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—— Abstract

The problem of detecting and removing redundant constraints is fundamental in optimization.
We focus on the case of linear programs (LPs) in dictionary form, given by n equality constraints
in n + d variables, where the variables are constrained to be nonnegative. A variable z, is called
redundant, if after removing x, > 0 the LP still has the same feasible region. The time needed
to solve such an LP is denoted by LP(n,d).

It is easy to see that solving n+d LPs of the above size is sufficient to detect all redundancies.
The currently fastest practical method is the one by Clarkson: it solves n + d linear programs,
but each of them has at most s variables, where s is the number of nonredundant constraints.

In the first part we show that knowing all of the finitely many dictionaries of the LP is
sufficient for the purpose of redundancy detection. A dictionary is a matrix that can be thought
of as an enriched encoding of a vertex in the LP. Moreover — and this is the combinatorial aspect
— it is enough to know only the signs of the entries, the actual values do not matter. Concretely
we show that for any variable x,. one can find a dictionary, such that its sign pattern is either a
redundancy or nonredundancy certificate for z,..

In the second part we show that considering only the sign patterns of the dictionary, there
is an output sensitive algorithm of running time O(d - (n+d) - s** - LP(s,d) + d - s¢- LP(n,d))
to detect all redundancies. In the case where all constraints are in general position, the running
time is O(s- LP(n,d) + (n+d) - LP(s,d)), which is essentially the running time of the Clarkson
method. Our algorithm extends naturally to a more general setting of arrangements of oriented
topological hyperplane arrangements.
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1 Introduction

The problem of detecting and removing redundant constraints is fundamental in optimization.
Being able to understand redundancies in a model is an important step towards improvements
of the model and faster solutions.
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In this paper, we focus on redundancies in systems of linear inequalities. We consider
systems of the form

b— A:]CN
0 (1)
0

B
TB
TN

IV IV

where B and N are disjoint finite sets of variable indices with |B| = n, |[N| = d, b € R? and
A € RBXN are given input vector and matrix. We assume that the system (1) has a feasible
solution. Any consistent system of linear equalities and inequalities can be reduced to this
form.

A variable x,. is called redundant in (1) if ztp =b— Azy and 2; > 0 for i € BUN \ {r}
implies z, > 0, i.e., if after removing constraint z, > 0 from (1) the resulting system still
has the same feasible region. Testing redundancy of x,. can be done by solving the linear
program (LP)

minimize T,
subject to zp = b— Axzy (2)
x; > 0, Yie BUN\({r}

Namely, a variable x, is redundant if and only if the LP has an optimal solution and the
optimal value is nonnegative.

Let LP(n,d) denote the time needed to solve an LP of form (2). Throughout the paper,
we are working in the real RAM model of computation, where practical algorithms, but no
polynomial bounds on LP(n,d) are known. However, our results translate to the standard
Turing machine model, where they would involve bounds of the form LP(n,d,{), with ¢
being the bit size of the input. In this case, LP(n,d,f) can be polynomially bounded. The
notation LP(n,d) abstracts from the concrete representation of the LP, and also from the
algorithm being used; as a consequence, we can also apply it in the context of LPs given by
the signs of their dictionaries.

By solving n + d linear programs, O((n + d) - LP(n,d)) time is enough to detect all
redundant variables in the real RAM model, but it is natural to ask whether there is a faster
method. The currently fastest practical method is the one by Clarkson with running time
O((n+d)-LP(s,d)+s-n-d) [4]. This method also solves n + d linear programs, but each
of them has at most s variables, where s is the number of nonredundant variables. Hence, if
s < n, this output-sensitive algorithm is a major improvement.

A related (dual) problem is the one of finding the extreme points among a set P of n
points in R?. A point p € P is extreme in P, if p is not contained in the convex hull of
P\ {p}. It is not hard to see that this problem is a special case of redundancy detection in
linear systems.

Specialized (and output-sensitive) algorithms for the extreme points problem exist [14, 6],
but they are essentially following the ideas of Clarkson’s algorithm [4]. For fixed d, Chan
uses elaborate data structures from computational geometry to obtain a slight improvement
over Clarkson’s method [2].

