
ar
X

iv
:1

60
7.

08
75

4v
3 

 [
m

at
h.

C
O

] 
 2

8 
O

ct
 2

01
6

A flow based pruning scheme for enumerative

equitable coloring algorithms

A.M.C.A. Koster⋆, R. Scheidweiler⋆, and M. Tieves∗

Lehrstuhl II für Mathematik, RWTH Aachen University,

52056 Aachen, Germany

Abstract

An equitable graph coloring is a proper vertex coloring of a graph G

where the sizes of the color classes differ by at most one. The equitable
chromatic number, denoted by χeq(G), is the smallest number k such that
G admits such equitable k-coloring.

We focus on enumerative algorithms for the computation of χeq(G)
and propose a general scheme to derive pruning rules for them: We show
how the extendability of a partial coloring into an equitable coloring can
be modeled via network flows. Thus, we obtain pruning rules which can
be checked via flow algorithms. Computational experiments show that the
search tree of enumerative algorithms can be significantly reduced in size
by these rules and, in most instances, such naive approach even yields
a faster algorithm. Moreover, the stability, i.e., the number of solved
instances within a given time limit, is greatly improved.
Since the execution of flow algorithms at each node of a search tree is
time consuming, we derive arithmetic pruning rules (generalized Hall-
conditions) from the network model. Adding these rules to an enumerative
algorithm yields an even larger runtime improvement.

1 Introduction

The Vertex Coloring Problem (VCP) arises in numerous applications. For ex-
ample, consider the case of assigning a set V of n jobs to k identical machines.
We assume that mutual conflicts between the jobs exist, so that, if v, w ∈ V are
in conflict, they cannot be assigned to the same machine. We represent these
relations among the jobs by a graph G = (V,E), denoting jobs as vertices with
an edge between them if the corresponding tasks are in conflict. Given some
k ∈ N, VCP asks whether the jobs can be partitioned into k sets C1, . . . , Ck of
pairwise nonadjacent vertices each to be processed on the same machines.

∗{koster, scheidweiler, tieves}@math2.rwth-aachen.de

1

http://arxiv.org/abs/1607.08754v3


1

22222222222

(a) Ordinary graph coloring

1

22334455667

(b) Equitable graph coloring

Figure 1: An equitable (right) and an ordinary (left) coloring of a star. It is
χ(G) = 2 and χeq(G) = 7, the color classes are indicated by the node labels.

The chromatic number χ(G) defines the smallest number of machines required to
process all the jobs at once. More formally, the graph G admits a k-coloring if V
can be partitioned into k sets C1, . . . , Ck of pairwise nonadjacent vertices and the
chromatic number χ(G) is the smallest number k such that G has a k-coloring.
The sets Ci are called color classes and Π := (C1, . . . , Ck, Ck+1, . . . , Cn) with
Ck+1 = · · · = Cn = ∅ is called a k-coloring.
With respect to fairness, i.e., concerning machine usage, a natural constraint is
to distribute the number of jobs equally among the machines. That is, given
some k ∈ N, the task is to partition V into stable sets C1, . . . , Ck such that
their sizes differ by at most one. We refer to this task as the Equitable Graph
Coloring Problem (ECP). The equitable chromatic number χeq(G) is defined as
the smallest integer k such that G possesses a k-coloring Πeq where ||Ci|−|Cj|| ≤
1 for all color classes i, j ∈ {1, . . . , k}.
From an economical point of view, the knowledge of χeq(G) is important in a
number of applications, e.g., in scheduling problems or, even more applied, in
municipal services such as garbage collection, see [4].
An equitable coloring of a star is presented in Figure 1. The example also shows
that the difference between the chromatic number and the equitable chromatic
number is, in principle, unbounded. In particular, given a star S with k ∈ N≥3

nodes, we have χ(S) = 2 and χeq(S) = ⌈
k−1
2 ⌉+ 1.

ECP was introduced in 1973 by Meyer [3]. For a summary of recent theoretical
developments we refer to [9]. Méndez-Dı́az et al. present a number of exact
and heuristic algorithms for ECP in [10, 11, 12, 13]. In [13], they describe
an enumerative algorithm called EQDSATUR for ECP based on the DSATUR
algorithm for ordinary graph coloring (see [5] for details), where they combine
the branch and bound algorithm DSATUR with a customized pruning rule. In
particular, they show that in many cases where a mixed integer linear program
fails, such enumerative approach can be a reasonable alternative.

Contribution/outline. We focus on improvements to enumerative (DSATUR-
based) algorithms to compute χeq(G), proposing a general scheme to derive
pruning rules for these algorithms. We start with a detailed description of
EQDSATUR as the foundation of the following work. In Section 3, we show how
the extendability of a partial coloring to an equitable coloring can be modeled

2



via network flows. We remark that a similar construction has been made by de
Werra [7, 8] and that this scheme also includes the pruning rule derived in [13].
Computational experiments (Section 5) show that a straight forward implemen-
tation where this scheme is evaluated by a flow problem improves the original
algorithm with respect to speed, number of solved instances given a fixed time
limit and nodes in the search tree.
However, the execution of flow algorithms at each node of a search tree is time
consuming. Therefore, we discuss how arithmetical pruning rules can be derived
from the network model. That is, we apply a result of Hoffman [2] which
yields a complete description of our network pruning model in generalized Hall-
conditions. In Section 4, we classify these conditions. We will see that there
are exponentially many (non-dominated) conditions, a selection of which we
apply within our algorithm. Computational Experiments show, that this yields
an enumerative equitable coloring algorithm which is faster than the original
algorithm in all but some of the largest instances.

2 Definitions and Related Work

We repeat basic definitions and briefly describe the approach from Méndez-Dı́az
et al. [13] to tackle ECP. For this section and the remainder of the work, we
assume a graph G = (V,E) to be given. We start with some basic observations.
Since any equitable coloring is a coloring, it is clear that χ(G) ≤ χeq(G). Let
k ∈ N be fixed. If G admits an equitable k-coloring, the sizes of the color classes
are fixed.

Lemma 1. Let k ∈ N, n = |V | and p ≡ n mod k. If G admits an equitable
coloring with k colors, then there are p color classes of size

⌈
n
k

⌉
and k− p color

classes of size
⌊
n
k

⌋
. �

Recall that a clique is a set of pairwise adjacent vertices and that we call a set of
vertices stable if it only contains pairwise nonadjacent vertices. In the following,
we adopt several notations and definitions from [13]. A partial k-coloring of G
is given by Πp := (C1, . . . , Ck, . . . , Cn) such that: all Ci ⊆ V, i = 1, . . . , k are
pairwise disjoint, Ci = ∅ for i ≥ k + 1, and the Ci are stable for i = 1, . . . , k.
Note, that a partial coloring can also be completely empty, i.e., Ci = ∅ for
i = 1, . . . , n.
We denote the set of uncolored vertices by U(Πp) := V \ (C1 ∪ · · · ∪Ck). In the
following, we make extensive use of the following property:

Definition 1 (extendability property). A partial k-coloring Πp can be extended

to an (equitable) k̃-coloring for k̃ ≥ k if and only if there exists an (equitable)
k̃-coloring Πeq = (C̃1, . . . , C̃n) such that C̃i ⊇ Ci for i = 1, . . . , k̃.

