Skip to main content
Log in

Integrated districting, fleet composition, and inventory planning for a multi-retailer distribution system

  • OR in Transportation
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We study an integrated districting, fleet composition, and inventory planning problem for a multi-retailer distribution system. In particular, we analyze the districting decisions for a set of retailers such that the retailers within the same district share truck capacity for their shipment requirements. The number of trucks of each type dedicated to a retailer district and retailer inventory planning decisions are jointly determined in a district formation problem. We provide a mixed-integer-nonlinear programming formulation for this problem and develop a column generation based heuristic approach for its set partitioning formulation. To do so, we first characterize important properties of the optimal fleet composition and inventory planning decisions for a given retailer district. Then, we utilize these properties within a branch-and-price method to solve the integrated districting, fleet composition, and inventory planning problem. A set of numerical studies demonstrates the efficiency of the solution methods discussed for the investigated subproblems. An additional set of numerical studies compares the branch-and-price method to a commercial solver and an evolutionary heuristic method. Further numerical studies illustrate the economic as well as environmental benefits of the integrated modeling approach for various settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archetti, C., Bouchard, M., & Desaulniers, G. (2011). Enhanced branch and price and cut for vehicle routing with split deliveries and time windows. Transportation Science, 45(3), 285–298.

    Article  Google Scholar 

  • Aucamp, D. (1982). Nonlinear freight costs in the EOQ problem. European Journal of Operations Research, 9, 61–62.

    Article  Google Scholar 

  • Baldacci, R., Battarra, M., & Vigo, D. (2008). Routing a heterogeneous fleet of vehicles. In B. Golden, S. Raghavan, & E. Wasil (Eds.), The vehicle routing problem: Latest advances and new challenges. Operations research/computer science interfaces (No. 43, pp. 3–27). Berlin: Springer.

  • Bard, J. F., & Jarrah, A. I. (2009). Large-scale constrained clustering for rationalizing pickup and delivery operations. Transportation Research Part B, 43, 542–561.

    Article  Google Scholar 

  • Bard, J. F., Jarrah, A. I., & Zan, J. (2010). Validating vehicle routing zone construction using Monte Carlo simulation. European Journal of Operational Research, 206, 73–85.

    Article  Google Scholar 

  • Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., & Vance, P. H. (1998). Branch-and-price: Column generation for solving huge integer programs. Operations Research, 46(3), 316–329.

    Article  Google Scholar 

  • Bektas, T., & Laporte, G. (2011). The pollution-routing problem. Transportation Research Part B, 45, 1232–1250.

    Article  Google Scholar 

  • Ben-Khedher, N., & Yano, C. A. (1994). The multi-item joint replenishment problem with transportation and container effects. Transportation Science, 28, 37–54.

    Article  Google Scholar 

  • Benjaafar, S., Cooper, W. L., & Kim, J.-S. (2005). On the benefits of pooling in production-inventory systems. Management Science, 51(4), 548–565.

    Article  Google Scholar 

  • Bernstein, F., & DeCroix, G. A. (2014). Advance demand information in a multiproduct system. Manufacturing and Service Operations Management, 17(1), 52–65.

    Article  Google Scholar 

  • Bonney, M., & Jaber, M. Y. (2011). Environmentally responsible inventory models: Non-classical models for a non-classical era. International Journal of Production Economics, 133, 43–53.

    Article  Google Scholar 

  • Bookbinder, J. H., & Higgison, J. K. (2002). Probabilistic modeling of freight consolidation by private carriage. Transportation Research Part E, 38(5), 305–318.

    Article  Google Scholar 

  • Bouchery, Y., Ghaffari, A., Jemai, Z., & Dallery, Y. (2012). Including sustainability criteria into inventory models. European Journal of Operational Research, 222, 229–240.

    Article  Google Scholar 

  • Buyukkaramikli, N. C., Gurler, U., & Alp, O. (2014). Coordinated logistics: Joint replenishment with capacitated transportation for a supply chain. Production and Operations Management, 23, 110–126.

    Article  Google Scholar 

  • Carlsson, J. G., & Delage, E. (2013). Robust partitioning for stochastic multivehicle routing. Operations Research, 61(3), 727–744.

    Article  Google Scholar 

  • Çetinkaya, S. (2005). Coordination of inventory and shipment consolidation decisions: A review of premises, models, and justification. In J. Geunes, E. Akçali, P. M. Pardalos, & E. H. Romeijn (Eds.), Applications of supply chain management and e-commerce research in industry (p. 1). New York: Kluwer.

    Google Scholar 

  • Çetinkaya, S., & Bookbinder, J. H. (2003). Stochastic models for the dispatch of consolidated shipments. Transportation Research Part B, 37(8), 747–768.

    Article  Google Scholar 

  • Çetinkaya, S., & Lee, C.-Y. (2000). Stock replenishment and shipment scheduling for vendor-managed inventory systems. Management Science, 46(2), 217–232.

    Article  Google Scholar 

  • Çetinkaya, S., & Lee, C.-Y. (2002). Outbound transportation: Modeling inventory and cargo capacity. Naval Research Logistics, 49, 531–556.