In this paper, we study the combinatorial aspects of redundancy detection in linear
systems. The basic questions are: What kind of information about the linear system do we
need in order to detect all redundant variables? With this restricted set of information, how
fast can we detect all of them? Our motivation is to explore and understand the boundary
between geometry and combinatorics with respect to redundancy. For example, Clarkson’s
method [4] uses ray shooting, an intrinsically geometric procedure; similarly, the dual extreme



K. Fukuda, B. Gartner, and M. Szedlak

points algorithms [14, 6] use scalar products. In a purely combinatorial setting, neither ray
shooting nor scalar products are well-defined notions, so it is natural to ask whether we can
do without them.

We will show that our results solely depend on the finite combinatorial information
given by the signed dictionaries, i.e., the size is bounded by a function of d and n only. A
dictionary can be thought of as an encoding of the associated arrangements of hyperplanes,
the corresponding signed dictionary only contains the signs of the encoding (see Section 2).
On the other hand Clarkson’s algorithm depends on the input data A and b.

Our approach is very similar to the combinatorial viewpoint of linear programming
pioneered by Matousek, Sharir and Welzl [13] in form of the concept of LP-type problems.
The question they ask is: how quickly can we optimize, given only combinatorial information?
As we consider redundancy detection and removal as important towards efficient optimization,
it is very natural to extend the combinatorial viewpoint to also include the question of
redundancy. The results that we obtain are first steps and leave ample space for improvement.
An immediate theoretical benefit is that we can handle redundancy detection in structures
that are more general than systems of linear inequalities; most notably, our results naturally
extend to the realm of oriented matroids [1].

Statement of Results

The first point that we will make is that for the purpose of redundancy testing, it is sufficient
to know all the finitely many dictionaries associated with the system of inequalities (1).
Moreover, we show that it is sufficient to know only the signed dictionaries, i.e., the signs of
the dictionary entries. Their actual numerical values do not matter.

In Theorem 2, we give a characterization of such a redundancy certificate. More precisely,
we show that, for every redundant variable z, there exists at least one signed dictionary
such that its sign pattern is a redundancy certificate of x,. Similarly, as shown in Theorem
4, for every nonredundant variable there exists a nonredundancy certificate. Such a single
certificate can be detected in time LP(n,d) (see Section 4.3). The number of dictionaries
needed to detect all redundancies depends on the LP and can vary between constant and
linear in n + d [10, Appendix].

In a second part, we present a Clarkson-type, output-sensitive algorithm that detects
all redundancies in running time O(d - (n +d) - s *LP(s,d) +d - s*- LP(n,d)) (Theorem
5). Under some general position assumptions the running time can be improved to O((n +
d) - LP(s,d) + s - LP(n,d)), which is basically the running time of Clarkson’s algorithm.
In these bounds, LP(n,d) denotes the time to solve an LP to which we have access only
through signed dictionaries. As in the real RAM model, no polynomial bounds are known,
but algorithms that are fast in practice exist.

In general our algorithm’s running time is worse than Clarkson’s, but it only requires the
combinatorial information of the system and not its actual numerical values. If the feasible
region is not full dimensional (i.e. not of dimension d), then a redundant constraint may
become nonredundant after the removal of some other redundant constraints. To avoid these
dependencies of the redundant constraints we assume full dimensionality of the feasible region.
Because of our purely combinatorial characterizations of redundancy and nonredundancy,
our algorithm works in the combinatorial setting of oriented matroids [1], and can be applied
to remove redundancies from oriented topological hyperplane arrangements.
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2 Basics

Before discussing redundancy removal and combinatorial aspects in linear programs, we
fix the basic notation on linear programming —such as dictionaries and pivots operations —
and review finite pivot algorithms. (For further details and proofs see e.g. [3, Part 1], [7,
Chapter 4].)

2.1 LP in Dictionary Form

Throughout, if not stated otherwise, we always consider linear programs (LPs) of the form

T

minimize ¢ TN
subject to rg = b—Azxyn (3)
TE Z 07

where E := BU N and as introduced in (1), B and N are disjoint finite sets of variable
indices with |B| = n, [N| = d, b € RP and A € RE*Y are given input vector and matrix.
An LP of this form is called LP in dictionary form and its size is n x d. The set B is called
a (initial) basis, N a (initial) nonbasis and ¢’z the objective function.