For any colored vertex v with v ∈ Ci for some i = 1, . . . , n, we define Πp(v) := i
as the Πp-color of v. For any uncolored vertex v ∈ U(Πp), denote the forbidden
colors of v as

DΠp
(v) := {Πp(w) | w ∈ V \ U(Πp), wv ∈ E},

3



the set of free colors as

FΠp
(v) := {1, . . . , n} \DΠp

(v).

We refer to the saturation degree of vertex v ∈ V as ρΠp
(v) := |DΠp

(v)|. For
any uncolored vertex v ∈ U(Πp) and a color i ∈ FΠp

(v), we define the operation

Πp+ < v, i >:= (C1, . . . , Ci ∪ {v}, . . . , Cn)

as the extension of Πp with < v, i > which assigns the uncolored vertex v to a
(possibly empty) color class Ci.

An exact algorithm to solve ECP is EQDSATUR as presented in [13]. Its basic
idea is to enumerate all colorings of G via DSATUR (cf. [5]) and, thereby, elim-
inating non minimal and non equitable colorings to find a minimum equitable
coloring. The nodes of the enumeration tree correspond to (different) partial
colorings which are subsequently extended to full colorings.

EQDSATUR (see Algorithm 1) is initialized at the root node of the enumera-
tion tree with two global bounds for χeq (an upper bound k, a lower bound k)
and with an initial partial coloring Πp. For the sake of simplicity, these bounds
are not denoted in Algorithm 1. The initial partial coloring can, e.g., be empty
or be a colored clique of G. Then, an uncolored vertex v ∈ U(Πp) of highest
saturation degree, i.e., argmax{ρΠp

(v)}, is chosen. Note, that in case of a tie a
random tie break (or more elaborate tie breaking rules cf. [13], e.g., PASS-VSS)
can be applied at Step 7. Now, for every available color i ∈ FΠp

(v), a new branch
is generated, which is given by the extended partial coloring Πp+ < v, i > . In
this process, each branch inherits its own upper and lower bounds on χeq . In
Step 2, the algorithm chooses, driven by a node selection criterion, the next
node of the tree and continues as for the root node. If, at some point, a partial
coloring is extended to a complete coloring, the branch is terminated. Then,
it is checked whether the resulting coloring is equitable and yields an improved
bound k̄. Naturally, the algorithm stops when all nodes are pruned/terminated,
i.e., when all potential partial colorings have been tested.

Note, that this basic form of DSATUR can naturally be intertwined with prun-
ing rules, for instance in Step 9, when updating the bounds k and k for the
specific branches of the enumeration tree.
Due to the exponential size of such an enumeration, from a practical perspective,
good pruning rules are essential to reduce the size of the tree. For ECP these
rules can be categorized into two groups. Pruning if

• a known upper bound for χeq(G) cannot be improved by extending the
coloring of the considered node.

• a partial coloring cannot be extended to an equitable coloring.

4



Algorithm 1 EQDSATUR

Require: Graph G = (V,E) with a partial coloring Πp

Initialize: T ← {Πp} ⊲ T =̂ enumeration tree
1: while T 6= ∅ do
2: Select Πp ∈ T
3: T ← T \ {Πp}
4: if U(Πp) := ∅ then
5: Evaluate Πp.
6: else

7: Choose v = argmax
{
ρΠp

(u) | u ∈ U(Πp)
}

8: for i ∈ FΠp
(v) do

9: if not prune(Πp+ < v, i >) then
10: T ← T ∪ {Πp+ < v, i >} ⊲ Store extended colorings

We repeat some further definitions to introduce the results of [13]. Consider
G and a partial coloring Πp, we denote by M(Πp) := max{|Ci| | i = 1, . . . , n}
the size of the largest color class. Denote by T (Πp) := {i ∈ {1, . . . , n} | |Ci| =
M(Πp)} the indices of the largest color classes and the cardinality t(Πp) :=
|T (Πp)|.

Theorem 1. [13] Consider G and a partial k-coloring Πp. If this partial coloring
can be extended to an equitable coloring, then

n ≥ (M(Πp)− 1)(k − t(Πp)) +M(Πp)t(Πp) = (M(Πp)− 1)k + t(Πp). (1)

Or, given a lower bound k for χeq(G), it is n ≥ (M(Πp)− 1)max{k, k}+ t(Πp).

The (first) condition of the foregoing theorem can be stated in a slightly different

form. By subtracting
∑k

i=1 |Ci| from both sides of the inequality, we obtain the
equivalent formulation

|U(Πp)| ≥
k∑

i=1
|Ci|<M(Πp)−1

(M(Πp)− 1− |Ci|). (2)

EQDSATUR employs Theorem 1 as pruning rule: At each node of the search
tree, given a partial coloring Πp, an uncolored vertex v ∈ U(Πp) and a color
i ∈ FΠp

(v), it is to check whether

(i) i ≤ k − 1 and

(ii) n ≥ (M(Π′
p)− 1) ·max{k, k}+ t(Π′

p) with Π′
p := Πp+ < v, i >.

If any of the two conditions is not fulfilled, the branch is pruned. More informal,

5



the theorem translates to: “There
have to be enough uncolored ver-
tices, to fill up all color classes to
the size of the currently largest one
minus one”. A visual interpretation
of the result is given in Figure 2. In
the figure, a coloring is depicted in
which the largest color class (blue)
has size three, the other three color
classes have size one. Since there

1 2

3 4

1

1

2

3

Figure 2: A non-extendable coloring

are only two uncolored nodes left, the coloring cannot be extended because
not all color classes can be filled up to include at least two nodes each (which
requires at least three additional nodes).

3 Flows and Partial Colorings

In this section, we present a flow-based scheme to model necessary conditions
on partial colorings to be extendable. By means of this scheme Theorem 1
and additional, stronger conditions for extendability can be derived. Note that
the presented construction is similar to a network model presented in [7, 8].
Throughout this section, we assume a graph G together with a partial col-
oring Πp with k colors to be given. Therefore, we consider the simplified
notation D(v) := DΠp

(v), F (v) := FΠp
(v),M := M(Πp), ρ(v) := ρΠp

(v) and
U := U(Πp).

3.1 Modeling Extendability via Network Flows

We model the extendability of a partial coloring Πp to an equitable k0 coloring
by a flow. That is, we describe a network where the vertices correspond to
(uncolored) nodes of G and to the k0 available colors, respectively to their color
classes. The coloring is extendable if a flow from each uncolored vertex to a
color (class) exists.
Let a number of colors k0 ≤ n be given. We emphasize that k0 is not necessarily
equal to k as the number of colors used in Πp. Let U be the union of l disjoint
vertex sets U1, . . . , U l. Moreover, denote by αj = α(G

[
U j

]
) an upper bound on

the size of the maximum stable set, i.e., on the stability number, of the subgraph
induced by U j . In order to model the extendability of Πp we define the directed
network N(G,Πp, k0) := (VN , AN ). For a visualization, we refer to Figure 3.
Formally, the construction writes as follows: Let C = {1, . . . , k0} be a set of
vertices corresponding to the considered colors. With a slight abuse of notation,
let U =

⋃l

j=1 U
j be a set of vertices corresponding to the uncolored nodes in

G. For each j = 1, . . . , l, let F j be a copy of C and let F =
⋃l

j=1 F
j . We write

f j(i) for the vertex in F j corresponding to (a copy of) color i. Then, adding a

6



A1
U=1
L=0

A2
U=1
L=0

A3
U=aj

L =0

A4
U=⌈ n

k0
⌉−|Ci|

L=⌊ n
k0

⌋−|Ci|

U1

U2

U l

F 1

F 2

F l

C

s t
arc (u, fj(i))

exists

iff i ∈ F (u).

