1510.09156v1 [cs.DM] 30 Oct 2015

arXiv

Noname manuscript No.
(will be inserted by the editor)

A Multiple Search Operator Heuristic for the Max-k-cut
Problem

Fuda Ma - Jin-Kao Hao*

the date of receipt and acceptance should be inserted later

Abstract The max-k-cut problem is to partition the vertices of a weighted
graph G = (V,E) into k > 2 disjoint subsets such that the weight sum of
the edges crossing the different subsets is maximized. The problem is referred
as the max-cut problem when k = 2. In this work, we present a multiple
operator heuristic (MOH) for the general max-k-cut problem. MOH employs
five distinct search operators organized into three search phases to effectively
explore the search space. Experiments on two sets of 91 well-known benchmark
instances show that the proposed algorithm is highly effective on the max-k-cut
problem and improves the current best known results (lower bounds) of most
of the tested instances. For the popular special case k = 2 (i.e., the max-cut
problem), MOH also performs remarkably well by discovering 6 improved best
known results. We provide additional studies to shed light on the alternative
combinations of the employed search operators.

Keywords Max-k-cut and max-cut - Graph partition - Multiple search
strategies - Tabu list - Heuristics

1 Introduction

Let G = (V, E) be an undirected graph with vertex set V' = {1,...,n} and
edge set E C V x V, each edge (i,7) € E being associated a weight w;; € Z.
Given k € [2,n], the max-k-cut problem is to partition the vertex set V into k

k
(k is given) disjoint subsets {S1,S2,..., Sk}, (i.e., Y Si=V,8;#0,5nS; =

Fuda Ma
LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France

E-mail: ma@info.univ-angers.fr

Jin-Kao Hao* (Corresponding author)

LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
Institut Universitaire de France, Paris, France

E-mail: hao@info.univ-angers.fr

http://arxiv.org/abs/1510.09156v1

2 F. Ma and J.K. Hao

(,Vi # j), such that the sum of weights of the edges from FE whose endpoints
belong to different subsets is maximized, i.e.,

max Z Z Wiy . (1)

1<p<q<ki€Sy,jES,

Particularly, when the number of partitions equals 2 (i.e., k = 2), the problem
is referred as the max-cut problem. The max-k-cut is equivalent to the mini-
mum k-partition (MkP) problem which aims to partition the vertex set of a
graph into k disjoint subsets so as to minimize the total weight of the edges
joining vertices in the same partition [I3].

The max-k-cut problem is a classical NP-hard problem in combinatorial
optimization and can not be solved exactly in polynomial time [16]. More-
over, when k& = 2, the max-cut problem is one of the Karp’s 21 NP-complete
problems [I7] which has been the subject of many studies in the literature.

In recent decades, the max-k-cut problem has attracted increasing atten-
tion for its applicability to numerous important applications in the area of data
mining [9], VLSI layout design [2[6L[7,[825], frequency planning [I0], sports
team scheduling [24], and statistical physics [I9] among others.

Given its theoretical significance and large application potential, a number
of solution procedures for solving the max-k-cut problem (or its equivalent
MKkP) have been reported in the literature. In [I3], the authors provide a review
of several exact algorithms which are based on branch-and-cut and semidefinite
programming approaches. But due to the high computational complexity of
the problem, only instances of reduced size (i.e., |V| < 100) can be solved by
these exact methods in a reasonable computing time.

For large instances, heuristic and metaheuristic methods are commonly
used to find "good-enough” sub-optimal solutions. In particular, for the very
popular max-cut problem, many heuristic algorithms have been proposed, in-
cluding simulated annealing and tabu search [I], breakout local search [3], pro-
jected gradient approach [4], discrete dynamic convexized method[20], rank-2
relaxation heuristic [5], variable neighborhood search [I1], greedy heuristics
[15], scatter search [23], global equilibrium search [27] and its parallel version
[26], memetic search [29121], and unconstrained binary quadratic optimization
[28]. Compared with max-cut, there are much fewer heuristics for the general
max-k-cut problem or its equivalent MkP. Among the rare existing studies,
we mention the very recent discrete dynamic convexized method of [31], which
formulates the max-k-cut problem as an explicit mathematical model and uses
an auxiliary function based local search to find satisfactory results.

In this paper, we partially fill the gap by presenting a new and effective
heuristic algorithm for the general max-k-cut problem. The main originality
of the proposed algorithm is its multi-phased multi-strategy approach which
relies on five distinct local search operators for solution transformations. These
operators are organized into three different search phases (descent-based im-
provement, diversified improvement, perturbation) to ensure an effective exam-
ination of the search space. The basic idea of our approach is as follows. The

A Multiple Search Operator Heuristic for the Max-k-cut Problem 3

descent-based improvement procedure aims to locate a good local optimum
from an initiating solution. This is achieved with two dedicated intensification
operators. Then the diversified improvement phase discovers promising areas
around the obtained local optimum by applying two additional operators. Once
an improved solution is found, the search switches back to the descent-based
improvement phase to make an intensive exploitation of the regional area. If
the search is trapped in a deep local optimum, the perturbation phase applies
a random search operator to definitively lead the search to a distant region
from which a new round of the three-phased search procedure starts. This
process is repeated until a stop condition is met.

We assess the performance of the proposed algorithm on two sets of well-
known benchmarks with a total of 91 instances which are commonly used to
test max-k-cut and max-cut algorithms in the literature. Computational re-
sults show that the proposed algorithm competes very favorably with respect
to the existing max-k-cut heuristics, by improving the current best known re-
sults on most instances. Moreover, when the algorithm is applied to the very
popular max-cut problem with & = 2, the results yielded by our algorithm
remain highly competitive compared with the most effective and dedicated
max-cut algorithms. In particular, for 6 (large) instances, our algorithm man-
ages to improve the current best known solutions reported by any existing
specific max-cut algorithms of the literature.

The rest of the paper is organized as follows. In Section [2] the proposed
algorithm is fully presented. Section[3 provides computational results and com-
parisons with other state-of-the-art algorithms in the literature. Section M is
dedicated to a analysis of several essential parts of the proposed algorithm.
Concluding remarks are given in Section

2 Multiple search operator heuristic for max-k-cut
2.1 General working scheme

The proposed multiple operator heuristic algorithm (MOH) for the general
max-k-cut problem is described in Algorithm [0 whose components are ex-
plained in the following subsections. The algorithm explores the search space
(Section [Z2]) by alternately applying five distinct search operators (O; to Os)
to make transitions from the current solution to a neighboring solution (Sec-
tion [Z4). Basically, from an initial solution, the algorithm makes, with two
operators (O7 and Os), a descent local search to reach a local optimum I
(Alg. [lines 11 — 21, descent-based improvement phase, Section [Z6]). Then
the algorithm continues to the diversified improvement phase (Alg. [lines
30 — 40, Section [Z7)) which applies two other operators (O3 and Oy) to locate
new promising regions around the local optimum 7. This second phase ends
each time a better solution than the current local optimum I is discovered or
when a maximum number of diversified moves w is reached. In both cases, the
search returns to the descent-based improvement phase with the best solution

F. Ma and J.K. Hao

Algorithm 1 General procedure for the max-k-cut problem

42:
43:
44.
45:
46:

: Require: Graph G = (V, E), number of partitions k, max number w of diversified moves, max number

& of consecutive non-improvement rounds of the descent improvement and diversified improvement
phases before the perturbation phase, probability p for applying operator Oz, ~ the perturbation
strength.

: Ensure: the best solution [j.s; found so far

I < Generate_initial _solution(V/, k) > I is a partition of V' into k subsets
Tpest — I > Ipest Records the best solution found so far
t fio — f(I) > fio Records the objective value of the latest local optimum reached by O1 U O
T frest < f(I) > frest Records the best objective value found so far

Cnon impv < 0> Counter of consecutive non-improvement rounds of descent and diversified search

: Iter <+ 0 > lteration counter
: while stop condition not satisfied do

/* lines[IIl to 21} Descent-based improvement phase by applying O1 and Oz, see Section [Z4F/
repeat
while f(I ® Oy) > f(I) do > Descent Phase by applying operator O1
I+ 1&0;, > Perform the move defined by O;
Update A > A is the bucket structure recording move gains for vertices, see Section
Iter < Iter + 1
end while
if f(I® O2) > f(I) then > Descent Phase by applying operator Ox
I+ 1&®0
Update A; Iter < Iter + 1;
end if
until I can not be improved by operator O; and O
fio < f(I)
if f(I)> foest then
fvest < F(I); Tpest < I > Update the best solution found so far
Cnon impv < 0 > Reset counter cnon impv
else
Cnon_impuv £ Cnon_impv +1
end if
/* lines 30l to @G} Diversified improv. phase by applying O3 and O4 at most w times, see Section
4 */
Cdiv < 0 > Counter cg;, records number of diversified moves
repeat
if Random(0,1) < p then > Random(0,1) returns a random real number between 0 to 1
I+ I® 03
else
I+ I®O0y4
end if
Update H (H, Iter, \) > Update tabu list H where X is the tabu tenure, see Section [24]
Update A
Iter < Iter + 1; cqiv < Cagiv + 1
until ¢q;, > wor f(I) > fio
/* Perturbation phase by applying Os if fyes: not improved for £ rounds of phases 1-2, see Sect.
*/

if Cnon_impv > 5 then

I+ 1&O0s > Apply random perturbation ~y times, see Section [Z8]
Cnon_impv «~ 0
end if
end while

found as its new starting point. If no improvement is obtained in £ descent-
based improvement and diversified improvement phases, the search is judged
to be trapped in a deep local optimum. To escape this deep local optimum and
jump to an unexplored region, the search turns into a perturbation-based di-
versification phase (Alg. [lines 42—45), which uses a random operator (O5) to
strongly transform the current solution (Section [Z])). The perturbed solution
serves then as the new starting solution of the next round of the descent-based
improvement phase. This process is iterated until the stop criterion is met.

A Multiple Search Operator Heuristic for the Max-k-cut Problem 5

2.2 Search space and evaluation solution

Recall that the goal of max-k-cut is to partition the vertex set V into k& sub-
sets such that the sum of weights of the edges between the different sub-
sets is maximized. As such, we define the search space {2 explored by our
algorithm as the set of all possible partitions of V' into k disjoint subsets,

k
Q= {{S1,52,...,Sk} :) S;=V.5NS; =0,5 C V,Vi # j}, where each
candidate solution is called a k-cut.

For a given partition or k-cut I = {S1,52,...,Sk} € 2, its objective value
f(I) is the sum of weights of the edges connecting two different subsets:

= > Y wy 2)

1<p<g<ki€Sp,jESq

Then, for two candidate solutions I’ € {2 and I"” € (2, I' is better than I"
if and only if f(I') > f(I”). The goal of our algorithm is to find a solution
Tpest € 2 with f(Ipest) as large as possible.

2.3 Initial solution

The MOH algorithm needs an initial solution to start its search. Generally, the
initial solution can be provided by any means. In our case, we adopt a random-
ized two step procedure. First, from k empty subsets S; = 0,Vi € {1,...,k},
we assign each vertex v € V' to a random subset S; € {S1,53,...,S5;}. Then
if some subsets are still empty, we repetitively move a vertex from its current
subset to an empty subset until no empty subset exists.