    Article  Google Scholar 

  • Çetinkaya, S., Mutlu, F., & Lee, C.-Y. (2006). A comparison of outbound dispatch policies for integrated inventory and transportation decisions. European Journal of Operational Research, 171(3), 1094–1112.

    Article  Google Scholar 

  • Chan, C. K., Cheung, B. K.-S., & Langevin, A. (2003). Solving the multi-buyer joint replenishment problem with a modified genetic algorithm. Transportation Research Part B, 37, 291–299.

    Article  Google Scholar 

  • Chen, X., Benjaafar, S., & Elomri, A. (2013). The carbon constrained EOQ. Operations Research Letters, 41, 172–179.

    Article  Google Scholar 

  • Ching, W.-K., & Tai, A. H. (2005). A quantity-time-based dispatching policy for a VMI system. In Computational science and its applications-ICCSA 2005: International conference.

  • Degraeve, Z., & Jans, R. (2007). A new Dantzig–Wolfe reformulation and branch-and-price algorithm for the capacitated lot-sizing problem with setup times. Operations Research, 55(5), 909–920.

    Article  Google Scholar 

  • Díaz, J. A., & Fernández, E. (2002). A branch-and-price algorithm for the single source capacitated plant location problem. The Journal of the Operational Research Society, 53(7), 728–740.

    Article  Google Scholar 

  • EPA. (2013). U.S. transportation sector greenhouse gas emissions: 1990–2011. Tech. Rep. EPA-420-F-13-033a, U.S. Environmental Protection Agency, Office of Transportation and Air Quality.

  • Etezadi, T., & Beasley, J. E. (1983). Vehicle fleet composition. Journal of the Operational Research Society, 34(1), 87–91.

    Article  Google Scholar 

  • Eynan, A., & Kropp, D. H. (2007). Effective and simple EOQ-like solutions for stochastic demand periodic review systems. European Journal of Operational Research, 180, 1135–1143.

    Article  Google Scholar 

  • Freling, R., Romeijn, H. E., Morales, D. R., & Wagelmans, A. P. M. (2003). A branch-and-price algorithm for the multiperiod single-sourcing problem. Operations Research, 51(6), 922–939.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. New York, NY: W. H. Freeman & Co.

    Google Scholar 

  • Gendreau, M., Laporte, G., Musaragany, C., & Taillard, E. D. (1999). A tabu search heuristic for the heterogeneous fleet vehicle routing problem. Computers and Operations Research, 26, 1153–1173.

    Article  Google Scholar 

  • Gerchak, Y., & He, Q.-M. (2003). On the relation between the benefits of risk pooling and the variability of demand. IIE Transactions, 35(11), 1027–1031.

    Article  Google Scholar 

  • Geunes, J., Shen, Z.-J., & Romeijn, H. E. (2004). Economic ordering decisions with market choice flexibility. Naval Research Logistics, 51(1), 117–136.

    Article  Google Scholar 

  • Gurler, U., Alp, O., & Buyukkaramikli, N. C. (2014). Coordinated inventory replenishment and outsourced transportation operations. Transportation Research Part E, 70, 400–415.

    Article  Google Scholar 

  • Haugland, D., Ho, S. C., & Laporte, G. (2007). Designing delivery districts for the vehicle routing problem with stochastic demands. European Journal of Operational Research, 180, 997–1010.

    Article  Google Scholar 

  • Higgison, J. K. (1995). Recurrent decision approaches to shipment-release timing in freight consolidation. International Journal of Physical Distribution and Logistics Management, 25(5), 3–23.

    Article  Google Scholar 

  • Higgison, J. K., & Bookbinder, J. H. (1995). Markovian decision processes in shipment consolidation. Transportation Science, 29(3), 242–255.

    Article  Google Scholar 

  • Hoff, A., Andersson, H., Christiansen, M., Hasle, G., & Lokketangen, A. (2010). Industrial aspects and literature survey: Fleet composition and routing. Computers and Operations Research, 37, 2041–2061.

    Article  Google Scholar 

  • Hua, G., Cheng, T., & Wang, S. (2011). Managing carbon footprints in inventory management. International Journal of Production Economics, 132(2), 178–185.

    Article  Google Scholar 

  • Hwang, H., Moon, D. H., & Shinn, S. W. (1990). An EOQ model with quantity discounts for both purchasing and freight cost. Computers and Operations Research, 17(1), 73–78.

    Article  Google Scholar 

  • Jabali, O., Gendreau, M., & Laporte, G. (2012). A continuous approximation model for the fleet composition problem. Transportation Research Part B, 46, 1591–1606.

    Article  Google Scholar 

  • Jackson, P., Maxwell, W., & Muckstadt, J. (1985). The joint replenishment problem with a powers-of-two restriction. IIE Transactions, 17(1), 25–32.

    Article  Google Scholar 

  • Kang, J.-H., & Kim, Y.-D. (2010). Coordination of inventory and transportation managements in a two-level supply chain. International Journal of Production Economics, 123, 137–145.