...

...

...

...

...

...

...

...

...

Figure 3: The network N(G,Πp, k) := (VN , AN ). The “uncolored” vertices
are depicted in white, the vertices corresponding to colors are depicted in their
respective colors. L and U indicate the arc capacities.

source node s and a sink node t, the vertex set VN is defined as

VN := {s} ∪
l⋃

j=1

U j ∪
l⋃

j=1

F j ∪ C ∪ {t}.

The arc set AN is then composed of the arc sets A1, . . . A4. Hereby, A1 connects
s to U , i.e., A1 := {(s, v) | v ∈ U} and A2 connects U to F , that is

A2 :=

l⋃

j=1

{
(v, f j(i)) | v ∈ Uj and i ∈ F (v)

}
.

Similar, A3, connects each node in F to the corresponding color in C

A3 :=

l⋃

j=1

{
(f j(i), i) | i = 1, . . . , k0

}

and A4 connects C to t, that is A4 := {(i, t) | i = 1, . . . , k0}.
We define the corresponding arc capacities as follows: Let minimum/maximum
arc capacities be c : AN 7→ N0 and d : AN 7→ N0 with

c(a) := ⌊ n
k0
⌋ − |Ci| and d(a) := ⌈ n

k0
⌉ − |Ci|, if a = (i, t) ∈ A4,

c(a) := 0 and d(a) := αj , if a = (f j(i), i) ∈ A3,
c(a) := 0 and d(a) := 1, for all other edges

7



Table 1: An equitable coloring Π transformed into an admissible flow x.

Arc Flow value

A1 x(s,v) = 1,
A2 x(v,fj(i)) = 1, if Π(v) = i

x(v,fj(i)) = 0, if Π(v) 6= i
A3 x(fj(i),i) = |{v ∈ U j | Π(v) = i}|,

A4 x(i,t) =
l∑

j=1

x(fj(i),i).

for i = 1, . . . , k0 and for j = 1, . . . , l.

Theorem 2. Consider G and its partial k-coloring Πp. Assume k0 ≥ k and
that M ≤ ⌈ n

k0
⌉. Suppose that the set of uncolored vertices U is the union of l

disjoint vertex sets U1, . . . , U l. Let αj be given for j = 1, . . . , l.
If Πp can be extended to an equitable k0-coloring, then the network N(G,Πp, k0)
has an admissible flow of value |U |.

Proof. The transformation of an extension Π of Πp into an admissible flow x
of value |U | in N(G,Πp, k) is easy (compare Table 1). It is clear that the flow
obeys the capacity restrictions for the arcs in A1. We check the capacities on
A2, A3 and A4 :
Since Π extends Πp, a node v ∈ U can only be colored with colors from F (v).
A2 contains only one arc connecting v ∈ U j to f j(i) for each color i ∈ F (v).
Thus, the flow on A2 is well defined and obeys the capacity constraints.
By construction, all of the nodes f j(i) are connected to the node corresponding
to the color i ∈ C. Hence, the flow on (f j(i), i) ∈ A3 is well defined. Since in
any (equitable) coloring, each color class yields a stable set, the flow |{v ∈ U j |
Π(v) = i}| on the arc (f j(i), i), obeys to the given capacity, which is chosen as
upper bound on the stability number.
For any arc (i, t) of A4, Lemma 1 gives us the size of the corresponding color
classes Ci of Π, namely ⌊ n

k0
⌋ or ⌈ n

k0
⌉. Subtracting the nodes which are already

colored by Πp, we obtain ⌊ n
k0
⌋ − |Ci| or ⌈

n
k0
⌉ − |Ci|. Hence, Π assigns either

⌊ n
k0
⌋ − |Ci| or ⌈

n
k0
⌉ − |Ci| vertices from U to i. Therefore,

l∑

j=1

x(fj(i),i) =
l∑

j=1

|{v ∈ U j | Π(v) = i}| ∈

{⌊
n

k0

⌋
− |Ci|,

⌈
n

k0

⌉
− |Ci|

}

and all capacity constraints hold. Flow balance holds by construction and the
flow given by Table 1 has value |U |. Since

∑
v∈U c((s, v)) = |U |, the flow is

maximum.

The condition ⌈ n
k0
⌉ ≥ M is worth explaining: If M (the size of a largest color

class) is greater than ⌈ n
k0
⌉, there is no equitable k0-coloring extending Πp, be-

cause we need color classes of size at most ⌈ n
k0
⌉.

8



Theorem 2 establishes a necessary criterion when a partial k-coloring is extend-
able to an equitable k0-coloring for fixed k0 ≥ k and thus, it can be extended
to serve as a pruning rule within EQDSATUR:
Given a partial coloring Πp in the search tree of EQDSATUR and the collection
of uncolored vertices U, then U is decomposed into sets U j and the condition
is to be tested for any k ≤ k0 ≤ max{k̃ ∈ N | M ≤ ⌈n

k̃
⌉, k̃ ≤ k̄}. If none of the

flow problems yields the desired flow, the current branch is pruned. For later
reference, we rephrase the pruning scheme in Algorithm 2. If the algorithm
returns true, the current branch in the EQDSATUR can be pruned.

Algorithm 2 prune(Πp)

Require: Partial Coloring Πp, upper bound k̄ ≥ χeq

Initialize: bool p← true
1: Determine decomposition U =

⋃l

j=1 U
j

2: Determine bounds αj ∀j = 1, . . . , l
3: for k0 ∈ {k . . . ,max{k̃ ∈ N |M ≤ ⌈n

k̃
⌉, k̃ ≤ k̄}} do

4: if N(G,Πp, k) has an admissible flow of value |U | then
5: p← false
6: break
7: Return p

In this context, the choice of the decomposition of U (compare Algorithm 2,
step (1)) is a central element for the success of the pruning scheme. However,
it is not clear what a ‘best’ decomposition of U for the ECP is. Still, given a
decomposition into sets U j , the knowledge of good bounds αj is crucial from
an algorithmic point of view. The discussion of different decompositions is the
topic of the next subsection.

3.2 Decomposing the set of uncolored vertices

As as first step, we establish a relation between the choices of U j and αj , and
the result stated in Theorem 1. After that, we discuss a setting, for which
Theorem 2 yields a characterization of extendability. In this case, if and only
if Algorithm 2 returns true, the current branch in the EQDSATUR can be
pruned. Finally, the previous findings are combined to achieve a strong setting
for practical use.

