prove that the best practice is to use an option model to appreciate this risk. We will present our methodology using stochastic diffusion for the interest rate because currently the yield curves aren’t liquid. This approach is more relevant because the basis model in prior publications has a constant interest rate or a forward rate. Both models allow a better understanding of liquidity and credit risks and the further development of research deals with the link between these two financial risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Undertakings for Collective Investment in Transferable Securities.

  2. European market infrastructure regulation.

  3. Other the counter (financial products without market).

  4. The Days–to–Liquidate indicator is defined as the number of days it would take for the portfolio to liquidate the entire position of stock based on the Average Daily Trading Volume. This is calculated by taking the number of shares held in a portfolio and dividing it by the Average Daily Trading Volume over the last 3 months. This is based on the changing Average Trading Volume and is updated daily.

References

  • Amihud, Y., & Mendelson, H. (1980). Dealership markets: Market making with inventory. Journal of Financial Economics, 15(1), 31–53.

    Article  Google Scholar 

  • Anderson, N., Breedon, F., Deacon, M., Derry, A., & Murphy, G. (1996). Estimating and interpreting the yield curve. Wiley Series in Financial Economics and quantitative analysis.

  • Bohn, J. R. (2000). A survey of contingent-claims approaches to risky debt valuation. The Journal of Risk Finance, 1(3), 53–70.

    Article  Google Scholar 

  • Black, F., & Cox, J. C. (1976). Valuing corporate securities: Some effects of bond indenture provisions. Journal of Finance, 31, 351–367.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–659.

    Article  Google Scholar 

  • Bliss, R. R. (1996). Testing term structure estimation methods. Federal Reserve Bank of Atlanta Working Paper 96-12a.

  • Briys, E., & De Varenne, F. (1997). Valuing risky fixed rate debt: An extension. Journal of Financial and Quantitative Analysis, 32, 239–248.

    Article  Google Scholar 

  • Bu, D., & Liao, Y. (2014). Corporate credit risk prediction under stochastic volatility and jump. Journal of Economic Dynamics and Control, 47, 263–281.

  • Chen, D. H., Chou, H. C., Wang, D., & Zaabar, R. (2011).The predictive performance of a path dependant exotic option credit risk model in the emerging market. Physica A: Statistical Mechanisms and its Application, 390(11), 1973–1981.

  • Crosbie, P. J., & Bohn, J. R. (1993). Modeling default risk, documentation on KMV Model. http://www.creditrisk.ru/publications/files_attached/modeling_default_risk.pdf.

  • Damel, P. (2006). How to calculate an internal rating? Synthesis and proposition for a contingent approach using a monte carlo simulation and a rate stochastic model following poisson’s Law. International Journal of Business, 11(2), 121–142.

  • Dick-Nielsen, J., Feldhtter, P., & Lando, D. (2012). Corporate bond liquidity before and after the onset of the subprime crisis. Journal of Financial Economics, 103, 471–492.

  • Dimson, E., & Hanke, B. (2001). The expected illiquidity premium: Evidence from equity iIndex-linked bonds, Working Paper, London Business School.

  • Eom, Y. H., Helwege, J., & Huang, J. Z. (2004). Structural models of corporate bond pricing: An empirical analysis. Review of Financial Studies, 17, 499–544.

    Article  Google Scholar 

  • Ericsson, J., & Renault, O. (2001). Liquidity and credit risk. Working paper, McGill University and Universite Catholique de Louvain. http://papers.ssrn.com/sol3/.

  • Franks, J. R., & Torous, W. (1989). An empirical investigation of US firms in reorganization. Journal of Finance, 44, 747–769.

    Article  Google Scholar 

  • Gehr, A. K., & Martell, T. F. (1992). Pricing efficiency in the secondary market for investment-grade corporate bonds. Journal of Fixed Income, 2(3), 24–38.

    Article  Google Scholar 

  • Geske, R. (1977). The valuation of corporate liabilities as compound options. Journal of Financial and quantitative analysis, 12, 541–552.

    Article  Google Scholar 

  • Huang, J. Z., & Huang, M. (2012). How much of the corporate-treasury yield spread is due to credit risk? Review of Asset Pricing Studies, 2, 153–202.

  • Jankowitsch, R., & Pichler, S. (2002). Parsimonious estimation of credit spreads. Working Paper, Vienna University of Technology.