    Article  Google Scholar 

  • Keskin, B. B., & Capar, I. (2014). The utility of EOQ in supply chain design and operation. In T.-M. Choi (Ed.), Handbook of EOQ inventory control problems: Stochastic and deterministic models and applications. International series in operations research and management science (Vol. 197, pp. 221–245). Berlin: Springer.

  • Khouja, M., & Goyal, S. (2008). A review of the joint replenishment problem literature: 1989–2005. European Journal of Operational Research, 186, 1–16.

    Article  Google Scholar 

  • Kiesmuller, G. (2009). A multi-item periodic replenishment policy with full truckloads. International Journal of Production Economics, 118, 272–281.

    Article  Google Scholar 

  • Kirschstein, T., & Meisel, F. (2015). GHG-emission models for assessing the eco-friendliness of road and rail freight transports. Transportation Research Part B, 73, 13–33.

    Article  Google Scholar 

  • Koc, C., Bektas, T., Jabali, O., & Laporte, G. (2014). The fleet size and mix pollution-routing problem. Transportation Research Part B, 70, 239–254.

    Article  Google Scholar 

  • Konur, D. (2014). Carbon constrained integrated inventory control and truckload transportation with heterogeneous freight trucks. International Journal of Production Economics, 153, 268–279.

    Article  Google Scholar 

  • Konur, D., & Schaefer, B. (2014). Integrated inventory control and transportation decisions under carbon emissions regulations: LTL vs. TL carriers. Transportation Research Part E, 68, 14–38.

    Article  Google Scholar 

  • Konur, D., & Toptal, A. (2012). Analysis and applications of replenishment problems under stepwise transportation costs and generalized wholesale prices. International Journal of Production Economics, 140(1), 521–529.

    Article  Google Scholar 

  • Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59(3), 345–358.

    Article  Google Scholar 

  • Lee, C.-Y. (1986). The economic order quantity for freight discount costs. IIE Transactions, 18(3), 318–320.

    Article  Google Scholar 

  • Lee, C.-Y., Çetinkaya, S., & Jaruphongsa, W. (2003). A dynamic model for inventory lot sizing and outbound shipment scheduling at a third-party warehouse. Operations Research, 51(5), 735–747.

    Article  Google Scholar 

  • Lei, H., Laporte, G., & Guo, B. (2012). Districting for routing with stochastic customers. EURO Journal on Transportation and Logistics, 1, 67–85.

    Article  Google Scholar 

  • Lei, H., Laporte, G., Liu, Y., & Zhang, T. (2015). Dynamic design of sales territories. Computers and Operations Research, 56, 84–92.

    Article  Google Scholar 

  • Levi, R., Roundy, R., Shmoys, D., & Sviridenko, M. (2008). A constant approximation algorithm for the one-warehouse multiretailer problem. Management Science, 54, 763–776.

    Article  Google Scholar 

  • Loxton, R., Lin, Q., & Teo, K. L. (2012). A stochastic fleet composition problem. Computers and Operations Research, 39, 3177–3184.

    Article  Google Scholar 

  • Lübbecke, M. E., & Desrosiers, J. (2005). Selected topics in column generation. Operations Research, 53(6), 1007–1023.

    Article  Google Scholar 

  • Lulli, G., & Sen, S. (2004). A branch-and-price algorithm for multistage stochastic integer programming with application to stochastic batch-sizing problems. Management Science, 50(6), 786–796.

    Article  Google Scholar 

  • Mendoza, A., & Ventura, J. A. (2008). Incorporating quantity discounts to the EOQ model with transportation costs. International Journal of Production Economics, 113(2), 754–765.

    Article  Google Scholar 

  • Min, Y.-H., Park, M.-J., Hong, S.-P., & Hong, S.-H. (2011). An appraisal of a column-generation-based algorithm for centralized train-conflict resolution on a metropolitan railway network. Transportation Research Part B, 45(2), 409–429.

    Article  Google Scholar 

  • Miranda, P., Gonzalea-Ramirez, R., & Smith, N. (2011). Districting and customer clustering within supply chain planning: A review of modeling and solution approaches (Vol. 33). Rijeka: InTech.

    Google Scholar 

  • Mutlu, F., Çetinkaya, S., & Bookbinder, J. H. (2010). An analytical model for computing the optimal time-and-quantity-based policy for consolidated shipments. IIE Transactions, 42(5), 367–377.

    Article  Google Scholar 

  • Newell, G. F., & Daganzo, C. F. (1986a). Design of multiple-vehicle delivery tours—I a ring-radial network. Transportation Research Part B, 20(5), 345–363.

    Article  Google Scholar 

  • Newell, G. F., & Daganzo, C. F. (1986b). Design of multiple-vehicle delivery tours—II other metrics. Transportation Research Part B, 20(5), 365–376.

    Article  Google Scholar 

  • Olsen, A. L. (2005). An evolutionary algorithm to solve the joint replenishment problem using direct grouping. Computers and Industrial Engineering, 48(2), 223–235.