2.4 Move operations and search operators

Our MOH algorithm iteratively transforms the incumbent solution to a neigh-
boring solution by applying some move operations. Typically, a move operation
(or simply a move) changes slightly the solution, e.g., by transferring a vertex
to a new subset. Formally, let I be the incumbent solution and let mv be a
move, we use I’ < I & muv to denote the neighboring solution I’ obtained by
applying muv to I.

Associated to a move operation mv, we define the notion of move gain
A, which indicates the objective change between the incumbent solution
and the neighboring solution obtained by applying the move, i.e.,

where f is the optimization objective (see Formula ().

In order to efficiently evaluate the move gain of a move, we develop dedi-
cated techniques which are described in Section In this work, we employ
two basic move operations: the ’single-transfer move’ and the ’double-transfer
move’. These two move operations form the basis of our five search operators.

6 F. Ma and J.K. Hao

— Single-transfer move (st): Given a k-cut I = {S1,S5,...,5;}, a vertex
v € S, and a target subset S, with p,q € {1,...,k},p # ¢, the 'single-
transfer move’ displaces a single vertex v € S, from its current subset
Sp to the target subset S; # S,. We denote this move by st(v, Sy, Sy) or
v — 9.

— Double-transfer move (dt): Given a k-cut I = {S1, Sa, ..., Sk}, the ’"double-
transfer move’ displaces vertex u from its subset S., to a target subset
Stu # Scu, and displaces vertex v from its current subset S, to a target
subset Sy, # Sep. We denote this move by dt(u, Sey, Stu; v, Sev, Sty) OF
dt(u,v), or still dt.

From these two basic move operations, we define five distinct search oper-
ators Op — Os which indicate precisely how these two basic move operations
are applied to transform an incumbent solution to a new solution. After an
application of any of these search operators, the move gains of the impacted
moves are updated according to the dedicated techniques explained in Section

— The O; search operator applies the single-transfer move operation. Pre-
cisely, Oy selects among the (k — 1)n single-transfer moves a best move
v — Sy such that the induced move gain A(,_,g,) is maximum. If there
are more than one such moves, one of them is selected at random. Since
there are (k—1)n candidate single-transfer moves from a given solution, the
time complexity of O; is bounded by O(kn). The proposed MOH algorithm
employs this search operator as its main intensification operator which is
complemented by the O, search operator to locate good local optima.

— The O3 search operator is based on the double transfer move operation

and selects a best dt move with the largest move gain Ag. If there are
more than one such moves, one of them is selected at random.
Let dt(u, Scu, Stu; vy Sevy Sto) (Sew # Stus Sev # Stw) be a double-transfer
move, then the move gain Ay of this double transfer move can be calculated
by a combination of the move gains of its two underlying single-transfer
moves (A, s,, and A, g,) as follows:

Adt(u,v) = Au—)Sm + Av%Stv + www (4)

where wy,, is the weight of edge e(u,v) € E and v is a coefficient which is
determined as follows:

_27 if Scu = ch; Stu = Stv
_17 if Scu = ch; Stu 7é Stv
_17 if Scu 7é ch; Stu = Stv

1, if Scw # Sev, Stu = Sevs St # Seu (5)
1, if Sew # Sev, Stu # Sevs Sto = Seu

2, if Sew # Sev, Stu = Sevs Stv = Seu

0, if Sew # Sevy Stu # Scvs Stv # Seu, Stu # Sto

A Multiple Search Operator Heuristic for the Max-k-cut Problem 7

It is clear that for a given incumbent solution, there are (k — 1)?n? candi-
date double-transfer moves denoted as set DT'. Seeking directly the move
with the maximum Ag; among all these possible moves would just be too
computationally expensive. In order mitigate this problem, we devise a
strategy to accelerate the move evaluation process.

From Formula (4]), one observes that among all the vertices in V', only the
vertices verifying the condition wy, # 0 and Ag;(,,) > 0 are of interest for
the double-transfer moves. Thus, by examining all the endpoint vertices of
edges in F, we shrink the move combinations by building a reduced subset:
DTH = {st(v,5,,5;) € DT : Ist(u,Sp,Sy) € DT, wyp # 0, Age(uw) >
0}. Based on DT'®, the complexity of examining all possible double-transfer
moves drops to O(]F|), which is not related to k. In practice, one can
examine ¢|E| endpoint vertices in case | F| is too large. We empirically set
¢ = 0.1/d, where d is the highest degree of the graph.

To summarize, the O search operator selects two st moves u — Sy, and
v — Sy, from the reduced set DT, such that the combined move gain
Agi(u,v) according to Formula (@) is maximum.

Operator O3 is used when O; exhausts its improving moves and provides
a first means to help the descent-based improvement phase to escape the
current local optimum and discover solutions of increasing quality.

— Like Oy, the O3 search operator selects a best single-transfer move (i.e.,
with the largest move gain) while considering a tabu list H [14]. The tabu
list is a memory which is used to keep track of the performed st moves
to avoid revisiting previously encountered solutions. As such, each time a
best st move is performed to move a vertex v from its original subset to a
target subset, v becomes tabu and is forbidden to move back to its original
subset for the next A iterations (called tabu tenure), which is dynamically
determined as follows.

A = rand(3,n/10) (6)

where rand(3,n/10) denotes a random integer between 3 and n/10.
Based on the tabu list, O3 considers all possible single-transfer moves ex-
cept those forbidden by the tabu list H and selects the best st move with
the largest move main Ag;. Note that a forbidden move is always selected
if the move leads to a solution better the best solution found so far. This
is called aspiration in tabu search terminology [14].

Operator Os is jointly used with operator O4 to ensure the diversified im-
provement search.

— Like Os, the O4 search operator is based on the double-transfer opera-
tion. However, O, strongly constraints the considered candidate dt moves
with respect to two target subsets which are randomly selected. Specifically,
O, operates as follows. Select two target subsets S, and S, at random, and
then select two single-transfer moves u — S, and v — S, such that the
combined move gain Ay, according to Formula @) is maximum.

8 F. Ma and J.K. Hao

Operator Oy is jointly used with operator O3 to ensure the diversified im-
provement search phase.

— The Oj search operator is based on a randomized single-transfer move
operation. Os first selects a random vertex v € V and a random target
subset Sp, where v ¢ S, and then moves v from its current subset to
Sp. This operator is used to change randomly the incumbent solution for
the purpose of (strong) diversification when the search is considered to be
trapped in a deep local optimum.

Among the five search operators, four of them need to find a single-transfer
move with the maximum move gain. To ensure a high computational efficiency
of these operators, we develop below a streamlining technique for fast move
gain evaluation and move gain updates.

2.5 Bucket sorting for fast move gain evaluation and updating

As mentioned in Section 2.4} to choose an appropriate move, it is crucial for the
algorithm to be able to rapidly evaluate a number of candidate moves at each
iteration. Since all the search operators basically rely on the single-transfer
move operation, we devise a fast incremental evaluation technique based on a
bucket data structure and a streamlining calculation to keep and update the
move gains after each move application.

Our streamlining technique can be described as follows: let v — S, be the
move of transferring vertex v from its current subset S, to any other subset
Sy, € {1,...,k},x # cu. Then initially, each move gain can be determined
by the following Formula:

A’U*}SI = Z Wyi — Z Wy, T e {1,...,]{}}71}#0[,& (7)

1€ Scu,iF£v JESy

where w,; and w,; are respectively the weights of edges e(v, 1) and e(v, 7).

Suppose the move v — Sy, i.e., displacing v from its current subset S, to
target subset Sy, is performed, the algorithm needs to update the move gains
by performing the following calculation:

1. A’U‘)SCV = 7A’U*>Sdu
2~ A’U*}de = 0
3. for each S, # Sy, Sz # Squ,

A'U—)SQc = AU—)SI

A Multiple Search Operator Heuristic for the Max-k-cut Problem 9

4. for each v € V — {v}, moving u € S, to each other subset S, € S —{S¢,},

Au—>5’y - 2wuv; if Scu = ch; Sy = de

Au—)Sy; if Scu == ch; Sy 7£ Sdm Sy 7é ch
A o Auﬂsy + 2wy, if Seu = Sav, Sy = Sev (8)
wBy = Auﬂsy; if Scu = de7 Sy 7é ch

Au—)Sy + Wy, if Scu 7é ch; Scu 7é Sd'ua Sy = Sc’u
Au—)Sy — Wyw, if Scu 7é ch; Scu 7é Sd'ua Sy = de

It is easy to see that only the move gains of vertices affected by this move
(i.e., the displaced vertex and its adjacent vertices) will be updated, which
reduces the computation time significantly.

Normally, the move gains can be stored in an array, with which the time
for finding the best move with maximum move gain grows linearly with the
number of vertices (O(n)). For large problem instances (very large n), the
required time can still be quite high. To avoid unnecessary searching for the
vertex for the best move, we adopts a bucket structure which keeps vertices
ordered by their move gains in decreasing order. The bucket sorting was pro-
posed by Fiduccia and Mattheyes to improve the Kerninghan-Lin heuristic for
the network partitioning problem [12]. In this work, we adapt for the first time
the idea of bucket sorting for the max-k-cut problem. This is done by using &
arrays of buckets, one for each partition subset S; € {S1,Sa,...,Sk}. In each
bucket array i, 1 < i < k, the j** entry stores the vertices with the move gain
A, g, currently equaling j, where those vertices are maintained by a doubly
linked list. To ensure a direct access to the vertex in the doubly linked lists, as
suggested in [I2], the algorithm also maintains another array for all vertices,
where each element points to its corresponding vertex in the doubly linked
lists.

Fig. [shows an illustrative example of the bucket structure for max-k-cut
for k = 3. In the graph of the example (Fig. [left), there are a total of 8
vertices belonging to the 3 subsets 57,52 and Ss. The bucket structure for
this graph is shown Fig. [(right). From the graph, one observes that the move
gains of moving vertices e, g, h to subset S; equal —1, then those three vertices
are stored in the entry of By with index of -1. Notice that vertices e, g, h are
managed as a doubly linked list. The array AI shown at the bottom of Fig. [II
manages position indexes of for all vertices.

For each array of buckets, finding the best vertex with maximum move
gain is equivalent to finding the first non-empty bucket from top of the array
and then selecting a vertex in its doubly linked list. If there are more than
one vertices in the doubly linked list, a random vertex in this list is selected.
To further reduce the searching time, the algorithm memorizes the position of
the first non-empty bucket (e.g., gmaxi, gmazs, gmazxs in Fig. [I).

After each move, the bucket structure is updated by recomputing the move
gains (see Formula (8)) of the affected vertices which include the moved vertex
and its adjacent vertices, and shifting them to appropriate buckets.