The feasible region of the LP is defined as the set of 2 € RF that satisfy all constraints,
i.e., the set {x € R¥|zp = b— Azy,rp > 0}. A feasible solution T is called optimal if for
every feasible solution z, ¢I'Z < ¢’'z. The LP is called unbounded if for every k € R, there
exists a feasible solution z, such that ¢”z < k. If there exists no feasible solution, the LP is
called infeasible.

The dictionary D(B) € RBUIXNUGY of an LP (3) w.r.t. a basis B is defined as
0 ]

D:D(B){b W\

where f is the index of the first row and g is the index of the first column. For each i € BU{f}
and j € N U{g}, we denote by d;; its (¢, j) entry, by D;. the row indexed by i, and by D ;
the column indexed by j.

Hence by setting z; := cTay, we can rewrite (3) as
minimize xTf
bject t = D
subject to a:BU{f} a:NU{g} (4)
TE Z Oa
rg = 1L

Whenever we do not care about the objective function, we may set ¢ = 0, and with abuse of
notation, set D = [b, —A].

The basic solution w.r.t. B is the unique solution T to xpu(s; = Dxyyigy such that
Ty =1, 7n = 0 and hence Tpyspy = D 4.

The dual LP of LP (4) is defined as

minimize Yg

subject to ynuy = —DTynus (5)
yeg > 0,
vy = L.

It is useful to define the following four different types of dictionaries (and bases) as
shown in the figure below, where "+" denotes positivity, "®" nonnegativity and similarly "—"
negativity and "©" nonpositivity.
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A dictionary D (or the associated basis B) is called feasible if d;y > 0 for all i € B.
A dictionary D (or the associated basis B) is called optimal if dig > 0, dy; > 0 for all
i € B,j € N. A dictionary D (or the associated basis B) is called inconsistent if there exists
r € B such that d,y < 0 and d,; <0 for all j € N. A dictionary D (or the associated basis
B) is called dual inconsistent if there exists s € N such that drs < 0 and d;s > 0 for all
1 € B.

g g
f f <) @
e @
o &
feasible optimal
g g ds
f ! -
©®
Jr — s .- B :
@
inconsistent

dual inconsistent

The following proposition follows from standard calculations.

» Proposition 1. For any LP in dictionary form the following statements hold.

1. If the dictionary is feasible then the associated basic solution is feasible.

2. If the dictionary is optimal, then the associated basic solution is optimal.

3. If the dictionary is inconsistent, then the LP is infeasible.

4. If the dictionary is dual inconsistent, then the dual LP is infeasible. If in addition the LP
is feasible, then the LP is unbounded.

2.2 Pivot Operations

We now show how to transform the dictionary of an LP into a modified dictionary using
elementary matrix operation, preserving the equivalence of the associated linear system. This
operation is called a pivot operation.

Let r € B, s € N and d,s # 0. Then it is easy to see that one can transform rp (s} =
Dz gy to an equivalent system (i.e., with the same solution set) :

epugsy = D'y,
where B’ = B\ {r} U{s} (N = N\ {s} U{r}, respectively) is a new (non)basis and

1

i

ifi=sand j=r

u

, 3” ifi=sandj#r . , ) ,
dij =9 4, ifi#sandj*r(ZEB U{f} and j € N'U{g}). (6)

[

]

Z-j—% ifi#Asand j#r

S

We call a dictionary terminal if it is optimal, inconsistent or dual inconsistent. There are
several finite pivot algorithms such as the simplex and the criss-cross method that transform
any dictionary into one of the terminal dictionaries [16, 17, 11],[5, Section 4]. This will be
discussed further in Section 4.3.
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3 Combinatorial Redundancy

Consider an LP in dictionary form as given in (3). Then z, > 0 is redundant, if the removal
of the constraint does not change the feasible solution set, i.e., if

minimize cTa:N
subject to rp = b—Azxyn (7)
xz; > 0, Vie E\{r},

has the same feasible solution set as (3). Then the variable z, and the index r are called
redundant.

If the constraint z,, > 0 is not redundant it is called nonredundant, in that case the
variable x, and the index r are called nonredundant.