    Article  Google Scholar 

  • Ouyang, Y. (2007). Design of vehicle routing zones for large-scale distribution systems. Transportation Research Part B, 41, 1079–1093.

    Article  Google Scholar 

  • Penna, P. H. V., Subramanian, A., & Ochi, L. S. (2013). An iterated local search heuristic for the heterogeneous fleet vehicle routing problem. Journal of Heuristics, 19, 201–232.

    Article  Google Scholar 

  • Salani, M., & Vacca, I. (2011). Branch and price for the vehicle routing problem with discrete split deliveries and time windows. European Journal of Operational Research, 213(3), 470–477.

    Article  Google Scholar 

  • Salazar-Aguilar, M. A., Rios-Mercado, R. Z., & Gonzalez-Velarde, J. L. (2011). A bi-objective programming model for designing compact and balanced territories in commercial districting. Transportation Research Part C, 19, 885–895.

    Article  Google Scholar 

  • Salhi, S., Wassan, N., & Hajarat, M. (2013). The fleet size and mix vehicle routing problem with backhauls: Formulation and set partitioning-based heuristics. Transportation Research Part E, 56, 22–35.

    Article  Google Scholar 

  • Schaefer, B., & Konur, D. (2015). Economic and environmental considerations in a continuous review inventory control system with integrated transportation decisions. Transportation Research Part E, 80, 142–165.

    Article  Google Scholar 

  • Shen, Z.-J. M., Coullard, C., & Daskin, M. S. (2003). A joint location-inventory model. Transportation Science, 37(1), 40–55.

    Article  Google Scholar 

  • Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory management and production planning and scheduling (3rd ed.). New York: Wiley.

    Google Scholar 

  • Sindhuchao, S., Romeijn, H. E., Akcali, E., & Boondiskulchok, R. (2005). An integrated inventory-routing system for multi-item joint replenishment with limited vehicle capacity. Journal of Global Optimization, 32, 93–118.

    Article  Google Scholar 

  • Toptal, A. (2009). Replenishment decisions under an all-units discount schedule and stepwise freight costs. European Journal of Operations Research, 198, 504–510.

    Article  Google Scholar 

  • Toptal, A., & Çetinkaya, S. (2006). Contractual agreements for coordination and vendor-managed delivery under explicit transportation considerations. Naval Research Logistics, 53(5), 397–417.

    Article  Google Scholar 

  • Toptal, A., Çetinkaya, S., & Lee, C.-Y. (2003). The buyer–vendor coordination problem: Modeling inbound and outbound cargo capacity and costs. IIE Transactions, 35(11), 987–1002.

    Article  Google Scholar 

  • Toptal, A., Ozlu, H., & Konur, D. (2014). Joint decisions on inventory replenishment and emission reduction investment under different emission regulations. International Journal of Production Research, 52, 243–269.

    Article  Google Scholar 

  • Wang, L., Dun, C.-X., Bi, W.-J., & Zeng, Y.-R. (2012). An effective and efficient differential evolution algorithm for the integrated stochastic joint replenishment and delivery model. Knowledge-Based Systems, 36, 104–114.

    Article  Google Scholar 

  • Wilhelm, W. E. (2001). A technical review of column generation in integer programming. Optimization and Engineering, 2(2), 159–200.

    Article  Google Scholar 

  • Zhang, J.-L., Lee, C.-Y., & Chen, J. (2009). Inventory control problem with freight cost and stochastic demand. Operations Research Letters, 37(6), 443–446.

    Article  Google Scholar 

  • Zhao, Q.-H., Wangb, S.-Y., Laic, K.-K., & Xia, G.-P. (2004). Model and algorithm of an inventory problem with the consideration of transportation cost. Computers and Industrial Engineering, 46(2), 389–397.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant from the Center for Multimodal Solutions for Congestion Mitigation (Project #2010-018) a University Transportation Center supported by the USDOT and a grant from the Intermodal Freight Transportation Institute a University Transportation Center supported by USDOT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinçer Konur.