10 F. Ma and J.K. Hao

Bucket Array for S, Bucket Array for S, Bucket Array for S;
(B1) (B2) (B3)
Zoound 8Bbound Zbound
3 3 3
2 2 gmaxi > 2 (b |
1 gmax—f | 1
gmaxi— 0 0 0
1 -1 -1
2 2 -2
3 3 -3
~Zbound ~Zbound

‘ eoo | ooo‘ LX) ‘ o‘.j’fof‘ooo | eoe | ooo‘
a b c d e f g h
Array of vertices index (AI)

Bucket update while applying a move operator O;:
find maximum move gain max(gmax,, gmax,, gmax;)
move B;:2:b to B;:-2

move B:0:a to By:-1; move B,:1:d to B,:0

move Bj;:1:ato B;:-1; move B;:-1:d to B;:-3

Fig. 1: An example of bucket structure for max-3-cut

For instance, the steps of performing an O; move based on Fig. [l are shown
as follows: First, obtain the index of maximum move gain in the bucket arrays
by calculating max(gmaxy, gmazs, gmaxs), which equals gmazxs in this case.
Second, select randomly a vertex indexed by gmaxs, vertex b in this case. At
last, update the positions of the affected vertices a, b, d.

The complexity of each move consists in searching for the vertex with
maximum move gain, recomputing the move gain for the affected vertices and
updating the bucket structure. The vertex with maximum move gain can be
simply obtained in constant time. Recomputing move gain is in linear time
relative to the number of affected vertices. The time of updating the bucket
structure is also only related to the number of affected vertices. As a result,
k has no influence on the performance of the proposed algorithm in terms of
computing time. However, it does require a greater amount of memory as k
increases.

2.6 Descent-based improvement phase for intensified search

The descent-based local search is used to obtain a local optimum from a given
starting solution. As described in Algorithm [I] (lines 11 - 21), we alternatively
uses two search operators O; and Os defined in Section [24] to improve a solu-
tion until reaching a local optimum. Starting from the given initial solution,
the procedure progressively applies O; to the incumbent solution. According

A Multiple Search Operator Heuristic for the Max-k-cut Problem 11

to the definition of O in Section 2.4 at each step, the procedure examines
all possible single-transfer moves and selects a move v — S, with the largest
move gain A, g, subject to A, s, > 0, and then performs that move. After
the move, the algorithm updates the bucket structure of move gains according
to the technique described in Section

When the incumbent solution can not be improved by the O; operator (i.e.,
Vo € V,VSq, Ayss, < 0), the procedure turns to operator O which makes one
best double-transfer move. If an improved solution is discovered with respect
to the local optimum reached by O;, we are in a new promising area. We
switch back to operator O; to resume an intensified search. The descent-based
improvement phase stops when no better solution can be found with O; and
O5. This solution is a local optimum I, with respect to the single-transfer and
double-transfer moves and serves as the input solution of the second search
phase which is explained in the next section.

2.7 Diversified improvement phase for discovering promising region

The descent-based local phase described in Section alone can not escape
the best local optimum I, it encounters. The diversified improvement search
phase is used 1) to jump out of this local optimum and 2) to intensify the search
around this local optimum with the hope of discovering a solution better than
the input local optimum Ij,.

The diversified improvement search procedure alternatively uses two search
operators O3 and Oy defined in Section [Z4] to perform a move until the stop
criterion is met. The application of O3 or Oy is determined probabilistically:
with probability p, O3 is applied; with 1 — p, Oy is applied.

When O3 is selected, the algorithm searches for a best single transfer move
v — S, with maximum move gain A, s, > 0 which is not forbidden by
the tabu list or verifies the aspiration criterion. Each performed move is then
recorded in the tabu list H and is classified tabu for the next A (calculated
by Formula (@) iterations. The bucket structure is updated to actualize the
impacted move gains accordingly. Note that the algorithm only keeps and
updates the tabu list during the diversified improvement search phase. Once
this second search phase terminates, the tabu list is cleared up.

Similarly, when Oy is selected, two subsets are selected at random and
a best double-transfer dt move with maximum move gain Agy; is determined
from the bucket structure. After the move, the bucket structure is updated to
actualize the impacted move gains. It is notated that in case of multiple best
double-transfer moves, one of them is chosen at random.

The diversified improvement search procedure terminates once a solution
better than the input local optimum I;, is found, or a maximum number w
of diversified moves (O3 or Oy) is reached. Then the algorithm returns to the
descent-based search procedure and use the current solution I as a new starting
point for the descent-based search. If the best solution founded so far (fpest)
can not be improved over a maximum allowed number £ of consecutive rounds

12 F. Ma and J.K. Hao

of the descent-based improvement and diversified improvement phases, the
perturbation phase (Section 2:8)) is invoked to displace the search to a distant
region.

2.8 Perturbation phase for strong diversification

The diversified improvement phase makes it possible for the search to escape
some local optima. However, the algorithm may still get deeply stuck in a non-
promising regional search area. This is the case when the best-found solution
frest can not be improved after £ consecutive rounds of descent and diversified
improvement phases. Thus the random perturbation is developed to displace
the search into a more distant region.

The basic idea of the perturbation consists in applying the Os operator
v times. In other words, this perturbation phase moves v randomly selected
vertices from their original subset to a new and randomly selected subset. Here,
v is used to control the perturbation strength; a large (resp. small) v value
changes strongly (resp. weakly) the incumbent solution. In our case, we adopt
v = 0.1|V], i.e., as a percent of the number of vertices. After the perturbation
phase, the search returns to the descent-based improvement phase with the
perturbed solution as its new starting solution.

3 Experimental results and comparisons
3.1 Benchmark instances

To evaluate the performance of the proposed MOH approach, we carry out
computational experiments on two sets of well-known benchmarks with a to-
tal of 91 large instances of the literaturd]. The first set (G-set) is composed
of 71 graphs with 800 to 20000 vertices and an edge density from 0.02% to
6%. These instances are generated by a machine-independent graph genera-
tor including toroidal, planar and random weighted graphs. These instances
are available from: http://www.stanford.edu/yyye/yyye/Gset. The second set
comes form [5], arising from 30 cubic lattices with randomly generated inter-
action magnitudes. Since the 10 small instances (with less than 1000 vertices)
are very easy for our algorithm, only the results of the 20 larger instances
with 1000 to 2744 vertices are reported. These well-known benchmarks are
frequently used to evaluate the performance of max-bisection, max-cut and

max-k-cut algorithms [3L[11L27,2628]29.30,31].

3.2 Experimental protocol

Our MOH algorithm is programmed in C+-+ and compiled with GNU g+-+
(optimization flag "-O2"). Our computer is equipped with a Xeon E5440,/2.83GHz

L Our best results are available at:/http://www.info.univ-angers.fr/pub/hao/maxkcut/MOHResults.zip!

http://www.stanford.edu/yyye/yyye/Gset
http://www.info.univ-angers.fr/pub/hao/maxkcut/MOHResults.zip

A Multiple Search Operator Heuristic for the Max-k-cut Problem 13

CPU with 2GB RAM. When testing the DIMACS machine benchmarkﬁ, our
machine requires 0.43, 2.62 and 9.85 CPU time in seconds respectively for
graphs r300.5, r400.5, and r500.5 compiled with g++ -02.

3.3 Parameters

The proposed algorithm requires several parameters: tabu tenure A\, max al-
lowed number w of consecutive T'S moves, max allowed number £ of consecutive
rounds of descent improvement and diversified improvement phases, probabil-
ity p for selecting tabu-based move operator Oz, and number of perturbation
moves. The parameter values were determined by performing a preliminary ex-
periment on a selection of 10 representative and challenging instances from the
G-set benchmark: G22, G23, G25, G29, G33, G35, G36, G37, G38, G40. For
each parameter, we tested a range of different values, while keeping the rest of
the parameters to their default values. To report our computational results, we
adopt the set of parameter values (A = rand(3,|V]/10),w = 500, & = 1000, p =
0.5,y = 0.1]V]) for all our experiments throughout the paper, though it would
be possible to attain better results by further fine-turning the parameters.

Considering the stochastic nature of our MOH algorithm, each instance is
independently solved multiple times: 20 times for max-cut (k = 2), 10 times
for max-k-cut (k > 2). For the purpose of fair comparisons reported in Sections
B4 and BA] we follow the reference algorithms and use a timeout limit as the
stop criterion of our MOH algorithm. The timeout limit is set to be 30 minutes
for graphs with |V| < 5000, 120 minutes for graphs with 10000 > |V'| > 5000,
240 minutes for graphs with |V| > 10000.

To fully evaluate the performance of the proposed algorithm, we investi-
gate two comparisons with the state of the art algorithms. First, we focus
on the max-k-cut problem (k = 2,3,4,5), where we thoroughly compare our
algorithm with the recent discrete dynamic convexized algorithm [31] which
provides the most competitive results for the general max-k-cut problem in
the literature. Secondly, for the special max-cut case (k = 2), we compare
our algorithm with six most recent max-cut algorithms [31[I8/27.28[291[30]. Tt
should be noted that those state of the art max-cut algorithms are specifically
designed the particular max-cut problem while our algorithm is developed for
the general max-k-cut problem. Normally, the dedicated algorithms are ad-
vantaged since they can better explore the particular features of the max-cut
problem.

3.4 Comparison with state-of-the-art max-k-cut algorithms

In this section, we present the results attained by our MOH algorithm for the
max-k-cut problem. As mentioned above, we compare the proposed algorithm

2 dfmaxiftp://dimacs.rutgers.edu/pub/dsj/clique/

ftp://dimacs.rutgers.edu/pub/dsj/clique/

14 F. Ma and J.K. Hao

with the discrete dynamic convexized algorithm (DC) [31], which was pub-
lished very recently. DC was tested on a computer with a 2.11 GHz AMD
processor and 1 GB of RAM. According to the Standard Performance Evalu-
ation Cooperation (SPEC) (www.spec.org), this computer is 1.4 times slower
than the computer we used for our experiments. Note that DC is the only
heuristic algorithm available in the literature, which published computational
results for the general max-k-cut problem.

Tables [to M respectively show the computational results of our MOH
algorithm (k = 2,3,4,5) on the 2 sets of benchmarks in comparison with
those of the DC algorithm. The first two columns of the tables indicate the
name and the number of vertices of the graphs. Columns 3 to 7 present the
results attained by our algorithm, where fycs: and fu,4 show the best objective
value and the average objective value over 20 runs, std gives the standard
deviation and time(s) indicates the average CPU time in seconds required by
our algorithm to reach the best objective value fpest- Columns 8 to 9 present
the results (frest, favg, time(s)) attained by DC. Considering the difference
between our computer and the computer used by DC, we normalize the times
of DC by dividing them by 1.4 according to the SPEC mentioned above. The
entries marked as "-" in the tables indicate that the corresponding results are
not available. The entries in bold indicate that those results are better than
the results provided by the reference DC algorithm. The last column gives the
gaps gap of the best objective value for each instance between our algorithm
and DC. A positive gap implies an improved result.

From Table [[] on max-2-cut, one observes that our algorithm achieves a
better frest (best objective value) for 50 out of 74 instances reported by DC,
while a better f,., (average objective value) for 71 out of 74 instances. Our
algorithm matches the results on other instances and there is no result worse
than that obtained by DC. The average standard deviation for all 91 instances
is only 2.82, which shows our algorithm is stable and robust.

From Table 2 Bl and [which respectively show the comparative results
on max-3-cut, max-4-cut and max-5-cut. One observes that our algorithm
achieves much higher solution quality on more than 90 percent of 44 instances
reported by DC while getting 0 worse result. Moreover, even our average results
(favg) are better than the best results reported by DC.