It is not hard to see that solving n + d LPs of the same size as (7) suffices to find all
redundancies. Hence running time O((n + d) - LP(n,d)) suffices to find all redundancies,
where LP(n,d) is the time needed to solve an LP of size n x d. Clarkson showed that it
is possible to find all redundancies in time O((n + d) - LP(s,d) + s -n - d), where s is the
number of nonredundant variables [4]. In case where s < n this is a major improvement.
To be able to execute Clarkson’s algorithm, one needs to assume full dimensionality and
an interior point of the feasible solution set. In the LP setting this can be done by some
preprocessing, including solving a few (O(d)) LPs [9, Section 8.

In the following we focus on the combinatorial aspect of redundancy removal. We give a
combinatorial way, the dictionary oracle, to encode LPs in dictionary form, where we are
basically only given the signs of the entries of the dictionaries. In Section 4 we will show how
the signs suffice to find all redundant and nonredundant constraints of an LP in dictionary
form.

Consider an LP of form (3). For any given basis B, the dictionary oracle returns a matrix

D = D°(B) € {4, —,0}B*N9} | with di; = sign(di;),Vi € B,j € N U{g}.

Namely, for basis B, the oracle simply returns the matrix containing the signs of D(B),
without the entries of the objective row f.

4 Certificates

We show that the dictionary oracle is enough to detect all redundancies and nonredundancies
of the variables in E. More precisely for every r € E, there exists a basis B such that D?(B)
is either a redundancy or nonredundancy certificate for z,. We give a full characterization
of the certificates in Theorems 2 and 4. The number of dictionaries needed to have all
certificates depend on the LP. See [10, Appendix] for examples where constantly many suffice
and where linearly many are needed.

For convenience throughout we make the following assumptions, which can be satisfied
with simple preprocessing.

1. The feasible region of (3) is full dimensional (and hence nonempty).
2. There is no j € N such that d;; =0 for all i € B.

In Section 4.3 we will see that both the criss-cross and the simplex method can be used on
the dictionary oracle for certain objective functions. Testing whether the feasible solution set
is empty can hence be done by solving one linear program in the oracle setting. As mentioned
in the introduction the full-dimensionality assumption is made to avoid dependencies between
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the redundant constraints. This can be achieved by some preprocessing on the LP, including
solving a few (O(d)) LPs [9].

It is easy to see that if there exists a column j such that d;; = 0 for all ¢ € B, then z; is
nonredundant and we can simply remove the column.

4.1 A Certificate for Redundancy in the Dictionary Oracle

We say a that basis B is r-redundant if r € B and DZ > 0 i.e. if D?(B) is as given in the
figure below.

r-redundant

Since the r-th row of the dictionary represents =, = d,q + > jeN drjzj, 2 > 0 is satisfied
as long as «; > 0 for all j € N. Hence z, > 0 is redundant for (3).

» Theorem 2 (Redundancy Certificate). An inequality x, > 0 is redundant for the system
(3) if and only if there exists an r-redundant basis.

Proof. We only have to show the “only if” part.

Suppose z,, > 0 is redundant for the system (3). We will show that there exists an
r-redundant basis.

Consider the LP minimizing the variable x, subject to the system (3) without the
constraint x,, > 0. Since x, > 0 is redundant for the system (3), the LP is bounded. By
assumption 1 and the fact that every finite pivot algorithm terminates in a terminal dictionary
the LP has an optimal dictionary.

If the initial basis contains r, then we can consider the row associated with r as the
objective row. Apply any finite pivot algorithm to the LP. Otherwise, r is nonbasic. By
assumption 2, one can pivot on the r-th column to make r a basic index. This reduces the
case to the first case.

Let’s consider an optimal basis and optimal dictionary for the LP where z,. is the objective
function. Since it is optimal, all entries d,; for j € NV are nonnegative. Furthermore, d,4 is
nonnegative as otherwise we would have found a solution that satisfies all constraints except
x, > 0, implying nonredundancy of z,. <

From the proof of Theorem 2 the following strengthening of Theorem 2 immediately
follows.

» Corollary 3. An inequality x, > 0 is redundant for the system (3) if and only if there

exists a feasible r-redundant basis.

@
feasible r-redundant
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4.2 A Certificate for Nonredundancy in the Dictionary Oracle

Similarly as in the redundancy case, we introduce a certificate for nonredundancy using the
dictionary oracle. A basis B is called r-nonredundant if B is feasible, » € N and d¢; = 0
implies dy- < 0 for all ¢t € B i.e. D?(B) is of the following form.

g r
+
+
0 S}
0 S

r-nonredundant

» Theorem 4 (Nonredundancy Certificate). An inequality z, > 0 is nonredundant for the
system (3) if and only if there exists an r-nonredundant basis.