Appendix

Appendix

1.1 Proof of Property 1

Suppose that \(\sum _{k=1}^m p_k\widehat{z}_k^\mathbf{x }-\min _k\{p_k:\widehat{z}_k^\mathbf{x }\ge 1\}\ge \widehat{T}_\mathbf{x }\sum _{i\in S_\mathbf{x }}\lambda _i\) and consider the following solution for P-x: \(\widetilde{\mathbf{z }}^\mathbf{x }\), \(\widehat{T}_\mathbf{x }\), and \(\widehat{\mathbf{f }}^\mathbf{x }\) such that \(\widetilde{z}_k^\mathbf{x }=\widehat{z}_k^\mathbf{x }\)\(\forall k: k\ne \min _k\{p_k:\widehat{z}_k^\mathbf{x }\ge 1\}\) and \(\widetilde{z}_k^\mathbf{x }=\widehat{z}_k^\mathbf{x }-1\) for \(k=\min _k\{p_k:\widehat{z}_k^\mathbf{x }\ge 1\}\). Then, one can observe that \(\widehat{T}_\mathbf{x }\sum _{i\in S_\mathbf{x }}\lambda _i\le \sum _{k=1}^m p_k\widetilde{z}_k^\mathbf{x }\), i.e., \(\widetilde{\mathbf{z }}^\mathbf{x }\), \(\widehat{T}_\mathbf{x }\), and \(\widehat{\mathbf{f }}^\mathbf{x }\) define a feasible solution for P-x. Furthermore, it follows from Eq. (3) that \(C_\mathbf{x }(\widetilde{\mathbf{z }}^\mathbf{x },\widehat{T}_\mathbf{x },\widehat{\mathbf{f }}^\mathbf x )< C_\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x },\widehat{T}_\mathbf{x },\widehat{\mathbf{f }}^\mathbf x )\), which contradicts that \(\widehat{\mathbf{z }}^\mathbf{x },\widehat{T}_\mathbf{x },\widehat{\mathbf{f }}^\mathbf x \) is an optimal solution of P-x. \(\square \)

1.2 Summary of the notation used

Notation

Description

Metric

Indices

   i

Index for retailers

\(i=1,2,\ldots ,n\)

   j

Index for districts

\(j=1,2,\ldots ,n\)

   k

Index for truck types

\(k=1,2,\ldots ,m\)

Retailer parameters

   \(h_i\)

Holding cost of retailer i per unit per unit time

$/unit/time

   \(b_i\)

Backordering cost of retailer i per unit per unit time

$/unit/time

   \(a_i\)

Fixed order cost of retailer i

$/order

   \(\lambda _i\)

Demand rate of retailer i

Units/time,

Truck parameters

   \(r_k\)

Shipment cost of a type k truck

$

   \(p_k\)

Shipment capacity of a type k truck

Units

Decision variables

   \(t_i\)

Retailer i’s replenishment cycle length

Time

   \(f_i\)

Retailer i’s fill rate

 

   \(x_{ij}\)

1 if retailer i belongs to district j, 0 otherwise

Binary

   \(z^j_k\)

Number of type k trucks in district j’s fleet composition

Integer

   \(T_j\)

Common replenishment cycle length for district j

Time

1.3 Proof of Property 2

First note that for any given \(\mathbf z ^\mathbf{x }\) and \(T_\mathbf{x }\), \(f_i^0=\frac{b_i}{b_i+h_i}\)\(\forall i\in S_\mathbf{x }\) minimizes \(C_\mathbf{x }(\mathbf z ^\mathbf{x },T_\mathbf{x },\mathbf f ^\mathbf x )\), i.e., \(\widehat{\mathbf{f }}^\mathbf x =\mathbf f ^0\). Let \(C_\mathbf{x }(\mathbf z ^\mathbf{x },T_\mathbf{x },\mathbf f ^0)=\Pi _\mathbf{x }(T_\mathbf{x },\mathbf f ^0)+\varOmega _\mathbf{x }(\mathbf z ^\mathbf{x },T_\mathbf{x })\), where \(\Pi _\mathbf{x }(T_\mathbf{x },\mathbf f ^0)=\frac{T_\mathbf{x }}{2}\left( \sum _{i\in S_\mathbf{x }}\lambda _i[h_i(f_i^0)^2+b_i(1-f_i^0)^2]\right) +\frac{\sum _{i\in S_\mathbf{x }}a_i}{T_\mathbf{x }}\) and \(\varOmega _\mathbf{x }(\mathbf z ^\mathbf{x },T_\mathbf{x })=\frac{\sum _{k=1}^mr_kz_k^\mathbf{x }}{T_\mathbf{x }}\).

Lemma 1

\(\Pi _\mathbf{x }(T^L_\mathbf{x },\mathbf f ^0)<\Pi _\mathbf{x }(T_\mathbf{x },\mathbf f ^0)\) for \(T_\mathbf{x }<T^L_\mathbf{x }\) and \(\Pi _\mathbf{x }(T^U_\mathbf{x },\mathbf f ^0)<\Pi _\mathbf{x }(T_\mathbf{x },\mathbf f ^0)\) for \(T_\mathbf{x }>T^U_\mathbf{x }\).

Proof

It can be shown that \(\Pi _\mathbf{x }(T_\mathbf{x },\mathbf f ^0)\) is a strictly convex function of \(T_\mathbf{x }\) and \(T_\mathbf{x }^0=\sqrt{ \frac{2\sum _{i\in S_\mathbf{x }}a_i }{\sum _{i\in S_\mathbf{x }}\lambda _i\left( \frac{h_ib_i}{h_i+b_i}\right) }}\) minimizes \(\Pi _\mathbf{x }(T_\mathbf{x },\mathbf f ^0)\). Furthermore, note that

$$\begin{aligned} T^L_\mathbf{x }=\frac{p_{k^*}}{\sum _{i\in S_\mathbf{x }}\lambda _i}\left\lfloor \frac{\sum _{i\in S_\mathbf{x }}\lambda _i}{p_{k^*}} T_\mathbf{x }^0 \right\rfloor \le T_\mathbf{x }^0\ \ and\ \ T^U_\mathbf{x }=\frac{p_{k^*}}{\sum _{i\in S_\mathbf{x }}\lambda _i}\left\lceil \frac{\sum _{i\in S_\mathbf{x }}\lambda _i}{p_{k^*}} T_\mathbf{x }^0 \right\rceil \ge T_\mathbf{x }^0. \end{aligned}$$