  • Jones, P. E., Mason, S. P., & Rosenfeld, E. (1984). Contingent claims analysis of corporate capital structures: An empirical investigation. Journal of Finance, 39, 611–625.

    Article  Google Scholar 

  • Kim, I. J., Ramaswany, K., & Sundaresan, S. (1993). Does default risk in coupons affect the valuation of corporate bonds? A contingent claims model. Financial Management, 22(3), 117–131.

  • Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica, 53(6), 1315–1336.

    Article  Google Scholar 

  • Leland, H. (1994). Corporate debt value, bond covenants, and optimal capital structure. Journal of Finance, 49, 1213–1252.

    Article  Google Scholar 

  • Leland, H., & Toft, K. B. (1996). Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads. Journal of Finance, 51, 987–1019.

    Article  Google Scholar 

  • Lesmond, D., Ogden, J., & Trzcinka, C. (1999). A new estimate of transaction costs. Review of Financial Studies, 12(5), 1113–1141.

    Article  Google Scholar 

  • Le Thi, H. A. (2016). DC Programming and DCA. http://lita.sciences.univ-metz.fr/~lethi.

  • Longstaff, F. A., & Schwartz, E. S. (1995). A simple approach to valuating risky fixes and floatingrate debt. Journal of Finance, 50, 789–820.

    Article  Google Scholar 

  • Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rate. Journal of Finance, 29, 449–470.

    Google Scholar 

  • Pham, Dinh T., & Le Thi, H. A. (1997). Convex analysis approach to DC programming: Theory, algorithms and applications. Acta Mathematica Vietnamica, 22(1), 289–357.

    Google Scholar 

  • Pham, Dinh T., & Le Thi, H. A. (1998). A DC optimization algorithms for solving the trust-region subproblem. SIAM Journal on Optimization, 8(2), 476–505.

    Article  Google Scholar 

  • Schultz, P. (2001). Corporate bond trading costs and practices: A peek behind the curtain. Journal of Finance, 56, 677–698.

    Article  Google Scholar 

  • Shimko, D., Tejima, N., & Van Deventer, D. (1993). The pricing of risky debt. When interest rates are stochastic. The Journal of Fixed Income, 3, 58–65.

    Article  Google Scholar 

  • Vasicek, O. A. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5, 177–188.

    Article  Google Scholar 

  • Wei, D. G., & Guo, D. (1997). Pricing risky debt: An empirical comparison of the Longstaff and Schwartz and Merton models. The Journal of Fixed Income, 7, 8–28.

    Article  Google Scholar 

  • Zhou, C. (1997). A jump diffusion approach to modelling credit risk and valuing defaultable securities. Washington, DC: Federal Reserve Board.

    Google Scholar 

Download references

Acknowledgments

This research is funded by Foundation for Science and Technology Development of Ton Duc Thang University (FOSTECT), website: http://fostect.tdt.edu.vn, under Grant FOSTECT.2015.BR.15.

 The authors would like to thank the referees for their valuable comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoai An Le Thi.

Appendices

Appendix 1: Interest rate stochastic models

Cf “Asset and Risk Management : Finance orientée Risque”, Louis Esch, Robert Kieffer, Thierry Lopez with the collaboration of Christian Berbé, Pascal Damel, Miche Debay and J.-F. Hannosset. De Boeck and soon in English at Wiley’s.

Appendix 2

$$\begin{aligned} dVA_t=VA_t(rdt + \sigma 'dB_t) \end{aligned}$$

We researched a suitable process so that the integrals \(\int _0^t VA_tdt\) and \(\int _0^t VA_tdB_t\) would have the meaning

$$\begin{aligned} VA_t=VA_0 + \int _{t=0}^T rVA_tdt + \int _{t=0}^T \sigma VA_tdB_t \end{aligned}$$

Itô’s formula as the function of g with two variables (tB) twice continuously differentiable over \(\mathbb {R}\)

$$\begin{aligned} g(t,B_t)=g(0,0)+\int _{s=t}^T\frac{\delta g}{\delta B}(s, B_s)dB_s + \int _{s=t}^T(\frac{\delta g}{\delta t} + \frac{1}{2} \frac{\delta ^2g}{\delta B^2})(s,B_s)ds \end{aligned}$$

where \(\frac{\delta g}{\delta t}, \frac{\delta g}{\delta B}, \frac{\delta ^2g}{\delta B^2}\) designate the partial derivatives of g. This formula can be written in the shape of a differential increment

$$\begin{aligned} dg(t,B_t)=\frac{\delta g}{\delta B}(t, B_t)dB_t + (\frac{\delta g}{\delta t} + \frac{1}{2} \frac{\delta ^2g}{\delta B^2})(t,B_t)dt \end{aligned}$$