Our algorithm is also highly competitive in terms of computing time. It is
not fully fair to directly compare the columns times for the two algorithms,
because the times indicate the average time needed for the algorithm to at-
tain its fpes: value, while the fpess values obtained by the two algorithms are
different. One observes that for most cases, our algorithm consumes signifi-
cantly less time while obtaining better results, indicating that our algorithm
can reach better solutions with less computing times. This is particularly true
when £ > 2.

We conclude that the proposed algorithm for the general max-k-cut prob-
leme dominates the state of the art reference DC algorithm both in terms of
solution quality and computing time.

A Multiple Search Operator Heuristic for the Max-k-cut Problem 15

3.5 Comparison with state-of-the-art max-cut algorithms

Our algorithm is designed for the general max-k-cut problem for £ > 2. The
assessment of the last section focuses on the general case. In this section, we
further evaluate the performance of the proposed algorithm for the special
max-cut problem (k = 2).

Recall that max-cut has been largely studied in the literature for a long
time and there are many powerful heuristics which are specifically designed
for the problem. These state-of-the-art max-cut algorithms constitute thus
relevant references for our comparative study. In particular, we adopt the
following 6 best performing sequential algorithms published since 2012.

1. Global equilibrium search (GES) [27] - an algorithm sharing ideas similar
to simulated annealing and utilizing accumulated information of search
space to generate new solutions for the subsequent stages. The reported
results of GES were obtained on a PC with a 2.83GHz Intel Core QUAD
Q9550 CPU and 8.0GB RAM.

2. Breakout local search (BLS) [3] - a heuristic algorithm integrating a local
search and adaptive perturbation strategies. The reported results of BLS
were obtained on a PC with 2.83GHz Intel Xeon E5440 CPU and 2GB
RAM.

3. Two memetic algorithms respective for the max-cut problem (MACUT)
[29] and the max-bisection problem (MAMBP) [30] - integrating a grouping
crossover operator and a tabu search procedure. The results reported in
the two papers were obtained on a PC with a 2.83GHz Intel Xeon E5440
CPU and 2GB RAM.

4. GRASP-Tabu search algorithm [28] - a method converting the max-cut
problem to the UBQP problem and solving it by integrating GRASP and
tabu search. The reported results were obtained on a PC with a 2.83GHz
Intel Xeon E5440 CPU and 2GB RAM.

5. Tabu search (TS-UBQP) [18] - a tabu search algorithm designed for UBQP.
The evaluation of TS-UBQP were performed on a PC with a 2.83GHz Intel
Xeon E5440 CPU and 2GB RAM.

One notices that except GES, the other five reference algorithms were run
on the same computer platform. Nevertheless, it is still difficult to make a fully
fair comparison of the computing time, due to the differences on programming
language, compiling options, and termination conditions, etc. Our comparison
thus focuses on the best solution achieved by each algorithm. Recall that
for our algorithm, the timeout limit is set to be 30 minutes for graphs with
|[V| < 5000, 120 minutes for graphs with 1000 > |V'| > 5000, 240 minutes for
graphs with |V| > 10000. Our algorithm employs thus the same timeout limits
as [29] on the graphs |V| < 10000, but for the graphs |V| > 10000, we use 240
minutes to compare with BLS [3].

Table[Bl gives the comparative results on the 91 instances of the two bench-
marks. Columns 1 and 2 respectively indicate the instance name and the num-
ber of vertices of the graphs. Columns 3 shows the current best known objec-

16 F. Ma and J.K. Hao

tive value fy,. reported by any existing max-cut algorithm in the literature
including the latest parallel GES algorithm [26]. Columns 4 to 9 give the best
objective value obtained by the 6 reference algorithms: GES [27], BLS [3],
MACUT [29], TS-UBQP [I8], GRASP-TS/PM [28], MAMBP [30]. Note that
MAMBP is designed for the max-bisection problem (i.e., balanced max-cut),
however it achieves some previous best known max-cut results. The last col-
umn '"MOH’ recalls the best results of our algorithm from Table Il The rows
denoted by ’Better’, 'Equal’ and "Worse’ respectively indicate the number of
instances for which our algorithm obtains a result of better, equal and worse
quality relative to each reference algorithm. The entries are reported in the
form of x/y/z, where z denotes the total number of the instances tested by our
algorithm, y is the number of the instances tested by a reference algorithm
and x indicates the number of instances where our algorithm achieved 'Bet-
ter’, "Equal’ or "Worse’ results. The results in bold mean that our algorithm
has improved the best known results. The entries marked as "-" in the table
indicate that the results are not available.

From Table Bl one observes that our algorithm is able to improve the
current best known results in the literature for 6 instances, and match the
best known results for 73 instances. For 12 cases (in italic), even if our results
are worse than the current best known results achieved by the latest parallel
GES algorithm [26], they are still better than the results of any other existing
algorithms including TS-UBQP [28] and BLS [3]. Note that the results of the
parallel GES algorithm are achieved on a more powerful computing platform
(Intel CoreTM i7-3770 CPU @3.40 GHz and 8.0 GB RAM) and with longer
time limits (4 parallel processes at the same time and 1 hour for each process).

Such a performance is remarkable given that we are comparing our more
general algorithm designed for max-k-cut with the best performing specific
max-cut algorithms. The experimental evaluations presented in this section
and last section demonstrate that our algorithm not only performs well on
the general max-k-cut problem, but also remains highly competitive for the
special case of the popular max-cut problem.

A Multiple Search Operator Heuristic for the Max-k-cut Problem 17

Table 1: Comparative results for max-2-cut between the proposed MOH algo-
rithm and DC [31].

Instance V] MOH DC gap
foest favg std time(s) frest favg time(s)
G1 800 11624 11624.00 0.00 1.5 11624 11617.20 7 0
G2 800 11620 11620.00 0.00 4.6 11620 11610.00 4 0
G3 800 11622 11622.00 0.00 1.2 11622 11612.20 .8 0
G4 800 11646 11646.00 0.00 5.2 11646 11633.90 3.8 0
G5 800 11631 11631.00 0.00 1.0 11631 11623.20 7 0
G6 800 2178 2178.00 0.00 3.0 2178 2175.90 .1 0
GT7 800 2006 2006.00 0.00 3.0 2006 1997.70 .6 0
G8 800 2005 2005.00 0.00 5.7 2005 2000.00 .2 0
G9 800 2054 2054.00 0.00 3.2 2049 2043.50 .9 5
G10 800 2000 2000.00 0.00 68.1 1999 1998.40 3.3 1
G11 800 564 564.00 0.00 0.2 564 563.80 .8 0
G12 800 556 556.00 0.00 3.5 556 555.40 7 0
G13 800 582 582.00 0.00 0.9 582 580.00 .9 0
G14 800 3064 3064.00 0.00 251.3 3057 3054.30 T 7
G15 800 3050 3050.00 0.00 52.2 3044 3038.00 4 6
G16 800 3052 3052.00 0.00 93.7 3052 3039.60 .1 0
G17 800 3047 3047.00 0.00 129.5 3043 3037.80 .6 4
G18 800 992 992.00 0.00 112.6 989 984.00 .1 3
G19 800 906 906.00 0.00 266.9 906 899.90 4 0
G20 800 941 941.00 0.00 43.7 941 938.20 .3 0
G21 800 931 931.00 0.00 155.3 931 926.00 5.2 0
G22 2000 13359 13357.00 1.91 352.4 13339 13315.90 3.7 20
G23 2000 13344 13344.00 0.00 433.8 13323 13298.90 .2 21
G24 2000 13337 13336.70 0.46 777.9 13314 13286.00 .1 23
G25 2000 13340 13335.50 2.40 442.5 13324 13293.70 T 16
G26 2000 13328 13325.50 2.31 535.1 13313 13282.20 .6 15
G27 2000 3341 3341.00 0.00 42.2 3326 3285.40 .9 15
G28 2000 3298 3298.00 0.00 707.2 3292 3272.00 .5 6
G29 2000 3405 3397.85 5.31 555.2 3390 3357.20 3.4 15
G30 2000 3413 3412.15 0.36 1427.0 3398 3369.50 5.5 15
G31 2000 3310 3307.85 0.91 592.6 3295 3273.90 4 15
G32 2000 1410 1410.00 0.00 65.7 1408 1402.70 .9 2
G33 2000 1382 1381.60 0.80 504.1 1378 1373.70 .8 4
G34 2000 1384 1384.00 0.00 84.2 1378 1376.70 .5 6
G35 2000 7687 7681.65 1.59 796.7 7647 7632.20 .5 40
G36 2000 7680 7673.60 1.62 1553.2 7625 7618.50 3.1 55
G37 2000 7691 7685.75 2.26 1195.1 7640 7627.70 3.7 51
G38 2000 7688 7683.60 2.27 30.6 7641 7614.40 .9 47
G39 2000 2408 2405.35 1.85 787.7 2375 2352.50 .3 33
G40 2000 2400 2397.35 2.43 472.5 2384 2371.70 .8 16
G41 2000 2405 2405.00 0.00 377.3 2377 2357.40 .8 28
G42 2000 2481 2476.35 2.01 65.1 2469 2441.30 .1 12
G43 1000 6660 6660.00 0.00 1.2 6657 6648.90 7 3
G44 1000 6650 6650.00 0.00 5.3 6650 6643.70 .8 0
G45 1000 6654 6654.00 0.00 6.9 6647 6640.70 .3 7
G46 1000 6649 6648.90 0.30 67.3 6647 6637.90 .0 2
G47 1000 6657 6657.00 0.00 43.3 6657 6648.50 .8 0
G48 3000 6000 6000.00 0.00 0.0 6000 6000.00 .1 0
G49 3000 6000 6000.00 0.00 0.0 6000 6000.00 .3 0
G50 3000 5880 5880.00 0.00 532.1 5880 5880.00 .5 0
G51 1000 3848 3848.00 0.00 189.2 3842 3831.50 .6 6
G52 1000 3851 3851.00 0.00 209.7 3840 3830.50 T 11
G53 1000 3850 3849.95 0.22 299.3 3844 3835.00 .3 6
G54 1000 3852 3851.10 0.30 190.4 3831 3824.40 .0 21
G55 5000 10299 10283.40 7.13 1230.4 - - - -
G56 5000 4016 4007.47 6.49 990.4 - - - -
G57 5000 3494 3486.80 2.45 1528.3 - - -
G58 5000 19288 19275.40 4.58 1522.3 - - - -
G59 5000 6087 6077.19 7.90 2498.8 - - - -
G60 7000 14190 14173.00 6.98 2945.4 - - -
G61 7000 5798 5782.67 5.72 6603.3 -
G62 7000 4868 4851.73 7.10 5568.6 - - - -
G63 7000 27033 27019.20 6.72 6492.1 - - - -
G64 7000 8747 8700.87 17.28 4011.1 - - -
G65 8000 5560 5554.40 2.73 4709.5 - - - -
G66 9000 6360 6354.53 2.37 6061.9 - - - -
Ge67 10000 6942 6936.53 2.88 14214.3 - -
GT70 10000 9544 9527.80 9.93 6364.0 - -
GT72 10000 6998 6991.53 2.67 6586.6 - -
GT77 14000 9928 9920.00 3.08 9863.6 - - - -
G81 20000 14036 14020.30 8.50 10422.0 - - - -
3d1101000 1000 896 896.00 0.00 4.4 896 888.70 113.3 0
3d1102000 1000 900 900.00 0.00 6.8 900 898.50 111.5 0
3d1103000 1000 892 892.00 0.00 147.5 888 884.70 113.0 4
3d1104000 1000 898 898.00 0.00 2.7 898 895.00 112.2 0
3d1105000 1000 886 886.00 0.00 11.7 884 882.80 115.0 2
3d1106000 1000 888 888.00 0.00 2.1 888 883.70 114.7 0
3d1107000 1000 900 899.60 1.00 42.9 898 892.40 114.1 2
3d1108000 1000 882 882.00 0.00 8.0 880 877.70 120.0 2
3d1109000 1000 902 902.00 0.00 18.7 902 894.40 113.6 0
3d11010000 1000 894 894.00 0.00 6.8 894 893.40 110.9 0
3d1141000 2744 2446 2445.80 1.00 298.7 2434 2416.40 1039.7 12
3d1142000 2744 2458 2458.00 0.00 223.3 2444 2431.00 1016.2 14
3d1143000 2744 2444 2440.60 1.55 376.1 2426 2415.00 1012.3 18
3d1144000 2744 2450 2448.20 1.55 619.6 2440 2425.30 997.5 10
3d1145000 2744 2446 2445.50 1.61 475.1 2432 2422.40 999.3 14
3d1146000 2744 2452 2450.50 1.84 565.9 2438 2430.00 1035.4 14
3d1147000 2744 2444 2442.10 1.84 172.4 2428 2413.40 1022.7 16
3d1148000 2744 2448 2446.10 1.73 265.9 2432 2424.40 1030.7 16
3d1149000 2744 2428 2425.20 1.48 64.5 2418 2403.70 1020.1 10
3d11410000 2744 2458 2456.80 2.00 538.2 2438 2429.30 1018.1 20
Better 50/74/91 71/74/91
Equal 24/74/91 3/74/91