The result then follows from the convexity of \(\Pi _\mathbf{x }(T_\mathbf{x },\mathbf f ^0)\) with respect to \(T_\mathbf{x }\). \(\square \)

Lemma 2

Given \(t>0\), let \(\widehat{\mathbf{z }}^\mathbf{x |t}\) be an optimal solution of P-x|t, where

Then \(\varOmega _\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x | T^L_\mathbf{x }},T^L_\mathbf{x })=\varOmega _\mathbf{x } (\widehat{\mathbf{z }}^\mathbf{x |T^U_\mathbf{x }},T^U_\mathbf{x }) =\frac{r_{k^*}}{p_{k^*}}\sum _{i\in S_\mathbf{x }}\lambda _i\).

Proof

We first prove that \(\varOmega _\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x | T^U_\mathbf{x }},T^U_\mathbf{x })=\frac{r_{k^*}}{p_{k^*}}\sum _{i\in S_\mathbf{x }}\lambda _i\). Consider the linear relaxation of P-x|t:

and let \(\overline{\mathbf{z }}^\mathbf{x |t}\) be an optimal solution of LR-P-x|t. Note that \(\varOmega _\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x |t},t)\ge \varOmega _\mathbf{x }(\overline{\mathbf{z }}^\mathbf{x |t},t)\) by definition. Letting \(\beta \) be the dual variable associated with the single constraint in LR-P-x|t, one can note that the dual of LR-P-x|t is:

One can easily observe that the optimal solution (and optimum objective function value) of D-LR-P-x|t is \(\min _{k}\{r_k/p_k\}\sum _{i\in S_\mathbf{x }}\lambda _i=\frac{r_{k^*}}{p_{k^*}}\sum _{i\in S_\mathbf{x }}\lambda _i\). Therefore, we have \(\varOmega _\mathbf{x }(\overline{\mathbf{z }}^\mathbf{x |t},t)= \frac{r_{k^*}}{p_{k^*}}\sum _{i\in S_\mathbf{x }}\lambda _i\), which implies that \(\varOmega _\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x |t},t)\ge \frac{r_{k^*}}{p_{k^*}}\sum _{i\in S_\mathbf{x }}\lambda _i\) for any given \(t>0\).

Now, let \(t=T^L_\mathbf{x }\) and let us define \(\overline{\mathbf{z }}^\mathbf{x |T^L_\mathbf{x }}\) such that \(\overline{\mathbf{z }}^\mathbf{x |T^L_\mathbf{x }}_{k^*} =\frac{T^L_\mathbf{x }\sum _{i\in S_\mathbf{x }}\lambda _i }{p_{k^*}}\) and \(\overline{\mathbf{z }}^\mathbf{x |T^L_\mathbf{x }}_{k}=0\)\(\forall k\ne k^*\). It then follows that \(\varOmega _\mathbf{x }(\overline{\mathbf{z }}^\mathbf{x |T^L_\mathbf{x }},T^L_\mathbf{x })=\frac{r_{k^*}}{p_{k^*}}\sum _{i\in S_\mathbf{x }}\lambda _i\). That is, \(\overline{\mathbf{z }}^\mathbf{x |T^L_\mathbf{x }}\) is indeed the optimal solution of LR-P-x\(|T^L_\mathbf{x }\). Furthermore, note that \(\overline{\mathbf{z }}^\mathbf{x |T^L_\mathbf{x }}\) is an integer vector; hence, it is feasible for P-x\(|T^L_\mathbf{x }\). Therefore, \(\widehat{\mathbf{z }}^\mathbf{x |T^L_\mathbf{x }}= \overline{\mathbf{z }}^\mathbf{x |T^L_\mathbf{x }}\) and \(\varOmega _\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x | T^L_\mathbf{x }},T^L_\mathbf{x })=\frac{r_{k^*}}{p_{k^*}}\sum _{i\in S_\mathbf{x }}\lambda _i\). Similarly, it can be shown that \(\varOmega _\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x | T^U_\mathbf{x }},T^U_\mathbf{x })=\frac{r_{k^*}}{p_{k^*}}\sum _{i\in S_\mathbf{x }}\lambda _i\). \(\square \)