Considering the function g(tB), a calculation with partial derivatives, combined with Itô’s formula demonstrate

$$\begin{aligned}&\displaystyle g(t,B) = VA_0e^{((r-\frac{\sigma ^2}{2})t+\sigma B)}\\&\displaystyle \frac{\delta g}{\delta t} = r - \frac{\sigma ^2}{2}, \quad \frac{\delta g}{\delta B} = \sigma , \quad \frac{\delta ^2 g}{\delta B^2} = \sigma ^2\\&\displaystyle g(t,B_t)=g(0,0) + \int _{s=t}^T((r-\frac{\sigma ^2}{2})+\frac{1}{2}\sigma ^2)(s,B_s)ds+\sigma \int _{s=t}^Tg(s,B_s) dB_s\\&\displaystyle \Leftrightarrow g(t,B_t)=g(0,0) + \int _{s=t}^T rg(s,B_s)ds + \sigma \int _{s=t}^T g(s,B_s) dB_s\\&\displaystyle \Leftrightarrow g(t,B_t)=VA_0 + \int _{s=t}^T g(s,B_s)dVA_s \end{aligned}$$

Appendix 3

Calculation of the Call value

  • \(PE_D\): Strike current debt value

  • \(P_{CALL}\)= CALL Price

  • \(P_{CALL}=e^{-rT}E(VA_T- PE_{DT})_+\)

  • \(P_{CALL}=e^{-rT} E(VA_{T\{VA_T \ge PE_{DT}\}})- e^{-rT} PE_{DT} Proba\{VA_T \ge PE_{DT}\}\)

with: \(VA_t = VA_0e^{((r-\frac{\sigma ^2}{2})T+\sigma B_t)}\) and \(B_T=N(0,\sqrt{T})\) with N a regular density law

$$\begin{aligned} N(x) = \int _{-\infty }^x e^{-\frac{\mu ^2}{2}}\frac{d\mu }{\sqrt{2\Pi }} \quad \text {and}\quad d_r=[(d_{z1}+\Pi )\times \sigma _r^\theta +\overline{r}^\theta ]dt\times P(\lambda ). \end{aligned}$$

The following quantities must be calculated

$$\begin{aligned} Proba\{VA_T \ge PE_{DT}\}= & {} \int \limits _R\left\{ VA_0e^{((r-\frac{\sigma ^2}{2})T+\sigma \mu )}\ge PE_D\right\} e^{-\frac{\mu ^2}{2}}\frac{dv}{\sqrt{2\Pi }} \Leftrightarrow \\ Proba\{VA_T \ge PE_{DT}\}= & {} \int \limits _R\left\{ VA_0e^{((r-\frac{\sigma ^2}{2})T+\sigma \sqrt{T}v)}\ge PE_D\right\} e^{-\frac{v^2}{2}}\frac{dv}{\sqrt{2\Pi }} \Leftrightarrow \end{aligned}$$

Starting \(u=\sqrt{T}v\)

$$\begin{aligned} Proba\{VA_T \ge PE_{DT}\}= \int \limits _R\left\{ \ln VA_0e^{\left( \left( r-\frac{\sigma '^2}{2}\right) T+\sigma '\sqrt{T}v\right) }\ge \ln PE_D\right\} e^{-\frac{v^2}{2}}\frac{dv}{\sqrt{2\Pi }} \Leftrightarrow \end{aligned}$$

Using the properties of the Nepierian logarithm

$$\begin{aligned} Proba\{VA_T \ge PE_{DT}\}= \int \limits _R\left\{ \frac{\ln \frac{VA_0}{PE_D} + (r-\frac{\sigma ^2}{2})T}{\sigma \sqrt{T}} \ge -v\right\} e^{-\frac{v^2}{2}}\frac{dv}{\sqrt{2\Pi }} \Leftrightarrow \end{aligned}$$