3.2.1 A direct and fast approach

We consider the trivial decomposition U1 := U and let α1 := |U |. Then, for
selected k0, the network N(G,Πp, k0) boils down to Ñ(G,Πp, k0) with

VÑ := {s} ∪ U ∪ C ∪ {t} and

AÑ := A1 ∪ {(v, i) | v ∈ U and i ∈ F (v)} ∪ A4.

9



and flow capacities c : AÑ 7→ N0 and d : AÑ 7→ N0 with

c(a) := ⌊ n
k0
⌋ − |Ci| and d(a) := ⌈ n

k0
⌉ − |Ci|, for a = (i, t),

c(a) := 0 and d(a) := 1, for all other edges.
.

Since the capacities of arcs in A3 are |U | = |U1|, they do not restrict the flow
any more and can be omitted.
As a further relaxation, assume that F (v) = C for all v ∈ U . In other words,
we assume that any vertex can still be colored with all colors. For a potential
application of Theorem 2, we are looking for a maximum flow of value |U | in
the corresponding network Ñ . A necessary condition for the existence of such
flow is

|U | ≥
k∑

i=1
|Ci|<M

(M − 1− |Ci|),

Implying that there are enough uncolored vertices to reach equitability, resp. to
fill up the color classes to the size of the largest one minus 1.
Assume the contrary. Consider the cut induced in Ñ by V \ {t}. There, the
overall required (minimum) flow is

∑

(i,t)∈A4

(⌊
n

k0

⌋
− |Ci|

)
≥

k0∑

i=1

(⌈
n

k0

⌉
− |Ci| − 1

)
≥

k∑

i=1
|Ci|<M

(M − |Ci| − 1) ,

which can not be fulfilled if less flow leaves the source. So, we obtain the
condition from [13] for extendability (compare Theorem 1). This condition
offers two practical advantages: It is not depending on k0 and it is easy to
verify since it does not require to solve any flow problem.

3.2.2 Strong decompositions

We consider the case that U can be decomposed into l pairwise nonadjacent
cliques U j and hence, it is αj = 1 for all j = 1, . . . , l. Then, for fixed k0, the
flow model N(G,Πp, k0) even yields a characterization of extendability:

Theorem 3. Let k0 ≥ k and M ≤ ⌈ n
k0
⌉. Suppose that the set U decomposes into

pairwise non-adjacent cliques U1, . . . , U l. The partial coloring can be extended to
an equitable k0-coloring if and only if the network N(G,Πp, k0) has an admissible
flow of value |U |.

Proof. Suppose that N has a maximum flow x of size |U |. The capacities

c(a) = 0 ≤ x(fj(i),i) ≤ d(a) = αj = 1

for all arcs a ∈ A3 and for all i = 1, . . . , k0, j = 1, . . . , l ensure that each vertex
v ∈ U j gets a different color i ∈ F (v). Hence, the flow transforms into a proper

10



equitable k0-coloring Π of G, namely

Π = Πp +

k0∑

i=1

l∑

j=1

∑

v∈Uj :
x(v,fj (i))=1

< v, i > .

If the network N has no admissible flow of value |U |, Theorem 2 shows that
there is no equitable k0-coloring which extends Πp.

In the case where U decomposes into non adjacent cliques, the scheme corre-
sponds to the model employed by de Werra in [7, 8] applied to equitable coloring.

3.2.3 A mixed approach

Up to now we have seen two decomposition variants of U. It is clear that the first
one yields a very practicable but weak approach, while the second one provides
a very impractical (since in general U will not decompose into non-adjacent
cliques) but strong approach with respect to pruning rules for EQDSATUR.
Therefore, we propose a heuristic combination of the two approaches.

We decompose the set U into non-adjacent cliques U1, . . . , U j and some remain-
ing vertices U0. The idea is that the part of the auxiliary network N containing
the cliques will provide a relatively strong pruning condition, while the remain-
ing part can only contribute to a weak bound. With respect to Theorem 2, we
set αj := 1 for j = 1, . . . , l and α0 := |U0| for the remaining noes. In this set-
ting, the nodes in U1, . . . , U l can have connections to nodes in U0, such that N
does not give a sufficient but a necessary condition for the extension property.
However, in the course of EQDSATUR, |U | decreases. If at some point, U0 = ∅,
N collapses to the strong setting and yields a characterization of extendability
at which the current branch can be terminated at latest. In this decomposition,
only cliques U j with |U j| ≥ 2 have to be considered because singletons can be
put into U0 without weakening the pruning.

Example 1. An example of the mixed approach is given in Figure 4. In this
figure, we consider a graph with 12 nodes, which we color with a DSATUR algo-
rithm. An equitable coloring with four colors exists and we assume that four is a
known upper bound at the beginning of the algorithm. Therefore, the algorithm
searches for a better coloring, e.g., one that utilizes only three colors. The algo-
rithm colors the node in sequence, starting with one, two and so forth. As soon
as a color is selected for node one, Theorem 2 diretly implies that the partial
coloring cannot be extended. Hence, the algorithm immediatly terminates. This
is easy to see, as each color class would contain exactly four vertices, two of
which are required to be taken by vertices within the two cliques. Assuming that
node one is in color class Ci for some color i, all remaining nodes are connected
to node one, i.e., the color class Ci cannot get more than three nodes. This is a
contradiction.
Solely based on Theorem 1, the non-extendability could not have been verified as

11



1

U
1

U
2

U
3

U
0

1

2

3

4

5

6
7

8

9

10

11

12

Figure 4: A visualization of Example 1 of the mixed approach. The set of
non-adjacent cliques (blue, red green) is indicated by the gray area. The yellow
nodes are not contained in any clique.

early. An algorithm with just Theorem 1 as pruning rule needs to visit hundreds
of partial colorings.

Again, we remark that a ‘best’ decomposition of U is not known, but intuitively,
it is desirable to cover as many vertices as possible by the cliques. Such a de-
composition can always be obtained greedily, e.g., as it is shown in Algorithm 3.
Note that it requires a few additional definitions: For a subset U ⊆ V resp. a
vertex v ∈ V we denote by δ(U) := {w ∈ V \ U | vw ∈ E for some v ∈ U} and
by δ(v) := {w ∈ V \ {v} | vw ∈ E} the open neighborhood of U resp. of v. We
denote the degree of a vertex v ∈ V by degG(v).

Algorithm 3 Find Non Adjacent Cliques

Require: Graph G = (V,E) with a partial coloring Πp

Initialize: i← 1, U0 ← ∅, U i ← ∅
1: while U 6= ∅ do
2: v ← argmax

v∈U

{degG(v)}

3: U i ← U i ∪ {v} ⊲ construct U i as clique
4: while ∃v ∈

⋂
w∈Ui δ(w) do

5: v ← argmax
v∈

⋂
w∈Ui

{degG(v)}

6: U i ← U i ∪ {v}

7: U ← U \
(
U i ∪ δ(U i)

)

8: U0 ← U0 ∪ δ(U i) ⊲ neighbors of U i go to U0

9: i← i+ 1, U i ← ∅

We point out that at the very first iteration, with a slight increase in computa-
tion time, the algorithm can be executed for different starting nodes to obtain
a better result.