Worse 0/74/91 0/74/91

18 F. Ma and J.K. Hao

Table 2: Comparative results for max-3-cut between the proposed MOH algo-
rithm and DC [31]

Instance V] MOH DC gap
frest favg std time(s) frest time(s)
G1 800 15165 15164.90 0.36 605.4 15127 363.1 38
G2 800 15172 15171.20 0.99 539.2 15159 355.4 13
G3 800 15173 15173.00 0.00 227.4 15149 361.8 24
G4 800 15184 15181.40 2.46 657.0 - - -
G5 800 15193 15193.00 0.00 81.0 - - -
G6 800 2632 2631.95 0.22 269.6 -
G7 800 2409 2408.40 1.07 491.3 - -
G8 800 2428 2427.55 0.67 682.5 - - -
G9 800 2478 2475.85 2.52 692.4 - - -
G10 800 2407 2406.40 0.86 930.9 - - -
G11 800 669 667.80 0.75 708.9 660 172.1 9
G12 800 660 658.95 0.50 992.9 655 151.8 5
G13 800 686 685.40 0.58 586.8 679 164.4 7
G14 800 4012 4009.45 1.88 45.7 3984 193.9 28
G15 800 3984 3982.40 0.58 282.0 3960 194.2 24
G16 800 3991 3986.30 1.87 10.8 3958 194.6 33
G17 800 3983 3981.00 1.05 79.9 - - -
G18 800 1207 1205.60 1.56 5.9 - - -
G19 800 1081 1078.05 2.38 3.0 - - -
G20 800 1122 1115.00 4.05 16.1
G21 800 1109 1106.75 2.30 90.9 - - -
G22 2000 17167 17157.80 7.62 561.0 17008 1515.3 159
G23 2000 17168 17156.70 6.40 888.4 17021 1564.5 147
G24 2000 17162 17152.10 4.98 321.4 17037 1592.9 125
G25 2000 17163 17155.20 3.44 1276.8 - - -
G26 2000 17154 17146.30 4.61 883.4 - - -
G27 2000 4020 4013.80 3.33 576.8 - - -
G28 2000 3973 3966.45 5.10 766.1 -
G29 2000 4106 4097.30 5.40 285.6 - - -
G30 2000 4119 4109.90 5.34 1482.9 - - -
G31 2000 4003 3999.20 6.69 819.7 - - -
G32 2000 1653 1651.85 0.73 522.3 1635 910.7 18
G33 2000 1625 1622.30 0.95 1233.4 1603 868.0 22
G34 2000 1607 1604.00 1.00 1752.1 1589 931.3 18
G35 2000 10046 10039.90 2.59 1304.4 9965 1280.9 81
G36 2000 10039 10034.40 3.81 1291.6 9945 1301.5 94
G37 2000 10052 10047.80 1.96 64.1 9952 1318.0 100
G38 2000 10040 10035.50 3.26 888.4 - - -
G39 2000 2903 2890.05 6.75 176.5 - - -
G40 2000 2870 2850.65 8.08 1632.8 - - -
G41 2000 2887 2862.90 9.77 1729.4 - - -
G42 2000 2980 2964.30 5.99 48.3 - - -
G43 1000 8573 8573.00 0.00 282.2 8510 366.1 63
G44 1000 8571 8569.60 2.35 705.5 8526 351.0 45
G45 1000 8566 8564.85 1.11 246.5 8515 360.1 51
G46 1000 8568 8564.60 2.01 1061.4 - - -
G47 1000 8572 8568.70 2.72 621.5 - - -
G48 3000 6000 6000.00 0.00 0.3 5998 1850.9 2
G49 3000 6000 6000.00 0.00 0.7 6000 1895.3 0
G50 3000 6000 6000.00 0.00 116.5 5998 1819.8 2
G51 1000 5037 5031.35 1.90 944.6 - - -
G52 1000 5040 5037.50 0.81 12.8 - - -
G53 1000 5039 5038.00 1.05 307.2 - - -
G54 1000 5036 5033.55 2.29 880.1 -
G55 5000 12429 12423.70 2.61 6573.0 -
G56 5000 4752 4741.90 7.84 1168.4 - - -
G57 5000 4083 4079.00 1.55 5457.3
G58 5000 25195 25182.10 8.89 397.3 - - -
G59 5000 7262 7246.70 9.20 3575.1 - - -
G60 7000 17076 17067.00 4.40 6745.0 - - -
G61 7000 6853 6842.10 5.26 3608.6
G62 7000 5685 5681.50 1.43 6250.1 - - -
G63 7000 35322 35301.60 10.35 6546.8 - - -
G64 7000 10443 10408.80 25.23 1563.7 - - -
G65 8000 6490 6485.80 2.04 3077.6 - - -
G66 9000 7416 7411.50 2.42 5126.0 - - -
G67 10000 8086 8083.50 2.29 1048.1 - - -
G70 10000 9999 9999.00 0.00 6 - - -
G72 10000 8192 8186.70 3.35 6393.0 - - -
G77 14000 11578 11568.90 4.01 1899.0 - - -
G81 20000 16321 16313.00 4.05 4821.4 - - -
3d1101000 1000 1067 1066.10 0.54 679.6 1043 238.2 24
3d1102000 1000 1072 1071.95 0.22 560.9 1044 242.4 28
3d1103000 1000 1065 1063.60 0.66 1303.4 1042 233.4 23
3d1104000 1000 1071 1070.30 0.46 526.5 1045 244.0 26
3d1105000 1000 1064 1061.90 0.77 71.0 1039 229.2 25
3d1106000 1000 1063 1061.80 0.60 882.4 1032 252.7 31
3d1107000 1000 1075 1074.40 0.58 467.2 1053 240.0 22
3d1108000 1000 1071 1069.95 0.38 178.5 1049 232.5 22
3d1109000 1000 1079 1078.20 0.81 510.1 1052 234.6 27
3d11010000 1000 1070 1069.50 0.50 493.8 1044 247.2 26
3d1141000 2744 2924 2919.75 2.45 493.0 2845 1805.5 79
3d1142000 2744 2935 2929.25 2.53 1103.3 2856 1826.3 79
3d1143000 2744 2912 2909.50 1.40 1087.0 2829 1898.8 83
3d1144000 2744 2924 2919.90 2.41 458.5 2861 1779.2 63
3d1145000 2744 2914 2911.25 1.92 665.5 2839 1796.7 75
3d1146000 2744 2913 2909.00 2.00 331.3 2834 1815.3 79
3d1147000 2744 2913 2909.30 1.73 1381.3 2834 1824.4 79
3d1148000 2744 2925 2919.40 4.05 729.1 2845 1782.1 80
3d1149000 2744 2906 2901.50 2.62 125.2 2823 1768.9 83
3d11410000 2744 2933 2927.65 2.22 589.6 2851 1799.4 82
Better 43/44/91
Equal 1/44/91

Worse 0/44/91

A Multiple Search Operator Heuristic for the Max-k-cut Problem

19

Table 3: Comparative results for max-4-cut between the proposed MOH algo-

rithm and DC [31]