Before proving the theorem, we observe the following.

1. Unlike in the redundancy certificate an r-nonredundant basis needs to be feasible. To
verify the correctness of a nonredundancy certificate we need to check between n and 2n
entries, which is typically much larger than the d 4+ 1 entries we need for the redundant
case.

2. If the g-column of a feasible basis does not contain any zeros, then all nonbasic variables
are nonredundant. In general when x, > 0 is nonredundant, not necessarily every feasible
basis B with r € N is r-nonredundant. Consider the system:

T3 = X1+ Zo

x1,T2,23 > 0.

Then the basis {3} is not a certificate of nonredundancy of 1, as d; = + in the associated
dictionary. On the other hand, the basis {2} is 1-nonredundant:
g 1 2 g 1 3

3o+ +] 2[0] = +]

Proof of Theorem 4. Let (LP) be of form (3) and suppose that x, > 0 is nonredundant.
Then it follows that for € small enough z, > —¢ is nonredundant in

minimize T,
subject to zp
T

b—AZL’N
0, Vie BUN\{r}

—E€.

(®)

VIVl

Ty

Note that this LP can easily be transformed to an LP of form (3) by the straight forward
variable substitution &/ = z, + €.

LP (8) attains its minimum at —e and hence there exists an optimal dictionary where r
is nonbasic. Let B be such a feasible optimal basis of (LP€) with » € N. We show that if we
choose € small enough, B is r-nonredundant in (LP).

Let By, Ba, ..., B, be the set of all bases (feasible and infeasible) of (LP), that have r
as a nonbasic variable. Choose € > 0 such that

d
e<min{dt9 teBi:dtg,dtr<0;i:1,2,...,m}.
tr
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If the right hand side (RHS) is undefined, we choose any € < co.

Geometrically this means that if for ¢ € B; x; > 0 is violated in the basic solution w.r.t.

B; in (LP), then it is still violated in the corresponding basic solution (LP€). Let D and D¢
be the dictionaries w.r.t. B in (LP) and (LP¢) respectively.
D and D¢ only differ in their entries of column g, where

dig:dtg—e-dtr,VteB. (9)

We need to show that B is r-nonredundant in (LP). To show that B is a feasible basis
we need that dyy > 0 for all t € B. If di, > 0, then this is clear. In the case where d¢. < 0
it follows that € > % and hence d¢y > 0 by choice of €. Hence B is feasible and if d;y = 0,
then by equation (9) it follows that dy < 0. Therefore B is r-nonredundant.

For the other direction let B be r-nonredundant and D and D€ the corresponding
dictionaries in (LP) and (LP€), respectively. Choose € > 0 such that

d
e < min {tg
dtr

teB:dtg,dtr>O}.

If the RHS is undefined, we choose any € < oo.
We claim that for such an €, B is still feasible for (LP€) and hence z, > 0 is nonredundant.
Again the two dictionaries only differ in row g, where

d;g = dtg — € dtT,Vt € B.

In the case where d;; = 0, it follows that df, > 0 by r-nonredundancy. If di; > 0, then

€ . dt/
dtg :dtg_e'dtr Zdtg—mm{d g

t'r

dy
t'eB: dyrg, derr > O} dtg ~dyr > 0.
t'r

4.3 Finite Pivot Algorithms for Certificates

In this section we discuss how to design finite pivot algorithms for the dictionary oracle
model. Both the criss-cross method and the simplex method can be used for the dictionary
oracle to find redundancy and nonredundancy certificates. A finite pivot algorithm chooses
in every step a pivot according to some given rule and terminates in an optimal, inconsistent
or dual inconsistent basis in a finite number of steps. Note that both the criss-cross method
and the simplex method may not be polynomial in the worst case, but are known to be fast
in practice [12, 15]. Furthermore there exits no known polynomial algorithm to solve an LP
given by the dictionary oracle. Fukuda conjectured that the randomized criss-cross method
is an expected polynomial time algorithm [8].