12



A2 A3

U1

U2

U0

F 1

F 2

F 0

C
cliques U j

...

...

...

...

...

...

...

...

...

Figure 5: (Modified) Structure of the network N(G,Π, k0) := (VN , AN ). The
source s and the target t have been omitted. Note that the superscript 0 refers
to nodes not corresponding to a clique.

4 Extendability and Hall Conditions

In this section, we derive arithmetical pruning rules (compare Theorem 1) from
the flow model, describing necessary conditions for a partial coloring to be ex-
tendable. These can then be incorporated into an algorithm, without requiring
to explicitly solve a flow problem. For this purpose, we focus on the network
model for the extendability of the mixed approach without the source node s
and the target node t, compare Figure 5. We formulate the flow problem as
LP and apply a theorem of Hoffman [2] to derive said conditions. This way,
we obtain generalized Hall conditions which give conditions for the existence of
such flow.

In the course of this section, we show that three families of conditions are already
necessary and sufficient. These are presented in Conclusion 1, in Conclusion 2,
and in Conclusion 3.

We require some additional notation: let FC =
⋃l

i=1 F
i be the intermediate

nodes corresponding to all uncolored vertices in the cliques j = 1, . . . , l. For
two sets of nodes W1,W2 ⊆ V , we write e(W1,W2) as the number of arcs going

13



from W1 to W2. Finally, for any set of nodes W ⊆ V , let

δ+(W ) := {v ∈ V | wv ∈ A and w ∈ W} and

δ−(W ) := {v ∈ V | vw ∈ A and w ∈ W}

denote the positive respectively the negative neighbors of W and let x ∈ R
m. If

1 ≤
∑

v∈F
uv∈A2

xuv ≤ 1 ∀ u ∈ U (3a)

0 ≤ xvi −
∑

u∈U(Πp)
uv∈A2

xuv ≤ 0 ∀ v ∈ F and vi ∈ A3 (3b)

−

⌈
n

k0

⌉
+ |Ci| ≤ −

∑

v∈F
vi∈A4

xvi ≤ −

⌊
n

k0

⌋
+ |Ci| ∀ i = 1, . . . , k0 (3c)

and

0 ≤ xuv ≤ 1 ∀ u ∈ U, v ∈ F with uv ∈ F (3d)

0 ≤ xuv ≤ 1 ∀ u ∈ FC , v ∈ C (3e)

0 ≤ xuv ≤ |U
0| ∀ u ∈ F 0, v ∈ C (3f)

holds, then x is a feasible flow vector of the simplified model, compare Figure 5.
In the following, let a ≤ Ax ≤ b with c ≤ x ≤ d denote Model (3a) – (3f) in ma-
trix notation for appropriately chosen a,A, b, c, d. Note that since Model (3a) –
(3f) is a max flow problem, the matrix A is totally unimodular. We recall the
following result:

Theorem 4 (Hall Conditions, Hoffman [2]). Let A ∈ {0,±1}n×m be a totally
unimodular matrix. The system

a ≤ Ax ≤ b, c ≤ x ≤ d

has a (integral) solution if and only if

∑

i:wi=−1

ai +
∑

i:vi=1

ci ≤
∑

i:wi=1

bi +
∑

i:vi=−1

di (4)

holds for all v ∈ {0,±1}m, w ∈ {0,±1}n with wA = v.

Since many Hall type theorems can be reduced to it, Hoffman referred to his
result as “the most general theorem of the Hall type”. In our case, it is c ≡ 0
and hence, the condition boils down to

∑

i:wi=−1

ai ≤
∑

i:wi=1

bi +
∑

i:vi=−1

di. (5)

Furthermore, note that:

14



Remark 1. Let w ∈ {0,±1}n be given. It is wA = v ∈ {0,±1}m if and only if
wi = wj or wi = 0 or wj = 0 for all ij ∈ A.
A visual interpretation of the condition is as follows: We choose nodes from
the network and assign to them a sign. These vertices yield the vector w (non
chosen vertices get the value zero). If we choose neighboring vertices, they must
have the same sign. By v = wA, we obtain a signed selection of edges (according
to the coefficients ±1 of v). Therefore, by selecting a node set with plus or minus
one, v corresponds to the incoming, respectively the outgoing arcs of this set.
Both vectors v, w together define one of the inequalities in (5).

In the following, we systematically investigate different choices of vertex sets
and the corresponding generalized Hall conditions. Therefore, let R+, R− ⊆
U, S+, S− ⊆ F, and T+, T− ⊆ C such that

δ+(R+) ∩ S− = δ+(R−) ∩ S+ = δ+(S+) ∩ T− = δ+(S−) ∩ T+ = ∅. (6)

Accordingly, define the vector

w̄ := 1R+∪S+∪T+ − 1R−∪S−∪T− , (7)

where 1X denotes the incidence vector of the vertex set X . By construction,
all possible choices of the vector w̄ correspond exactly to the possible choices of
the vectors v in Theorem 4 and we obtain the following reformulation:

Corollary 1. The flow problem (3a) – (3f) has a solution if and only if for all
R+, R− ⊆ U, S+, S− ⊆ V1, and T+, T− ⊆ C with

δ+(R+) ∩ S− = δ+(R−) ∩ S+ = δ+(S+) ∩ T− = δ+(S−) ∩ T+ = ∅

it holds that

|R−|+
∑

i∈T−

(
−

⌈
n

k0

⌉
+ |Ci|

)
≤|R+|+

∑

i∈T+

(
−

⌊
n

k0

⌋
+ |Ci|

)

+ e(R−, F \ S−)

+ e(U \R+, S+)

+ e(S− ∩ FC , C \ T−) (8)

+ |U0| · e(S− ∩ F 0, C \ T−)

+ e(FC \ S+, T+)

+ |U0| · e(F 0 \ S+, T+).

We formulate a basic observation:

Corollary 2. Given a R+, R−, S+, S−T+, T− as in Corollary 1, Condition (8)

15



is dominated by the two conditions

0 ≤ |R+|+
∑

i∈T+

(
−

⌊
n

k0

⌋
+ |Ci|

)
+ e(U \R+, S+)

+e(FC \ S+, T+) + |U
0| · e(F 0 \ S+, T+)

(9)

|R−|+
∑

i∈T−

(
−

⌈
n

k0

⌉
+ |Ci|

)
≤ e(R−, F \ S−) + e(S− ∩ FC , C \ T−)

+|U0| · e(S− ∩ F 0, C \ T−)

(10)

where Condition (9) corresponds to Condition (8) for R+, S+ and T+ as given
above and R− = S− = T− = ∅ and Condition (10) corresponds to Condition (8)
for R−, S− and T− as given above and R+ = S+ = T+ = ∅.

Therefore, w.r.t Condition (8), it is sufficient to focus on the two vectors, re-
spectively on the inequalities, induced by

w̄+ := 1R+∪S+∪T+ and w̄− := −1R−∪S−∪T− .

We call a vector w, respectively a collection of signed vertices dominating w.r.t.
another vector w̃, if its induced inequality dominates the inequality induced by
w̃. At first, we consider the conditions which are induced by w̄+.