Note that \(C_\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x },\widehat{T}_\mathbf{x },\widehat{\mathbf{f }}_\mathbf{x }) =C_\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x |\widehat{T}_\mathbf{x }},\widehat{T}_\mathbf{x },\mathbf f ^0) =\Pi _\mathbf{x }(\widehat{T}_\mathbf{x },\mathbf f ^0)+\varOmega _\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x |\widehat{T}_\mathbf{x }},\widehat{T}_\mathbf{x })\). Now suppose that \(\widehat{T}_\mathbf{x }<T^L_\mathbf{x }\). It then follows from Lemma 1 that \(\Pi _\mathbf{x }(T^L_\mathbf{x },\mathbf f ^0)<\Pi _\mathbf{x }(\widehat{T}_\mathbf{x },\mathbf f ^0)\). Furthermore, we know that \(\varOmega _\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x |\widehat{T}_\mathbf{x }},\widehat{T}_\mathbf{x })\ge \frac{r_{k^*}}{p_{k^*}}\sum _{i\in S_\mathbf{x }}\lambda _i = \varOmega _\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x |T^L_\mathbf{x }},T^L_\mathbf{x })\) (see the proof of Lemma 2). Therefore, we have \(C_\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x },\widehat{T}_\mathbf{x },\widehat{\mathbf{f }}_\mathbf{x })> C_\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x |T^L_\mathbf{x }},T^L_\mathbf{x },\mathbf f ^0)\), which is a contradiction that \(\widehat{T}_\mathbf{x }\) is optimum to P-x. Similarly, suppose that \(\widehat{T}_\mathbf{x }>T^U_\mathbf{x }\). It then follows from Lemma 1 that \(\Pi _\mathbf{x }(T^U_\mathbf{x },\mathbf f ^0)<\Pi _\mathbf{x }(\widehat{T}_\mathbf{x },\mathbf f ^0)\). Furthermore, from the proof of Lemma 2, we know that \(\varOmega _\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x |\widehat{T}_\mathbf{x }},\widehat{T}_\mathbf{x })\ge \frac{r_{k^*}}{p_{k^*}}\sum _{i\in S_\mathbf{x }}\lambda _i = \varOmega _\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x |T^U_\mathbf{x }},T^U_\mathbf{x })\). Therefore, we have \(C_\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x },\widehat{T}_\mathbf{x },\widehat{\mathbf{f }}_\mathbf{x })> C_\mathbf{x }(\widehat{\mathbf{z }}^\mathbf{x |T^U_\mathbf{x }},T^U_\mathbf{x },\mathbf f ^0)\), which is a contradiction that \(\widehat{T}_\mathbf{x }\) is optimum to P-x. \(\square \)

1.4 Proof of Property 3

We first prove that \(\varUpsilon ^L_\mathbf{x }\le \sum _{k=1}^m\widehat{z}_k^\mathbf{x }\) by contradiction. First of all, it follows from Eq. (6) that \(\varUpsilon ^L_\mathbf{x }\le \frac{T^L_\mathbf{x }\sum _{i\in S_\mathbf{x }}\lambda _i}{\max _k\{p_k\}}\). Furthermore, we know from Property 2 that \(T^L_\mathbf{x }\le \widehat{T}_\mathbf{x }\). It then follows that \(\varUpsilon ^L_\mathbf{x }\le \widehat{T}_\mathbf{x } \frac{\sum _{i\in S_\mathbf{x }}\lambda _i}{\max _k\{p_k\}}\), which implies that (i) \((\varUpsilon ^L_\mathbf{x }-1)\max _k\{p_k\}< \widehat{T}_\mathbf{x }\sum _{i\in S_\mathbf{x }}\lambda _i\). To get a contradiction, suppose that \(\sum _{k=1}^m\widehat{z}_k^\mathbf{x }\le \varUpsilon ^L_\mathbf{x }-1\). It then follows that \(\sum _{k=1}^m p_k\widehat{z}_k^\mathbf{x }\le (\varUpsilon ^L_\mathbf{x }-1)\max _k\{p_k\}\). Considering inequality (i), we then have (ii) \(\sum _{k=1}^m p_k\widehat{z}_k^\mathbf{x }<\widehat{T}_\mathbf{x }\sum _{i\in S_\mathbf{x }}\lambda _i\). Inequality (ii) contradicts Property 1; therefore, one should have \(\varUpsilon ^L_\mathbf{x }\le \sum _{k=1}^m\widehat{z}_k^\mathbf{x }\).