By the proof of Theorem 2, in order to find a redundancy certificate in (3) it is enough to
solve (3) with objective function x,. Similarly by the proof of Theorem 4, for a nonredundancy
certificate it is enough to solve the e-perturbed version (8).

For the criss-cross method, the pivot rule is solely dependent on the signs of the dictionary
entries and not its actual values [7, Chapter 4], [11]. Standard calculations show that the
signs in the e-perturbed dictionary (for e > 0 small enough) are completely determined by
the signs of the original dictionary. We recall that the dictionary oracle does not output
the objective row, but since we minimize in direction of z, the signs of the objective row
are completely determined. (If r is basic then the objective row has the same entries as
the r-th row and if r nonbasic then dg, = + and all other entries of the objective row are
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zero.) Therefore the dictionary oracle is enough to decide on the pivot steps of the criss-cross
method.

For the simplex method with the smallest index rule, we are given a feasible basis and the
nonbasic variable of the pivot element is chosen by its sign only [3, Part 1 Section 3]. The
basic variable of the pivot is chosen as the smallest index such that feasibility is preserved
after a pivot step. Using the dictionary oracle one can test the at most n possibilities and
choose the appropriate pivot.

5 An Output Sensitive Redundancy Detection Algorithm

Throughout this section, we denote by S’ the set of nonredundant indices and by R’ the set
of redundant indices. Denote by LP(n,d) the time needed to solve an LP. By the discussion
in Section 4.3, for any x,, r € E, we can find a certificate in time LP(n,d). Theorem 5
presents a Clarkson type, output sensitive algorithm with running time O(d - (n + d) - s9* -
LP(s,d)+d- s LP(n,d)), that for a given LP outputs the set S’, where s = |S’|. Typically
s and d are much smaller than n.

5.1 General Redundancy Detection

Redundancy Detection Algorithm(D,g,f);
begin
R:=0,58:=0;
while RUS # E do
Pick any r ¢ RU S and test if r is redundant w.r.t. S;
if r redundant w.r.t. S then
R=RU{r}
else /* r nonredundant w.r.t. S */
test if 7 is redundant w.r.t. E'\ R;
if 7 is nonredundant w.r.t. '\ R then
S=SU{r};
else /* r redundant w.r.t. E\ R */
Find some sets S C $" and R C R’ such that S¥ ¢ S;
R=RURF §=5uUSF,
endif;
endif;
endwhile;
S* =5,
output S*;
end.

Since in every round at least one variable is added to S or R, the algorithm terminates. The
correctness of the output can easily be verified: If in the outer loop r is added to R, r is
redundant w.r.t. S and hence redundant w.r.t. S* O S. If in the inner loop r is added to S,
r is nonredundant w.r.t. E\ R and hence nonredundant w.r.t. S* C E'\ R.

The main issue is how to find the sets S and R’ efficiently in the last step. This will
be discussed in (the proof of) Lemma 6.

A technical problem is that we cannot test for redundancy in the dictionary oracle when
S does not contain a nonbasis. Therefore as long as this is the case, we fix an arbitrary
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nonbasis N and execute the redundancy detection algorithm on S U N instead of S. Since
this does not change correctness or the order of the running time, we will omit this detail in
the further discussion.

» Theorem 5. The redundancy detection algorithm outputs S’, the set of nonredundant
constraints in time

d—1
R(n,d,s) = O (Z((n +d)-s" - LP(s,d—i)+ s - LP(n,d — i)))
=0

and consequently in time
R(n,d,s)=0(d-(n+d)-s*"-LP(s,d)+d-s*- LP(n,d)).
The following Lemma implies Theorem 5.

» Lemma 6. Let R(n,d,s) be the running time of the redundancy detection algorithm in n
basic variables, d nonbasic variables and s the number of nonredundant variables. Then in
the last step of the inner loop some sets S¥ C S’ and R C R', with ST ¢ S, can be found
in time O(R(n,d — 1,8) + LP(n,d)).

Proof of Theorem 5. Termination and correctness of the algorithm are discussed above. The
iteration of the outer loop of the algorithm takes time O(LP(s,d)) and is executed at most
n + d times. By Lemma 6, the running time of the inner loop is O(R(n,d — 1, s) + LP(n,d))

and since in each round at least one variable is added to S, it is executed at most s times.