4.1 Selecting vertices with a positive contribution

We consider inequalities which arise from vectors of the form w+ := 1R+∪S+∪T+ .
Therefore, we set R− = S− = T− = ∅ in the remainder of this subsection.

Lemma 2. Given vertex sets R+, S+, T+ as defined above and let

R̄+ := {v ∈ U | δ+(v) ∩ S+ 6= ∅}.

Inequality (9) (induced by w+) is dominated by the inequality induced by 1R̄+∪S+∪T+
.

Proof. We divide the proof into two steps:

1. Assume that there is a vertex v ∈ U with v /∈ R+ but v ∈ δ−(S+).
Obviously, it is |R+| = |R+ ∪ {v}| − 1 and

e(U \ (R+ ∪ {v}), S+) ≤ e(U \R+, S+)− 1.

Since all other terms are unchanged, 1(R+∪{v})∪S+∪T+
dominates 1R+∪S+∪T+ .

2. Assume that there is a vertex v ∈ U with v ∈ R+ but δ+(v) ∩ S+ = ∅.
Since |R+| = |R+ \ {v}|+ 1 and

e(U \R+, S+) = e(U \ (R+ \ {v}), S+),

the inequality 1(R+\{v})∪S+∪T+
dominates 1R+∪S+∪T+ because all other

terms remain unchanged.

16



Restating the lemma, R+ contains uncolored vertices which can still be colored
by a color in S+. It implies that w.l.o.g., R+ can be chosen maximally in that
sense. In the light of this result, we assume w.l.o.g. that R+ = R̄+ in the
following. Therefore, Inequality (9) collapses to

∑

i∈T+

(⌊
n

k0

⌋
− |Ci|

)
≤ |R+|+ e(FC \ S+, T+) + |U

0| · e(F 0 \ S+, T+) (11)

In the case T+ = ∅, we obtain the inequality 0 ≤ |R+| which is trivially fulfilled.
Therefore, we assume that T+ 6= ∅ for the remainder of this section. The next
result further classifies the dominating inequalities of the form (11).

Lemma 3. Let T+ 6= ∅ be given. Assume that for any S+, R+ is chosen
accordingly to Lemma 2. A choice for S+ such that

1.) S+ ⊆ δ−(T+) and 2.) S+ ∩ F 0 ⊇ δ−(T+) ∩ F 0

holds dominates any other choice of S+.

Proof. We divide the proof into two steps:

1. Suppose that there is a vertex v ∈ S+ with v /∈ δ−(T+). We remove v
from S+. After possibly changing the set R+ (accordingly to Lemma 2),
we obtain that 1R+∪(S+\{v})∪T+

dominates 1R+∪S+∪T+ , because all values
remain unchanged except |R+| which possibly decreases.

2. Assume that there is v ∈ δ−(T+) ∩ F 0 with v /∈ S+. We add v to
S+ and adapt R+ accordingly. Therefore, 1R+∪(S+∪{v})∪T+

dominates
1R+∪S+∪T+ , because |R+| increases at most by |U0| whereas e(F 0\S+, T+)
decreases by |U0| since v has exactly one outgoing arc.

The lemma implies that w.l.o.g., S+ contains at most the vertices connected to
T+. Furthermore, concerning the vertices in F 0, it contains exactly all neighbors
of T+. Hence, w.l.o.g., e(F

0 \ S+, T+) = 0 and we obtain:

Conclusion 1. With respect to Corollary 1 and Remark 2, it suffices to consider
T+ 6= ∅ and S+ such that S+ ⊆ δ−(T+) and S+ ∩ F 0 = δ−(T+) ∩ F 0. Hence,
the condition boils down to:

∑

i∈T+

(⌊
n

k0

⌋
− |Ci|

)
≤ |R+|+ e(FC \ S+, T+), (12)

where R+ is chosen depending on S+ as described in Lemma 2.

17



We point out that an inequality induced by T+ := T 1
+ ∪ T 2

+ is, in general, not
dominated by the corresponding inequalities induced by T 1

+ and T 2
+ since |R+|

w.r.t. T+ is, in general, smaller than |R1
+|+ |R

1
+| (w.r.t. T

1
+ and T 2

+).
Concerning an application as pruning rule, it is clear that any choice of T+ and
S+ yields a condition which has to be fulfilled for a coloring to be extendable.
For a practical point of view, consider that T+ corresponds to a selection of
colors and that S+ = δ−(T+). In this case, there are no edges going from
FC \S+ to T+ and R+ contains all vertices in U which can be colored by colors
associated to T+, i.e., with a slight abuse of notation, the condition writes:

∑

i∈T+

(⌊
n

k0

⌋
− |Ci|

)
≤ |{v ∈ U | F (v) ∩ T+ 6= ∅}| . (13)

Or, from a combinatorial point of view: There have to be enough vertices which
can be colored by colors of T+ such that the corresponding color classes can
be filled up to their cardinality requirement. We remark that this inequality
can (theoretically) be strengthened. Clearly, such strengthening is difficult to
realize in practice, since it relies on subset based arguments.
However, with respect to our computational experiments, we discuss this strength-
ening for the case |T+| = 1. Hence, assume that T+ = {f} for ’some color f ’.
Then, Condition (13) reads

⌊
n

k0

⌋
− |Cf | ≤ |{v ∈ U | f ∈ F (v)}|

=

l∑

j=1

∣∣{v ∈ U j | f ∈ F (v)}
∣∣+

∣∣{v ∈ U0 | f ∈ F (v)}
∣∣ . (14)

Note that, in the current setting S+∩F j contains a single element. The decision
whether the inequality can be strengthened by excluding this element from S+

can be encoded in the condition. We obtain:

⌊
n

k0

⌋
− |Cf | ≤

l∑

j=1

min
{
1,
∣∣{v ∈ U j | f ∈ F (v)}

∣∣}

+
∣∣{v ∈ U0 | f ∈ F (v)}

∣∣ . (15)

That is, the selected color classes have to be filled up with at most one element
per clique and all vertices in U0 which can use these colors.

4.2 Selecting vertices with a negative contribution

We consider inequalities which arise from vectors of the form w− := −1R−∪S−∪T− .
Therefore, we set R+ = S+ = T+ = ∅ in the remainder of this subsection. As
in the previous subsection, we show that R− can be chosen accordingly to S−.

18



Lemma 4. Given vertex sets R−, S−, T− as defined above and let

R̄− := {v ∈ U | δ+(v) ⊆ S−}.

Inequality (10) induced by w− is dominated by the one induced by 1R̄−∪S−∪T−
.

Proof. As above, we divide the proof into two parts:

1. If there is v ∈ U with v /∈ R− and δ+(v) ⊆ S−, the inequality in-
duced by −1(R−∪{v})∪S−∪T−

dominates the inequality corresponding to
−1R−∪S−∪T− because |R− ∪ {v}| > |R−| and e(R− ∪ {v}, V1 \ S−) =
e(R−, V1 \ S−) hold. The remaining terms stay unchanged.

2. Similarly, assume that there is v ∈ U with v ∈ R− and there is u ∈
δ+(v) with u /∈ S−. Then, the inequality induced by −1(R−\{v})∪S−∪T−

dominates the one corresponding to −1R−∪S−∪T− because |R− \ {v}| =
|R−|−1 and e(R−\{v}, V1\S−) ≤ e(R−, V1\S−)−1. Again, the remaining
terms stay unchanged.