Next, we prove that \(\sum _{k=1}^m\widehat{z}_k^\mathbf{x }\le \varUpsilon ^U_\mathbf{x }\) by contradiction. First of all, it follows from Eq. (7) that \(\varUpsilon ^U_\mathbf{x }\ge \frac{T^U_\mathbf{x }\sum _{i\in S_\mathbf{x }}\lambda _i}{\min _k\{p_k\}}\). Furthermore, we know from Property 2 that \(\widehat{T}_\mathbf{x }\le T^U_\mathbf{x }\). It then follows that (iii) \(\varUpsilon ^U_\mathbf{x }\min _k\{p_k\} \ge \widehat{T}_\mathbf{x }\sum _{i\in S_\mathbf{x }}\lambda _i\). To get a contradiction, suppose that \(\sum _{k=1}^m\widehat{z}_k^\mathbf{x }\ge \varUpsilon ^U_\mathbf{x }+1\). It then follows that \(\sum _{k=1}^m p_k\widehat{z}_k^\mathbf{x }\ge \varUpsilon ^U_\mathbf{x }\min _k\{p_k\}+\min _k\{p_k:\widehat{z}_k^\mathbf{x }\ge 1\}\). Considering inequality (iii), we then have (iv) \(\sum _{k=1}^m p_k\widehat{z}_k^\mathbf{x }\ge \widehat{T}_\mathbf{x }\sum _{i\in S_\mathbf{x }}\lambda _i +\min _k\{p_k:\widehat{z}_k^\mathbf{x }\ge 1\}\). Inequality (iv) implies that \(\sum _{k=1}^m p_k\widehat{z}_k^\mathbf{x }-\min _k\{p_k:\widehat{z}_k^\mathbf{x }\ge 1\}\ge \widehat{T}_\mathbf{x }\sum _{i\in S_\mathbf{x }}\lambda _i \), which contradicts Property 1; therefore, one should have \(\sum _{k=1}^m\widehat{z}_k^\mathbf{x }\le \varUpsilon ^U_\mathbf{x }\). \(\square \)

1.5 Proof of Property 4

First note that Eq. (10) can be written as follows:

$$\begin{aligned} G(\widetilde{\mathbf{x }},\widetilde{\mathbf{z }},\widetilde{T},\mathbf f )= \sum _{i=1}^n\widetilde{x}_i\left( \frac{\widetilde{T}}{2} \lambda _i\left[ h_if_i^2+b_i(1-f_i)^2\right] +\frac{1}{\widetilde{T}}a_i -\pi _i \right) +\frac{1}{\widetilde{T}}\sum _{k=1}^mr_k\widetilde{z}_k, \end{aligned}$$

where the second term is a positive value. Furthermore, note that \(\widetilde{f}_i^*=\frac{b_i}{b_i+h_i}\). Let \(\alpha _i(\widetilde{T})=\frac{\widetilde{T}}{2}\lambda _i[h_if_i^2+b_i(1-f_i)^2]+\frac{1}{\widetilde{T}}a_i -\pi _i\). One can then observe that if \(\alpha _i(\widetilde{T}^*)\ge 0\), then \(\widetilde{x}^*_i=0\) since we want to minimize \(G(\widetilde{\mathbf{x }},\widetilde{\mathbf{z }},\widetilde{T},\mathbf f )\). It can be remarked that \(\alpha _i(\widetilde{T})\) is a quadratic convex function of \(\widetilde{T}\), and it follows from the quadratic equation that \(\alpha _i(\widetilde{T})<0\) when \(\tau _i^L<\widetilde{T}<\tau _i^U\), where \(\tau _i^L\) and \(\tau _i^U\) are defined in Eqs. (11) and (12), respectively. Therefore, \(\widetilde{x}^*_i=0\) if \(\widetilde{T}^*\notin (\tau _i^L,\tau _i^U)\). \(\square \)

1.6 Proof of Property 5

Noting that \(\widetilde{f}_i^{\widetilde{T}}=\frac{b_i}{b_i+h_i}\)\(\forall i\), LR-PP-\(\widetilde{T}\) is equal to

where \(\alpha _i=\lambda _i h_i b_i \widetilde{T}/2(h_i+b_i)+a_i/\widetilde{T}-\pi _i\), \(\widehat{r}_k=r_k/\widetilde{T}>0\), and \(\beta _i=\lambda _i \widetilde{T}>0\). One can easily note that \(\sum _{i=1}^n \beta _i\widetilde{x}_i=\sum _{k=1}^mp_k\widetilde{z}_k\) in the solution of LR-PP-\(\widetilde{T}\) since \(\widehat{r}_k>0\) and \(\beta _i>0\). This indicates that \(\widetilde{x}_i^{\widetilde{T}}=0\) if \(\alpha _i\ge 0\).

Now, without loss of generality, suppose that \(\alpha _i< 0\)\(\forall i\) and let us consider the dual of LR-PP-\(\widetilde{T}\)

where \(\phi \) is the dual variable associated with the first constraint of LR-PP-\(\widetilde{T}\) and \(w_i\) is the dual variable associated with \(\widetilde{x}_i\le 1\) constraint. Note that \(\max \left\{ \sum _{i=1}^nw_i:\mathbf w \le \mathbf 0 \right\} \le 0\). Thus, \(w_i=0\)\(\forall i\) and \(0\ge \phi \ge max\{-\widehat{r}_k/p_k\}\) is an optimal solution to D-LR-PP-\(\widetilde{T}\). It then follows that there is a dual optimal solution such that \(\beta _i \phi +w_i< \alpha _i\ \forall i\), which implies that \(\widetilde{x}_i=1\) in the optimal primal solution from complementary slackness. Therefore, \(\widetilde{x}_i^{\widetilde{T}}=1\) if \(\alpha _i< 0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konur, D., Geunes, J. Integrated districting, fleet composition, and inventory planning for a multi-retailer distribution system. Ann Oper Res 273, 527–559 (2019). https://doi.org/10.1007/s10479-016-2338-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2338-6

Keywords

Navigation