DC

Instance [V gap
frest favg std time(s) frest time(s)
G1 800 16803 16801.00 0.87 522.1 16740 450.2 63
G2 800 16809 16808.00 1.12 694.2 16735 455.8 74
G3 800 16806 16804.70 1.05 909.6 16752 431.9 54
G4 800 16814 16811.20 1.50 967.7 - - -
G5 800 16816 16815.80 0.92 628.0 - - -
G6 800 2751 2748.45 1.16 1775.5 -
G7 800 2515 2513.75 0.92 1128.1 - -
G8 800 2525 2523.35 0.74 1551.5 - - -
G9 800 2585 2583.35 1.02 324.7 - - -
G10 800 2510 2507.60 1.38 788.1 - - -
G11 800 677 676.00 0.32 400.7 675 171.3 2
G12 800 664 662.25 0.59 814.2 660 180.0 4
G13 800 690 689.10 0.45 689.2 685 187.5 5
G14 800 4440 4435.35 1.96 1095.5 4402 243.1 38
G15 800 4406 4403.40 0.89 1757.7 4373 249.7 33
G16 800 4415 4414.05 1.02 957.2 4378 246.1 37
G17 800 4411 4406.45 2.31 3.9 - - -
G18 800 1261 1253.90 3.19 5.9 - -
G19 800 1121 1115.35 3.71 6.6 - - -
G20 800 1168 1160.95 3.26 7.9
G21 800 1155 1148.25 3.75 1079.7 - - -
G22 2000 18776 18765.70 5.71 1013.6 18615 1988.3 161
G23 2000 18777 18765.80 5.77 1454.7 18612 1941.9 165
G24 2000 18769 18763.60 3.79 521.1 18620 1822.8 149
G25 2000 18775 18767.60 4.40 1493.2 - - -
G26 2000 18767 18761.20 4.49 635.3 - - -
G27 2000 4201 4188.50 4.63 754.0 - - -
G28 2000 4150 4138.85 5.97 492.5
G29 2000 4293 4281.65 5.71 1725.1 - - -
G30 2000 4305 4296.40 4.14 661.2 - - -
G31 2000 4171 4164.40 6.47 1063.9 - - -
G32 2000 1669 1667.85 1.32 349.0 1659 1140.7 10
G33 2000 1638 1634.65 1.32 0.0 1629 1052.4 9
G34 2000 1616 1611.70 1.79 1.0 1604 1105.0 12
G35 2000 11111 11106.20 2.16 324.7 11007 1890.3 104
G36 2000 11108 11101.40 2.92 340.5 10993 1738.6 115
G37 2000 11117 11112.50 2.40 693.8 11023 1754.2 94
G38 2000 11108 11101.10 3.16 955.3 - - -
G39 2000 3006 2998.70 3.97 22.7 - - -
G40 2000 2976 2955.65 9.01 961.3 - - -
G41 2000 2983 2970.30 6.91 35.5 - -
G42 2000 3092 3084.05 4.80 285.2 - - -
G43 1000 9376 9373.95 1.53 1656.1 9306 423.0 70
G44 1000 9379 9373.55 2.58 1340.2 9315 430.5 64
G45 1000 9376 9375.10 0.95 612.1 9312 463.5 64
G46 1000 9378 9375.35 1.99 639.0 - - -
G47 1000 9381 9377.05 2.04 1194.2 - - -
G48 3000 6000 6000.00 0.00 0.0 6000 1673.8 0
G49 3000 6000 6000.00 0.00 0.0 6000 1675.6 0
G50 3000 6000 6000.00 0.00 0.0 6000 1678.9 0
G51 1000 5571 5567.65 2.04 143.6 - - -
G52 1000 5584 5581.15 1.75 129.9 - - -
G53 1000 5574 5571.85 1.47 67.1 - - -
G54 1000 5579 5576.25 1.60 13.8 -
G55 5000 12498 12498.00 0.00 0.1 -
G56 5000 4931 4917.10 6.49 4190.5 - - -
G57 5000 4112 4110.50 1.22 2942.0
G58 5000 27885 27870.90 8.72 4297.1 - - -
G59 5000 7539 7515.10 15.09 4782.7 - - -
G60 7000 17148 0.00 1.4 - - -
G61 7000 7110 5.12 6440.2
G62 7000 5743 3 2.77 3804.6 - - -
G63 7000 39083 5 9.19 6515.7 - - -
G64 7000 10814 10797.40 13.29 4493.0 - - -
G65 8000 6534 6525.40 4.49 14.8 - - -
G66 9000 7474 7467.80 4.31 21.7 - - -
G67 10000 8155 8142.50 5.59 29.6 - - -
G70 10000 9999 9999.00 0.00 0.2 - - -
G72 10000 8264 8254.60 7.39 15.3 - -
G77 14000 11674 11658.90 10.12 63.2 - -
G81 20000 16470 16454.30 8.50 271.4 - - -
3d1101000 1000 1103 1100.60 1.05 1273.1 1073 304.4 30
3d1102000 1000 1102 1100.00 0.95 29.6 1070 351.3 32
3d1103000 1000 1108 1106.40 0.95 225.0 1072 341.0 36
3d1104000 1000 1103 1101.65 0.92 564.5 1076 323.5 27
3d1105000 1000 1098 1096.30 0.84 578.3 1074 334.4 24
3d1106000 1000 1097 1095.15 0.92 928.2 1063 358.3 34
3d1107000 1000 1114 1112.20 1.10 712.6 1093 308.3 21
3d1108000 1000 1105 1103.00 0.77 478.7 1079 276.1 26
3d1109000 1000 1115 1113.45 0.92 641.0 1086 271.3 29
3d11010000 1000 1109 1106.10 0.89 1083.6 1088 277.2 21
3d1141000 2744 3016 3012.05 1.91 563.0 2893 1990.5 123
3d1142000 2744 3026 3019.80 2.19 364.2 2893 2007.3 133
3d1143000 2744 3006 3001.70 2.97 367.1 2892 1956.1 114
3d1144000 2744 3012 3007.85 2.04 943.5 2897 1980.3 115
3d1145000 2744 3006 3001.20 2.17 1146.8 2882 1972.2 124
3d1146000 2744 3005 3001.35 1.50 256.6 2888 1948.9 117
3d1147000 2744 3007 3001.95 2.50 301.0 2879 1995.7 128
3d1148000 2744 3018 3014.50 2.02 1632.9 2883 1982.7 135
3d1149000 2744 2999 2993.95 2.78 394.8 2877 2024.5 122
3d11410000 2744 3023 3021.15 1.69 1075.8 2904 2007.4 119
Better A1/44/91
Equal 3744791

Worse 0/44/91

20 F. Ma and J.K. Hao

Table 4: Comparative results for max-5-cut between the proposed MOH algo-
rithm and DC [31]

Instance V] MOH DC gap
frest favg std time(s) frest time(s)
G1 800 16803 16801.00 0.87 522.1 16740 450.2 63
G2 800 16809 16808.00 1.12 694.2 16735 455.8 74
G3 800 16806 16804.70 1.05 909.6 16752 431.9 54
G4 800 16814 16811.20 1.50 967.7 - - -
G5 800 16816 16815.80 0.92 628.0 - - -
G6 800 2751 2748.45 1.16 1775.5 -
G7 800 2515 2513.75 0.92 1128.1 - -
G8 800 2525 2523.35 0.74 1551.5 - - -
G9 800 2585 2583.35 1.02 324.7 - - -
G10 800 2510 2507.60 1.38 788.1 - - -
G11 800 677 676.00 0.32 400.7 675 171.3 2
G12 800 664 662.25 0.59 814.2 660 180.0 4
G13 800 690 689.10 0.45 689.2 685 187.5 5
G14 800 4440 4435.35 1.96 1095.5 4402 243.1 38
G15 800 4406 4403.40 0.89 1757.7 4373 249.7 33
G16 800 4415 4414.05 1.02 957.2 4378 246.1 37
G17 800 4411 4406.45 2.31 3.9 - - -
G18 800 1261 1253.90 3.19 5.9 - - -
G19 800 1121 1115.35 3.71 6.6 - - -
G20 800 1168 1160.95 3.26 7.9
G21 800 1155 1148.25 3.75 1079.7 - - -
G22 2000 18776 18765.70 5.71 1013.6 18615 1988.3 161
G23 2000 18777 18765.80 5.77 1454.7 18612 1941.9 165
G24 2000 18769 18763.60 3.79 521.1 18620 1822.8 149
G25 2000 18775 18767.60 4.40 1493.2 - - -
G26 2000 18767 18761.20 4.49 635.3 - - -
G27 2000 4201 4188.50 4.63 754.0 - - -
G28 2000 4150 4138.85 5.97 492.5
G29 2000 4293 4281.65 5.71 1725.1 - - -
G30 2000 4305 4296.40 4.14 661.2 - - -
G31 2000 4171 4164.40 6.47 1063.9 - - -
G32 2000 1669 1667.85 1.32 349.0 1659 1140.7 10
G33 2000 1638 1634.65 1.32 0.0 1629 1052.4 9
G34 2000 1616 1611.70 1.79 1.0 1604 1105.0 12
G35 2000 11111 11106.20 2.16 324.7 11007 1890.3 104
G36 2000 11108 11101.40 2.92 340.5 10993 1738.6 115
G37 2000 11117 11112.50 2.40 693.8 11023 1754.2 94
G38 2000 11108 11101.10 3.16 955.3 - - -
G39 2000 3006 2998.70 3.97 22.7 - - -
G40 2000 2976 2955.65 9.01 961.3 - - -
G41 2000 2983 2970.30 6.91 35.5 - - -
G42 2000 3092 3084.05 4.80 285.2 - - -
G43 1000 9376 9373.95 1.53 1656.1 9306 423.0 70
G44 1000 9379 9373.55 2.58 1340.2 9315 430.5 64
G45 1000 9376 9375.10 0.95 612.1 9312 463.5 64
G46 1000 9378 9375.35 1.99 639.0 - - -
G47 1000 9381 9377.05 2.04 1194.2 - - -
G48 3000 6000 6000.00 0.00 0.0 6000 1673.8 0
G49 3000 6000 6000.00 0.00 0.0 6000 1675.6 0
G50 3000 6000 6000.00 0.00 0.0 6000 1678.9 0
G51 1000 5571 5567.65 2.04 143.6 - - -
G52 1000 5584 5581.15 1.75 129.9 - - -
G53 1000 5574 5571.85 1.47 67.1 - - -
G54 1000 5579 5576.25 1.60 13.8 -
G55 5000 12498 12498.00 0.00 0.1 -
G56 5000 4931 4917.10 6.49 4190.5 - - -
G57 5000 4112 4110.50 1.22 2942.0
G58 5000 27885 27870.90 8.72 4297.1 - - -
G59 5000 7539 7515.10 15.09 4782.7 - - -
G60 7000 17148 0.00 1.4 - - -
G61 7000 7110 5.12 6440.2
G62 7000 5743 2.77 3804.6 - - -
G63 7000 39083 9.19 6515.7 - - -
G64 7000 10814 10797.40 13.29 4493.0 - - -
G65 8000 6534 6525.40 4.49 14.8 - - -
G66 9000 7474 7467.80 4.31 21.7 - - -
G67 10000 8155 8142.50 5.59 29.6 - - -
G70 10000 9999 9999.00 0.00 0.2 - - -
G72 10000 8264 8254.60 7.39 15.3 - - -
G77 14000 11674 11658.90 10.12 63.2 - - -
G81 20000 16470 16454.30 8.50 271.4 - - -
3d1101000 1000 1103 1100.60 1.05 1273.1 1073 304.4 30
3d1102000 1000 1102 1100.00 0.95 29.6 1070 351.3 32
3d1103000 1000 1108 1106.40 0.95 225.0 1072 341.0 36
3d1104000 1000 1103 1101.65 0.92 564.5 1076 323.5 27
3d1105000 1000 1098 1096.30 0.84 578.3 1074 334.4 24
3d1106000 1000 1097 1095.15 0.92 928.2 1063 358.3 34
3d1107000 1000 1114 1112.20 1.10 712.6 1093 308.3 21
3d1108000 1000 1105 1103.00 0.77 478.7 1079 276.1 26
3d1109000 1000 1115 1113.45 0.92 641.0 1086 271.3 29
3d11010000 1000 1109 1106.10 0.89 1083.6 1088 277.2 21
3d1141000 2744 3016 3012.05 1.91 563.0 2893 1990.5 123
3d1142000 2744 3026 3019.80 2.19 364.2 2893 2007.3 133
3d1143000 2744 3006 3001.70 2.97 367.1 2892 1956.1 114
3d1144000 2744 3012 3007.85 2.04 943.5 2897 1980.3 115
3d1145000 2744 3006 3001.20 2.17 1146.8 2882 1972.2 124
3d1146000 2744 3005 3001.35 1.50 256.6 2888 1948.9 117
3d1147000 2744 3007 3001.95 2.50 301.0 2879 1995.7 128
3d1148000 2744 3018 3014.50 2.02 1632.9 2883 1982.7 135
3d1149000 2744 2999 2993.95 2.78 394.8 2877 2024.5 122
3d11410000 2744 3023 3021.15 1.69 1075.8 2904 2007.4 119
Better A1/44/91
Equal 3744791