We rephrase the result. R̄− contains all vertices in U , for which all outgoing
arcs are in S−. This is the set of nodes which have to be colored by a color in
S+. Lemma 4 implies that w.l.o.g., R− can be chosen maximally in that sense.
Hence, we obtain e(R−, V1 \ S−) = 0 and the inequality collapses to

|R−|+
∑

i∈T−

(
−

⌈
n

k0

⌉
+ |Ci|

)
≤e(S− ∩ FC , C \ T−)

+ |U0| · e(S− ∩ F 0, C \ T−) (16)

In the next paragraphs we discuss the two cases T− = ∅ and T− 6= ∅ with the
choice of R− according to Lemma 4.

The first case. We start with T− = ∅, for which Inequality (16) reduces to

|R−| ≤ e(S− ∩ FC , C) + |U0| · e(S− ∩ F 0, C). (17)

This inequality is dominated by inequalities for each set U j :

Corollary 3. Inequality (17) induced by −1R−∪S−∪∅ is dominated by the (atomic)
inequalities induced by

−1R−∩Uj∪S−∩F j∪∅ ∀j = 1, . . . , l.

Proof. Observe that the sum of the atomic inequalities is exactly

|R−| ≤ e(S− ∩ FC , C). (18)

If S− ∩ F 0 6= ∅, the contribution to |R−| on the left side was at most |U0|.
However, the contribution of |U0| · e(S− ∩ F 0, C) on the right side is at least
|U0|. Hence, Condition (17) is implied by Condition (18).

19



Therefore, the dominating conditions solely depend on the sets F j . Note that
from any element in F j exactly one arc goes to C. All in all, for T− = ∅, the
strongest conditions are given by:

Conclusion 2. With respect to Corollary 1 and Remark 2, for T− = ∅, it
suffices to consider S− ⊆ F j for all j = 1, . . . , l, that is, the conditions

|R−| ≤ |S−| (19)

where R− is chosen depending on S− as described in Lemma 4.

We remark that Condition (19) corresponds to the well known Hall Conditions
for matchings in bipartite graphs: S− corresponds to selection of colors, and R−

contains exactly these nodes which have to be colored by these colors. Clearly
there have to be more colors than vertices to permit a coloring.

The second case We consider the case T− 6= ∅ and discuss Inequality (16).
Analogously to the ’positive’ case, we state a first Corollary:

Lemma 5. Let T− 6= ∅ be given. Assume that for any S−, R− is chosen
according to Lemma 4. A choice for S− such that

1.) S− ⊇ δ−(T−) and 2.) S− ∩ F 0 ⊆ δ−(T−) ∩ F 0

holds dominates any other choice of S−.

Proof. As before, we divide the proof into two steps:

1. Suppose that there is a vertex v ∈ δ−(T−) with v /∈ S−. We add v
to S−. After possibly changing the set R− (accordingly to Lemma 4),
−1R−∪(S−∪{v})∪T−

dominates −1R−∪S−∪T− , because all values remain un-
changed except |R−| which possibly increases.

2. Now, assume that there is v ∈ S−∩F 0 with v /∈ δ−(T−)∩F 0. We remove
v from S− and adapt R− accordingly. Therefore, −1R−∪(S−\{v})∪T−

dom-
inates −1R−∪S−∪T− , because |R−| (left hand side) decreases at most by
|U0| whereas the right side (|U0| · e(S− ∩ F 0, C \ T−)) also decreases by
|U0| since v has exactly one outgoing arc to C \ T−.

The lemma implies that w.l.o.g., S− contains at least the vertices connected
to T−, and w.r.t. U0, contains exactly the vertices connected to T−. Hence,
w.l.o.g., e(S− ∩ F 0, C \ T−) = 0. We obtain:

Conclusion 3. With respect to Corollary 1 and Remark 2, it suffices to consider
T− 6= ∅ and S− such that S− ⊇ δ−(T−) and S− ∩ F 0 = δ−(T−) ∩ F 0. Hence,
the condition boils down to

|R−|+
∑

i∈T−

(
−

⌈
n

k0

⌉
+ |Ci|

)
≤ e(S− ∩ FC , C \ T−) (20)

where R− is chosen depending on S− as described in Lemma 4.

20



We point out that an inequality induced by T− := T 1
− ∪ T 2

− is, in general, not
dominated by the corresponding inequalities induced by T 1

− and T 2
−. Again, we

cannot state any further, general dominance relations. Still, “combinatorial”
rules can be obtained straightforward, i.e., For a practical application, consider
that T− corresponds to a selection of colors and that S− = δ−(T−). In this case,
there are no edges going from S−∩FC to C \T− and R− contains all vertices in
U which have to be colored by colors associated to T−, i.e., with a slight abuse
of notation, the condition writes:

|{v ∈ U | F (v) ⊆ T−}| ≤
∑

i∈T−

(⌈
n

k0

⌉
− |Ci|

)
. (21)

Or, from a combinatorial point of view: The number of vertices which have to
be colored by colors in T− may not exceed the maximal cardinality of the color
classes associated to T−. In contrast to Condition (15), no further strengthen-
ing via minimization subproblems is necessary due to the presence of the Hall
Conditions (19).

5 Computational Study

5.1 Setting

In this section, we provide a computational evaluation of our results. As a basic
solution algorithm, we consider EQDSATUR as presented in [13] (henceforth:
STD). Note that this includes a check of the pruning rule (2) as described in
Theorem 1 at step (9) in EQDSATUR. We compare the key figures/statistics of
this algorithm to the same algorithm extended with the pruning rules described
in this work.

In particular, we consider the algorithm FLOW. FLOW extends on EQDSATUR
by, in step (9), after checking the rule (2), executing the Pruning Algorithm 2.
Note that this takes place in every node of the search tree and that in step (1),
the pruning algorithm calls Algorithm 3 to determine a decomposition of the
uncolored vertices.
Similar, we consider the algorithm COMB. COMB works exactly like FLOW,
however, instead of solving a flow problem in step (4) of Algorithm 2, we evaluate
the pruning rules (15), (19), and (21). Thereby, to achieve a fast runtime, we
(only) consider sets T− and T+ including a single or all but one color.
This way, FLOW contains the strongest conditions but requires the solution of
flow problems at every node of the search tree whereas COMB contains only a
subset of conditions which can be tested arithmetically.
For all our tests, we assume that upper (k̄) and lower bounds (k) on χeq(G)
are precomputed. In cases where k = k̄, we say that both algorithms solve the
instance in 0 seconds. Both algorithms are initialized with a partial coloring of
G, obtained by (greedily) coloring a maximal clique.

21



For both, the FLOW and the COMB algorithm, the extended pruning rules are
inserted in Step 9 in the description of EQDSATUR, i.e., at first the pruning
rule given by Theorem 1 is evaluated and if no pruning occurs, the pruning rules
derived from the mixed approach are evaluated. By this setup, every instance
solved by FLOW resp. COMB will require at most as many nodes in the search
tree as if solved by STD.
We employ two groups of test instances. The first one is made up from random
instances, for the second group we consider instances from the DIMACS chal-
lenge. The random instances are generated according to the Erdős-Rényi graph
model G(n, p) model for

n ∈ {40 + 5i | i = 0, . . . , 6} and p ∈ {0.1 · i | i = 1, . . . , 9} .