Specifying accurately the rate distribution model and stating \(v=-w\)

$$\begin{aligned}&Proba\{VA_T \ge PE_{DT}\}=\\&\quad \int \limits _R\left\{ \frac{\ln \frac{VA_0}{PE_D} + [((d_{z1}+\Pi )\times \sigma ^\theta _r+\overline{r}^\theta )\times P(\lambda ) - \frac{\sigma ^2}{2}]T}{\sigma \sqrt{T}} \ge w\right\} e^{-\frac{w^2}{2}}\frac{dw}{\sqrt{2\Pi }}\\&\quad \Leftrightarrow Proba\{VA_T \ge PE_{DT}\}=N \left[ \frac{\ln \frac{VA_0}{PE_D} + [((d_{z1}+\Pi )\times \sigma ^\theta _r+\overline{r}^\theta )\times P(\lambda ) - \frac{\sigma ^2}{2}]T}{\sigma \sqrt{T}} \right] \\ \end{aligned}$$

The following quantity must also be calculated : \(E(VA_{T\{VA_T \ge PE_{DT}\}})\)

$$\begin{aligned} E(VA_{T\{VA_T \ge PE_{DT}\}})= & {} \int \limits _R\left\{ VA_0e^{((r-\frac{\sigma ^2}{2})T+\sigma \mu } \ge PE_D\right\} VA_0 e^{((r-\frac{\sigma ^2}{2})T+\sigma \mu } e^{-\frac{\mu ^2}{2T}} \frac{d\mu }{\sqrt{2\Pi T}}\\ \Leftrightarrow E(VA_{T\{VA_T \ge PE_{DT}\}})= & {} VA_0 + e^{rT} \int \limits _R\left\{ \frac{\ln \frac{{ VA}_0}{PE_D} + (r-\frac{\sigma ^2}{2})T}{\sigma \sqrt{T}} \ge -v\right\} \\&\times e^{-\frac{\sigma ^2}{2}T + v\sigma \sqrt{T}-\frac{v^2}{2}}\frac{dv}{\sqrt{2\Pi }}\\ \Leftrightarrow E(VA_{T\{VA_T \ge PE_{DT}\}})= & {} VA_0 + e^{rT} \int \limits _R\left\{ \frac{\ln \frac{VA_0}{PE_D} + (r-\frac{\sigma ^2}{2})T}{\sigma \sqrt{T}} \ge -v\right\} \\&\times e^{-\frac{(v-\sigma \sqrt{T})^2}{2}}\frac{dv}{\sqrt{2\Pi }}\\ \end{aligned}$$

Stating \(w=v-\sigma \sqrt{T}\) and specifying accurately the rate distribution model

$$\begin{aligned}&E(VA_{T\{VA_T \ge PE_{DT}\}})=\\&\quad VA_0e^{rT} \int \limits _R\left\{ \frac{\ln \frac{VA_0}{PE_D} + [((d_{z1}+\Pi )\times \sigma ^\theta _r+\overline{r}^\theta )\times P(\lambda ) - \frac{\sigma ^2}{2}]T}{\sigma \sqrt{T}} \ge -(w+\sigma \sqrt{T})\right\} \\&\qquad \times e^{-\frac{w^2}{2}}\frac{dw}{\sqrt{2\Pi }}\\&\qquad \Leftrightarrow Proba\{VA_T \ge PE_{DT}\}\\&\qquad =VA_0e^{rT}N \left[ \frac{\ln \frac{VA_0}{PE_D} + [((d_{z1}+\Pi )\times \sigma ^\theta _r+\overline{r}^\theta )\times P(\lambda ) - \frac{\sigma ^2}{2}]T}{\sigma \sqrt{T}} \right] . \end{aligned}$$

At last, we obtain, the valuation of the option

$$\begin{aligned} \left( \begin{array}{l} PCALL=VA_0~N(d1(VA_0,PE_D,T,r,\sigma '))-PE_De^{T[(d_{z1}+\Pi )\times \sigma _r^\theta +\overline{r}^\theta ]\times P(\lambda )} ~ N(d2(VA_0, PE, T, r,\sigma '))\\ d1=\frac{\ln \frac{VA_0}{PE_D}+\left( [(d_{z1}+\Pi )\times \sigma _r^\theta +\overline{r}^\theta ]\times P(\lambda )-\frac{\sigma '^{2}}{2}\right) T}{\sigma '\sqrt{T}}\\ d2=d1-\sigma '\sqrt{T} \end{array} \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damel, P., Le Thi, H.A. & Peltre, N. The challenge in managing new financial risks: adopting an heuristic or theoretical approach. Ann Oper Res 247, 581–598 (2016). https://doi.org/10.1007/s10479-016-2231-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2231-3

Keywords

Navigation