Worse 0/44/91

A Multiple Search Operator Heuristic for the Max-k-cut Problem

21

Table 5: Comparative results of the proposed MOH algorithm with 6 state of
the art max-cut algorithms

Instance V| fpre GES BLS [3] MACUT [29] TS-UBQP [I8] TS/PM MAMBP [30] MOH
G1 800 11624 11624 11624 11624 11624 11624 11624 11624
G2 800 11620 11620 11620 11620 11620 11620 11617 11620
G3 800 11622 11622 11622 11622 11620 11620 11621 11622
G4 800 11646 11646 11646 - 11646 11646 11646 11646
G5 800 11631 11631 11631 - 11631 11631 11631 11631
G6 800 2178 2178 2178 - 2178 2178 2177 2178
G7 800 2006 2006 2006 2006 2006 2002 2006
G8 800 2005 2005 2005 - 2005 2005 2004 2005
G9 800 2054 2054 2054 - 2054 2054 2052 2054
G10 800 2000 2000 2000 - 2000 2000 1998 2000
G11 800 564 564 564 564 564 564 564 564
G12 800 556 556 556 556 556 556 556 556
G13 800 582 582 582 582 580 582 582 582
G14 800 3064 3064 3064 3064 3061 3063 3062 3064
G15 800 3050 3050 3050 3050 3050 3050 3050 3050
G16 800 3052 3052 3052 3052 3052 3052 3052 3052
G17 800 3047 3047 3047 - 3046 3047 3047 3047
G18 800 992 992 992 - 991 992 992 992
G19 800 906 906 906 - 904 906 905 906
G20 800 941 941 941 - 941 941 941 941
G21 800 931 931 931 - 930 931 930 931
G22 2000 13359 13359 13359 13359 13359 13349 13359 13359
G23 2000 13344 13342 13344 13344 13342 13332 13344 13344
G24 2000 13337 13337 13337 13337 13337 13324 13336 13337
G25 2000 13340 13340 13340 - 13332 13326 13340 13340
G26 2000 13328 13328 13328 13328 13313 13328 13328
G27 2000 3341 3341 3341 - 3336 3325 3341 3341
G28 2000 3298 3298 3298 - 3295 3287 3298 3208
G29 2000 3405 3405 3405 - 3391 3394 3403 3405
G30 2000 3413 3413 3412 - 3403 3402 3412 3413
G31 2000 3310 3310 3309 - 3288 3299 3309 3310
G32 2000 1410 1410 1410 1410 1406 1406 1410 1410
G33 2000 1382 1382 1382 1382 1378 1374 1382 1382
G34 2000 1384 1384 1384 1384 1378 1376 1384 1384
G35 2000 7686 7686 7684 7686 7678 7661 7686 7687
G36 2000 7680 7680 7678 7679 7670 7660 7678 7680
G37 2000 7691 7691 7689 7690 7682 7670 7689 7691
G38 2000 7688 7687 7687 - 7683 7670 7688 7688
G39 2000 2408 2408 2408 - 2397 2397 2408 2408
G40 2000 2400 2400 2400 - 2390 2392 2400 2400
G4l 2000 2405 2405 2405 - 2400 2398 2405 2405
G42 2000 2481 2481 2481 - 2469 2474 2481 2481
G43 1000 6660 6660 6660 6660 6660 6660 6659 6660
Gaa 1000 6650 6650 6650 6650 6639 6649 6650 6650
G45 1000 6654 6654 6654 6654 6652 6654 6654 6654
G46 1000 6649 6649 6649 - 6649 6649 6649 6649
Ga7 1000 6657 6657 6657 - 6656 6656 6657 6657
G48 3000 6000 6000 6000 6000 6000 6000 6000 6000
G49 3000 6000 6000 6000 6000 6000 6000 6000 6000
G50 3000 5880 5880 5880 5800 5880 5880 5880 5880
G51 1000 3848 3848 3848 - 3847 3847 3847 3848
G52 1000 3851 3851 3851 - 3849 3850 3851 3851
G53 1000 3850 3850 3850 - 3848 3848 3850 3850
G54 1000 3852 3852 3852 - 3851 3850 3851 3852
G55 5000 10299 - 10294 10299 10236 - 10299 10299
G56 5000 4017 - 4012 4016 3934 - 4016 4016
G57 5000 3494 - 3492 - 3460 - 3488 3494
G58 5000 19293 - 19263 - 19248 - 19276 19288
G59 5000 6086 - 6078 - 6019 - 6085 6087
G60 7000 14188 - 14176 14186 14057 - 14186 14190
G61 7000 5796 - 5789 - 5680 - 5796 5798
G62 7000 4870 4868 - 4822 4866 4868
G63 7000 27045 - 26997 - 26963 - 26754 27033
G64 7000 8751 - 8735 - 8610 - 8731 8747
G65 8000 5562 - 5558 5550 5518 - 5556 5560
G66 9000 6364 6360 6352 6304 6352 6360
G67 10000 6950 - 6940 6934 6894 - 6934 6942
G70 10000 9591 - 9541 - 9458 - 9580 9544
G72 10000 7006 - 6998 - 6922 - 6990 6998
G77 14000 9938 - 9926 - - 9900 9928
G81 20000 14048 - 14030 - - - 13978 14036
3d1101000 1000 896 896 - - - - - 896
3d1102000 1000 900 900 - - - - 900
3d1103000 1000 892 892 - - 892
3d1104000 1000 898 898 - - - - - 898
3d1105000 1000 886 886 - - - - - 886
3d1106000 1000 888 888 - - - 888
3d1107000 1000 900 900 - - - - - 900
3d1108000 1000 882 882 - - - - - 882
3d1109000 000 902 902 - - - - - 902
3d11010000 1000 894 894 - - - 894
3d1141000 2744 2446 2446 - - - - - 2446
3d1142000 2744 2458 2458 - - - - - 2458
3d1143000 2744 2442 2442 - - - 2444
3d1144000 2744 2450 2450 - - - 2450
3d1145000 2744 2446 2446 - - - - - 2446
3d1146000 2744 2452 2452 - - - - - 2452
3d1147000 2744 2444 2444 - - - 2444
3d1148000 2744 2448 2448 - - - - - 2448
3d1149000 744 2426 2426 - - - - - 2428
3d11410000 2744 2458 2458 - - - - - 2458
Better 6/91/91 4/74/91 20/71/91 7/30/91 17/69/91 29/54/91 33/71/91

Equal 73/91/91 70/74/91 51/71/91 23/30/91 22/69/91 25/54/91 37/71/91

Worse 12/91/91 0/74/91 0/71/91 0/30/91 0/69/91 0/54/91 1/71/90

22 F. Ma and J.K. Hao

4 Discussion

In this section, we investigate the role of several important ingredients of the
proposed algorithm, including the descent improvement search operators O
and Oy and the diversified improvement search operators O3 and O4. These
studies are based on the same 10 challenging instances selected to determine
the parameters (see Section B.3). Only results for max-cut are presented in
this section.

4.1 Impact of the descent improvement search operators

As described in Section 2.6 the proposed algorithm employs operators O; and
O5 for its descent improvement phase to obtain local optima. To analyze the
impact of these two operators, we implement three variants of our algorithm,
the first one using the operator O; alone, the second one using the union
01 U O3 such that the descent search procedure always chooses the best move
among the O1 and Oz moves [22], the third one using operator rand(Oy, O2)
where the descent procedure applies randomly and with equal probability O; or
O5, while keeping all the other ingredients and parameters fixed as described in
Section B3l The strategy used by our original algorithm is denoted as O1 + O,
which is detailed in Section Each selected instance is solved 10 times
by each of these variants and our original algorithm. The stop criterion is a
timeout limit of 30 minutes. The obtained results are presented in Table [
including the best objective value fycst, the average objective value fu,4 over
the 10 independent runs, as well as the CPU times in seconds to reach fpes:.
To evaluate the performance, we calculate the gaps between the best objective
values obtained by different strategies and the best objective values by our
original algorithm, which is shown in Fig. We also show in Fig.
the box and whisker plots which indicates, for different Oy, Oy combination
strategies, the distribution and the ranges of the obtained results for the 10
tested instances. The results are expressed as the additive inverse of percent
deviation of the averages results from the best known objective values obtained
by our original algorithm.

From Fig. one observes that for the tested instances, other combi-
nation strategies obtain fewer best known results compared to the strategy
01 + O2, and produce large gaps to the best known results on some instances.
From Fig. we observe a clear difference in the distribution of the results
with different strategies. For the results with the strategies of O + Os, the plot
indicates a smaller mean value and significantly smaller variation compared to
the results obtained by other strategies. We thus conclude that the strategy
used by our algorithm (O; + Oz) performs better than other strategies.

A Multiple Search Operator Heuristic for the Max-k-cut Problem 23

Table 6: Comparative results for max-cut with varying combination strategies
of 01 and O,

Instance O1 O1 U Oy

Soest favg time(s) Soest favg time(s)
G22 13359 13357.6 381.6 13359 13355.8 357.3
G23 13344 13343.6 473.4 13344 13344 550.9
G25 13338 13334 442.8 13339 13335.8 690.4
G29 3405 3398.22 211.1 3405 3396.4 254.2
G33 1382 1381.4 553.5 1382 1382 716.5
G35 7686 7681.3 755.4 7684 7679.1 449.6
G36 7680 7672 1367.1 7677 7672.5 408.1
G37 7690 7685.5 1039.2 7689 7683.4 1099.0
G38 7688 7684 135.2 7688 7681.2 177.8
G40 2400 2384.7 453.5 2396 2381.6 427.2
Instance rand(O1,O2) 01 + 02

Soest favg time(s) Soest favg time(s)
G22 13359 13356 365.3 13359 13357 438.2
G23 13344 13343.9 584.9 13344 13344 302.1
G25 13340 13336.4 408.8 13340 13335.5 451.5
G29 3405 3398.4 403.9 3405 3398.1 569.9
G33 1382 1381.8 585.2 1382 1381.4 667.4
G35 7686 7683.1 628.0 7687 7684.3 968.3
G36 7680 7672 944.8 7680 7675.3 1075.6
G37 7688 7681.7 1078.3 7691 7687.5 1133.2
G38 7688 7680.8 153.6 7688 7685.7 333.0
G40 2395 2388.8 412.4 2400 2385.2 467.1

4.2 Impact of the diversified improvement search operators

As described in Section 277 the proposed algorithm employs two diversified
operator Oz and Oy4 to enhance the search power of the algorithm and make it
possible for the search to visit new promising regions. The diversified improve-
ment procedure uses probability p to select O3 or O4. To analyze the impact
of operators O3 and Oy, we test our algorithm with p = 1 (using the opera-
tor O3 alone), p = 0.5 (equal application of O3 and O, used in our original
MOH algorithm), p = 0 (using the operator O, alone), while keeping all the
other ingredients and parameters fixed as described before. The stop criterion
is a timeout limit of 30 minutes. We then independently solve each selected
instance 10 times with those different values of p. The obtained results are
presented in Table [7, including the best objective value fyeq:, the average ob-
jective value fuyg over the 10 independent runs, as well as the CPU times in
seconds to reach fpest. To evaluate the performance, we again calculate the
gaps between different best objective values shown in Fig. and average
objective values shown in Fig. where the set of values fyest, favg, When
p = 0.5, are set as the reference values.