Therefore the total running time is given recursively by
R(n,d,s) =0 ((n+d)-LP(s,d) +s-(R(n,d—1,s) + LP(n,d))).
The claim follows by solving the recursion and noting that R(n,0, s) can be set to O(n). <

It remains to prove Lemma 6, for which we first prove some basic results below, using
the dictionary oracle setting.

» Lemma 7. Let D = D(B) be a feasible dictionary of an LP of form (3) and assume
F := {i € Blb; = 0} # 0. We consider the subproblem of the LP denoted LP¥ (with
dictionary DY) that only contains the rows of D indeved by F. Then r € F U N is
nonredundant in LP if and only if it is nonredundant in LPF.

Proof. We only need to show the "if" part. Let r € F' U N be nonredundant in LPF with
certificate D' . Then there exists a sequence of pivot steps from D¥ to D" Using the

same ones on D and obtaining dictionary D, this is a nonredundancy certificate for r, since
Eig =d;y > 0 for all i € B\ F by the definition of F. <

» Lemma 8. Let D = [b, —A] be the dictionary of an LP of form (8). Then a variable r € E
is nonredundant in the LP given by D if and only if it is nonredundant in the LP given by
D% =10,b, —A].

Proof. If D(B) is a redundancy certificate for r for some basis B, then D°(B) is a redundancy
certificate for r as well.

For the converse, let D = D(B) be a nonredundancy certificate for r for some basis B.

For simplicity assume that B = {1,2,...,n}. For now assume that b; > 0 for all i € B and
let D? the dictionary obtained from D° by pivoting on b;, i = 1,2,...,n. We will show that
at least one of the D, i € {0,1,...,n} is a nonredundancy certificate for r. Since after
any pivot the first column of D? stays zero, D’ is a nonredundancy certificate if and only if
D! <0. Let RP = (ri,rd,...ri)T .= D' fori>1and R = (ry,72,...,7,)T :=DY.
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Claim: Assume that r! < 0 for any fixed i and there are at least i — 1 additional nonpositive

entries (w.l.o.g. we assume them to be ri,ri, ... 7¢ ;). If R has a positive entry (which
w.l.o.g. we assume to be 77, ,), then 7/7{ < 0 and r{*', 75", ... ri*! are nonpositive.
If D is not a certificate for r, then w.lo.g. 71 > 0 and hence r{ = —* < 0. Therefore
by induction the lemma follows from the claim.
Assume that r{, 7%, ..., ri_; <0, 7 <0 and Tf_H > 0. Then we have r; > 0 and
i ribit
Tit1 = Tit+1 — b >O<:>T7;bi+1 <ri+1bi = 11 > 0, (10)
(2
Vi<iiri=r % <0 b, <rib 11
J<iiry=rj— = <0 b <mibj. (11)

7

The following calculations show the claim.

ritl = _Z”“ <0< 741 > 0 which holds by (10).
i+1

; i+1b; .

7“;"'1 =r; — Tbi <0< r;biy1 < rip1b; which holds by (10).
i+1

Vi A 7”i+1bj

]<’L.’I"j —Tj*7§0<:>7’jbi+1§’f’i+1bj,

j+1
1

and by (10) and (11), iji+1 = (iji)(""ibi-&-l) .

’I’ibi

< riy1bj.

Now suppose that b; = 0 for some ¢. Then by the nonredundancy certificate r; < 0, and
it is easy to see that r/ = r; <0 for all admissible pivots on b;. Hence we can use the above
construction on the nonzero entries of b. |

Proof of Lemma 6. Suppose that during the execution of the algorithm, r is nonredundant
w.r.t. the current set S, and redundant w.r.t. £\ R, with feasible redundancy certificate
D = [b,—A], which exists by Corollary 3. If b > 0, then all nonbasic indices in N are
nonredundant by Theorem 4. Choose S = N, RF = (). It holds that S¥ ¢ S, since
otherwise r would be redundant w.r.t. S. The running time of the inner loop in this case is
LP(n,d).

Now if there exists i € B such that b; = 0, define F = {i € B|b; = 0}, LPY and D¥ as
in Lemma 7. We now recursively find all redundant and nonredundant constraints in the
LPF using Lemma 8 as follows. From LPF we construct another LP, denoted LP~ with
one less nonbasic variable, by deleting Dg (the column of all zeros), choosing any element
t € N and setting t = g. Finding all redundancies and nonredundancies in LP~ takes time
R(|F|,d —1,s). By Lemma 8 redundancies and nonredundancies are preserved for LP¥.

Therefore finding them in LP¥ takes time R(|F|,d — 1,s) + LP(n,d) < R(n,d —1,s) +
LP(n,d), where the LP(n,d) term is needed to check separately whether ¢ is redundant.
Choose ST as the set of nonredundant indices of LPT and R as the set of redundant ones.
By Lemma 7 S¥ C §" and R C R’. Since by Lemma 7 r is redundant in LPY, S¥ ¢ S,
since otherwise r would be redundant w.r.t. S. <

5.2 Strong Redundancy Detection

In this section we show how under certain assumptions the running time of the redundancy
algorithm can be improved. If we allow the output to also contain some weakly redundant
constraints (see definition below), it is basically the same as the running time of Clarkson’s
method.
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A redundant variable r is called strongly redundant if for any basic feasible solution Z,
Z, > 0. In particular for any basic feasible solution, r € B. If r is redundant but not strongly
redundant r is called weakly redundant.

As before let s be the number of nonredundant constraints and let R, (with |Rs| = rs,) and
Ry, (with |Ry| = 7w,) be the set of strongly and weakly redundant constraints respectively.

» Theorem 9. It is possible to find a set S* 2 S', S* N Rs =0 in time O((n+d) - LP(s +
Tw,d) + (s +ry) - LP(n,d)).

The following corollary follows immediately.

» Corollary 10. If there are no weakly redundant constraints, the set S’ of nonredundant
constraints can be found in time O((n+d) - LP(s,d) + s - LP(n,d)).

The theorem is proven using the following two lemmas, which can be verified with straight
forward variable substitutions.

» Lemma 11. /3, Part 1 Section 3] Let (LP) of form (3), where (LP) is not necessarily full
dimensional. W.l.o.g. B=1{1,2,...,n}. For each i € {1,2,...,n} replace the nonnegativity
constraint x; > 0 by x; > —¢€', for € > 0 sufficiently small. Denote the resulting LP by (LP¢).
Let D7 be the output of the dictionary oracle for an arbitrary dictionary D of (LP). Then
(LP€) is full dimensional. Furthermore in D7, the corresponding output for the e-perturbed
version, all signs can be determined by D7, and D% has no zero entries.

» Lemma 12. /3, Part 1 Section 3] Let (LP) and (LP¢) be as in Lemma 11. Then any
nonredundant constraint in (LP) is nonredundant in (LP€) and any strongly redundant
constraint in (LP) is strongly redundant in (LP€).

Proof of Theorem 9. Replace the given LP by it’s e-perturbed version as in Lemma 11 and
run the redundancy removal algorithm, which is possible by the same lemma. By Lemma 12,
S* D S and S* N Ry = (). Since by Lemma 11, the entries of the g-column of any dictionary
D?¢ are strictly positive the algorithm never runs the recursive step and the running time
follows. |

» Remark. The e-perturbation makes every feasible LP full dimensional, therefore the full
dimensionality assumption can be dropped for Theorem 9.

5.3 Discussion

In this paper, we presented new combinatorial characterizations of redundancy and nonre-
dundancy in linear inequality systems. We also presented a combinatorial algorithm for
redundancy removal.

In contrast to the Clarkson algorithm our redundancy detection algorithm does not need
the whole LP but only the combinatorial information of the dictionaries. Although in general
the running time is worse, assuming that we have no weak redundancies, our redundancy
removal algorithm basically has the same running time as the Clarkson algorithm. Still, a
natural goal is to improve the runtime of our algorithm in the general case and get it closer to
that of Clarkson’s method. We do have a first output-sensitive algorithm for combinatorial
redundancy detection, but the exponential dependence on the dimension d is prohibitive
already for moderate d.

Our algorithm works in a more general setting of oriented matroids. This means one can
remove redundancies from oriented pseudo hyperplane arrangements efficiently. Furthermore,
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the algorithm can be run in parallel. Yet, analyzing the performance may not be easy because

checking redundancy of two distinct variables simultaneously may lead to the discovery of

the same (non)redundant constraint. This is an interesting subject of future research.
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