As Section 1] to evaluate the performance, we calculate the gaps between
the best objective values obtained with different values of p and the best
objective values by our original MOH algorithm (p = 0.5), which is shown in
Fig. We also show in Fig. the box and whisker plots which indicates,
for different values of p, the distribution and the ranges of the obtained results

24 F. Ma and J.K. Hao

——01

“ 71 —m-o01002

5 ~#-rand(01,02)
—>=01+02

-6

G22 G23 G25 G29 G33 G35 G36 G37 G38 G40

(a) fbest—st'r‘ategy — frestknown, €aps to best known objec-
tive values

0.8
—_ L]
S
8
S L]
T 0.6 - °
>
[0
=
@ .
L
0 0.4+
E
5]
=
X L]
B 0.2 . .
Fe)
o
S I T T T
0.0
1 T T 1
o1 01+02 01002 rand(01,02)
strategies

(b) (fbestknown - fzwgfstrateyy)/fbestk:nown * 100%7 gaps
to best known objective values

Fig. 2: Analysis of the move operators Oy, Oq

for the 10 tested instances. The results are expressed as the additive inverse of
percent deviation of the averages results from the best known objective values
obtained by our original algorithm.

Fig. discloses that using O3z or O, alone obtains fewer best known
results than using them jointly and also achieves significantly worse results on
some particular instances. From Fig. we observes a visible difference in
the distribution of the results with different strategies. For the results with the
parameter p = 0.5, the plot indicates a smaller mean value and significantly
smaller variation compared to the results obtained by other strategies. We thus

A Multiple Search Operator Heuristic for the Max-k-cut Problem 25

Table 7: Comparative results for max-cut with varying parameter p

Instance p=1 p=0 p=20.5

fbest favg time(s) fbest .favg time(s) fbest .favg time(s)
G22 13359 13350.1 352.7 13356 13355.2 440.6 13359 13357 438.2
G23 13344 13344 441.4 13338 13335.6 340.1 13344 13344 302.1
G25 13339 13335.1 426.1 13337 13333.5 412.9 13340 13335.5 451.5
G29 3405 3395.2 614.5 3402 3399.8 593.5 3405 3398.1 569.9
G33 1376 1373.6 519.9 1382 1382 609.2 1382 1381.4 667.7
G35 7686 7680.7 832.1 7680 7678.2 850.8 7687 7684.3 968.3
G36 7676 7669.2 1540.8 7671 7667.6 1304.8 7680 7675.3 1075.6
G37 7690 7681.2 1167.8 7685 7679.6 1053.8 7691 7687.5 1133.2
G38 7688 7681.4 275.1 7685 7679 257.3 7688 7685.7 333.0
G40 2394 2375.3 453.0 2399 2390.5 529.8 2400 2385.2 467.1

conclude that jointly using O3 and O4 with p = 0.5 is the best choice since it
produces better results in terms of both best results and average results.

5 Conclusion

Our multiple search operator algorithm (MOH) for the general max-k-cut
problem achieves a high level performance by including five distinct search
operators which are applied in three search phases. The descent-based im-
provement phase aims to discover local optima of increasing quality with two
intensification-oriented operators. The diversified improvement phase com-
bines two other operators to escape local optima and discover promising new
search regions. The perturbation phase is applied as a means of strong di-
versification to get out of deep local optimum traps. To obtain an efficient
implementation of the proposed algorithm, we developed streamlining tech-
niques based on bucket structures.

We demonstrated the effectiveness of the MOH algorithm both in terms of
solution quality and computation efficiency by a computational study on the
two sets of well-known benchmarks composed of 91 instances. For the general
max-k-cut problem, the proposed algorithm is able to improve 90 percent
of the current best known results available in the literature. Moreover, for
the very popular special case with £ = 2, i.e., the max-cut problem, MOH
also performs extremely well by improving 6 best known results which were
previously established by any max-cut algorithms of the literature including
several recent algorithms published since 2012.

We also investigated alternative strategies for combing search operators
and justified the combination adopted in the proposed MOH algorithm.

Given that most ideas of the proposed algorithm are general enough, it is
expected that they can be useful to design effective heuristics for other graph
partitioning problems.

26 F. Ma and J.K. Hao

0 -

14

2 4

3 4

4 -

.5 -

.6 N

7 =—p=0
8 - —=-p=1
9 A —=p=0.5
-10

G22 G23 G25 G29 G33 G35 G36 G37 G38 G40

(a) fbest—p — foestknown, €aps between fyeq; obtained with
different p values to best known objective values

-
o
o
1
.

0.75

0.50 -

o

i

a
I

gaps to best known objetive values (%)

o

o

o
1

L]
ﬁ =S [
1
0 0.5
values of parameter p

(b) (fbestknown - favg—p)/fbestknown * 100%7 gaps to best
known objective values

Fig. 3: Analysis of the move operators O3, Oy

Acknowledgment

The work is partially supported by the LigeRo project (2009-2014) from the
Region of Pays de la Loire (France) and the PGMO (2014-0024H) project from
the Jacques Hadamard Mathematical Foundation. Support for Fuda Ma from
the China Scholarship Council is also acknowledged.

A Multiple Search Operator Heuristic for the Max-k-cut Problem 27

References

1. Arraiz, E., Olivo, O.: Competitive simulated annealing and tabu search algorithms for
the max-cut problem. In: Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, pp. 1797-1798. ACM (2009)

2. Barahona, F., Grotschel, M., Jinger, M., Reinelt, G.: An application of combinatorial
optimization to statistical physics and circuit layout design. Operations Research 36(3),
493-513 (1988)

3. Benlic, U., Hao, J.K.: Breakout local search for the max-cut problem. Engineering Ap-
plications of Artificial Intelligence 26(3), 1162-1173 (2013)

4. Burer, S., Monteiro, R.D.: A projected gradient algorithm for solving the maxcut SDP
relaxation. Optimization Methods and Software 15(3-4), 175-200 (2001)

5. Burer, S., Monteiro, R.D., Zhang, Y.: Rank-two relaxation heuristics for max-cut and
other binary quadratic programs. SIAM Journal on Optimization 12(2), 503-521 (2002)

6. Chang, K.C., Du, D.H.C.: Efficient algorithms for layer assignment problem. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on 6(1), 67-78 (1987)

7. Chen, R.W., Kajitani, Y., Chan, S.P.: A graph-theoretic via minimization algorithm
for two-layer printed circuit boards. Circuits and Systems, IEEE Transactions on 30(5),
284-299 (1983)

8. Cho, J.D., Raje, S., Sarrafzadeh, M.: Fast approximation algorithms on maxcut, k-
coloring, and k-color ordering for VLSI applications. Computers, IEEE Transactions on
47(11), 1253-1266 (1998)

9. Ding, C.H., He, X., Zha, H., Gu, M., Simon, H.D.: A min-max cut algorithm for graph
partitioning and data clustering. In: Data Mining, 2001. ICDM 2001, Proceedings IEEE
International Conference on, pp. 107-114. IEEE (2001)

10. Eisenblatter, A.: The semidefinite relaxation of the k-partition polytope is strong. In:
Integer Programming and Combinatorial Optimization, pp. 273-290. Springer (2002)

11. Festa, P., Pardalos, P.M., Resende, M.G., Ribeiro, C.C.: Randomized heuristics for the
max-cut problem. Optimization Methods and Software 17(6), 1033-1058 (2002)

12. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network par-
titions. In: Design Automation, 1982. 19th Conference on, pp. 175-181. IEEE (1982)

13. Ghaddar, B., Anjos, M.F., Liers, F.: A branch-and-cut algorithm based on semidefi-
nite programming for the minimum k-partition problem. Annals of Operations Research
188(1), 155-174 (2011)

14. Glover, F., Laguna, M.: Tabu search. Springer (1999)

15. Kahruman, S., Kolotoglu, E., Butenko, S., Hicks, I.V.: On greedy construction heuristics
for the max-cut problem. International Journal of Computational Science and Engineering
3(3), 211-218 (2007)

16. Kann, V., Khanna, S., Lagergren, J., Panconesi, A.: On the hardness of approximating
max k-cut and its dual. Chicago Journal of Theoretical Computer Science 2 (1997)

17. Karp, R.M.: Reducibility among combinatorial problems. Springer (1972)

18. Kochenberger, G.A., Hao, J.K., Lii, Z., Wang, H., Glover, F.: Solving large scale max
cut problems via tabu search. Journal of Heuristics 19(4), 565-571 (2013)

19. Liers, F., Junger, M., Reinelt, G., Rinaldi, G.: Computing exact ground states of hard
ising spin glass problems by branch-and-cut. New Optimization Algorithms in Physics pp.
47-68 (2004)

20. Lin, G., Zhu, W.: A discrete dynamic convexized method for the max-cut problem.
Annals of Operations Research 196(1), 371-390 (2012)

21. Lin, G., Zhu, W.: An efficient memetic algorithm for the max-bisection problem. IEEE
Transactions on Computers 63(6), 1365-1376 (2014)

22. Li, Z., Glover, F., Hao, J.K.: Neighborhood combination for unconstrained binary
quadratic problems. In: MIC Post-Conference Book, pp. 49-61 (2011)

23. Marti, R., Duarte, A., Laguna, M.: Advanced scatter search for the max-cut problem.
INFORMS Journal on Computing 21(1), 26-38 (2009)

24. Mitchell, J.E.: Realignment in the national football league: Did they do it right? Naval
Research Logistics (NRL) 50(7), 683-701 (2003)

25. Pinter, R.Y.: Optimal layer assignment for interconnect. Journal of VLSI and Computer
Systems 1(2), 123-137 (1984)

28 F. Ma and J.K. Hao

26. Shylo, V., Glover, F., Sergienko, I.: Teams of global equilibrium search algorithms for
solving the weighted maximum cut problem in parallel. Cybernetics and Systems Analysis
51(1), 16-24 (2015)

27. Shylo, V., Shylo, O., Roschyn, V.: Solving weighted max-cut problem by global equilib-
rium search. Cybernetics and Systems Analysis 48(4), 563-567 (2012)

28. Wang, Y., L, Z., Glover, F., Hao, J.K.: Probabilistic grasp-tabu search algorithms for
the UBQP problem. Computers & Operations Research 40(12), 3100-3107 (2013)

29. Wu, Q., Hao, J.K.: A memetic approach for the max-cut problem. In: Parallel Problem
Solving from Nature-PPSN XII, pp. 297-306. Springer (2012)

30. Wu, Q., Hao, J.K.: Memetic search for the max-bisection problem. Computers & Op-
erations Research 40(1), 166-179 (2013)

31. Zhu, W., Lin, G., Ali, M.M.: Max-k-cut by the discrete dynamic convexized method.
INFORMS Journal on Computing 25(1), 27-40 (2013)

	1 Introduction
	2 Multiple search operator heuristic for max-k-cut
	3 Experimental results and comparisons
	4 Discussion
	5 Conclusion