For each combination of n and p, we generate a class of 200 test instances. We
do not regard smaller instances as the running times are mostly insignificant
below n = 40. For the case n > 70 the numbers of the instances which exceed
the time limit becomes too large, such that these are neglected as well.

For all our computations, we employ an Intel(R) Core(TM) i7-3770 CPU @ 3.40
GHz with 32 GB RAM and a time limit of 3, 600 seconds. For all algorithms,
we developed our own C++ code. The flow problems are solved by the Push
Relabel algorithm by Goldberg (cf. [1]) as provided in the Boost Graph Library
for C++ [14]. Note that flow problems with lower bounds on the flow values
can be solved by two max flow problems (see e.g. [6]). The code for STD was
used as a basis for the code for the other algorithms, providing comparability
among both algorithms.

The remainder of this section is structured as follows. At first, in Subsection 5.2,
we discuss the results of the random instances with n ≤ 65. Due to the size of
this testbed (10, 800 instances), we consider this as our most significant study.
In Subsection 5.3, we comment on results of larger instances (n = 70). In the
following, in Subsection 5.4, we focus on specific instances from this test set
(with n = 60) and evaluate more economic interpretations of our pruning rule,
i.e, evaluating the pruning rules every xth nodes, etc. Finally, in Subsection 5.5,
we focus on the results of the DIMACS instances.

5.2 Random Graphs

For the detailed results, we refer to Table 2. In this table, we present three
key figures to evaluate the success of the additional pruning rules, i.e., of the
algorithms FLOW and COMB.

At first, for each algorithm, we report the average runtime (Time) of each class
of instances. Hereby, each instance which cannot be solved within the time limit
accounts for 3, 600 seconds of computation time. This way, the total average
time multiplied with 10, 800 yields the overall time required to deal with all

22



Table 2: Solution time, number of instances meeting the time limit, and number
of nodes in the tree of STD, FLOW and COMB for the random instances.

p
Time (s) # Timeout # Nodes

STD FLOW COMB STD FLOW COMB STD FLOW COMB

n
=
4
0

0.1 0.0 0.0 0.0 0 0 0 455.6 80.8 86.7
0.2 0.0 0.0 0.0 0 0 0 590.6 156.1 191.3
0.3 0.0 0.0 0.0 0 0 0 5269.2 448.9 565.2
0.4 0.0 0.0 0.0 0 0 0 37373.8 509.3 627.6
0.5 2.7 0.1 0.0 0 0 0 2773741.9 1241.4 1487.0
0.6 2.8 0.1 0.0 0 0 0 3008095.2 1476.2 1813.8
0.7 0.2 0.0 0.0 0 0 0 185451.2 1030.2 2747.0
0.8 0.0 0.0 0.0 0 0 0 709.8 281.3 523.0
0.9 0.0 0.0 0.0 0 0 0 5928.1 40.8 249.5

Avg. 0.6 0.0 0.0 0.0 0.0 0.0 668,623.9 585.0 921.2

n
=
4
5

0.1 0.0 0.0 0.0 0 0 0 1908.2 263.1 308.3
0.2 0.0 0.0 0.0 0 0 0 13198.2 174.6 215.2
0.3 0.0 0.0 0.0 0 0 0 3402.2 535.6 589.7
0.4 21.9 18.2 4.9 0 1 0 8866647.0 6781.2 8782.8
0.5 11.7 0.2 0.0 0 0 0 10992516.2 4268.7 4909.9
0.6 18.3 0.2 0.0 1 0 0 284477.5 2896.6 3611.6
0.7 28.4 0.1 0.0 0 0 0 24350071.8 2019.2 5033.9
0.8 0.0 0.1 0.0 0 0 0 21546.9 1003.8 2150.5
0.9 0.5 0.0 0.1 0 0 0 424776.5 92.7 19766.0

Avg. 9.0 2.1 0.6 0.1 0.1 0.0 4,995,393.8 2,003.9 5,040.9

n
=
5
0

0.1 0.0 0.0 0.0 0 0 0 2030.0 234.7 243.9
0.2 0.0 0.0 0.0 0 0 0 2840.7 567.0 716.4
0.3 1.1 0.3 0.0 0 0 0 1351642.0 6750.5 8113.2
0.4 0.3 0.4 0.1 0 0 0 313280.7 5887.0 6453.0
0.5 8.8 2.0 0.3 0 0 0 7991515.2 35808.6 41327.3
0.6 70.4 0.9 0.2 3 0 0 16254662.0 13345.3 15825.2
0.7 125.8 0.8 0.6 5 0 0 31348814.6 11962.5 98823.1
0.8 0.1 0.3 0.3 0 0 0 62195.5 3445.3 19294.1
0.9 4.1 0.0 0.8 0 0 0 3177683.6 459.4 212998.6

Avg. 23.4 0.5 0.3 0.9 0.0 0.0 6,722,740.5 8,717.8 44,866.1

n
=
5
5

0.1 0.0 0.0 0.0 0 0 0 1420.5 170.9 214.6
0.2 18.0 18.1 4.5 1 1 0 4986.1 1700.1 2005.0
0.3 0.0 0.3 0.0 0 0 0 6158.1 4165.0 5136.4
0.4 1.6 6.3 0.9 0 0 0 1347000.0 110532.8 121321.7
0.5 22.0 24.5 22.3 1 1 1 3163743.9 107644.0 1468752.4
0.6 6.8 3.6 7.4 0 0 0 5027920.1 47315.7 1452891.4
0.7 355.6 21.5 54.6 18 1 2 27969583.3 45276.3 5517768.0
0.8 0.5 0.9 0.9 0 0 0 260490.8 10760.7 51901.5
0.9 150.2 0.1 4.3 4 0 0 59065414.0 924.2 953949.7

Avg. 61.6 8.4 10.5 2.7 0.3 0.3 10,760,746.3 36,498.9 1,063,771.2

n
=
6
0

0.1 0.0 0.0 0.0 0 0 0 4939.3 660.4 816.6
0.2 0.0 0.3 0.0 0 0 0 32930.1 5757.9 7477.2
0.3 0.0 1.2 0.2 0 0 0 21821.2 14859.4 15582.7
0.4 20.3 25.3 19.2 1 1 1 1888033.8 142547.2 203785.6
0.5 93.6 50.7 15.1 4 1 0 14972786.2 460700.9 537577.0
0.6 264.3 25.1 7.0 10 0 0 61405164.3 358795.3 927542.2
0.7 286.1 16.6 22.8 14 0 1 26583895.8 198475.6 264492.5
0.8 69.9 21.2 21.2 2 1 1 19784313.1 36983.3 167645.9
0.9 381.2 0.6 18.4 20 0 1 15728760.9 8988.0 19887.0

Avg. 123.9 15.7 11.5 5.7 0.3 0.4 15,602,516.1 136,418.7 238,311.9

n
=
6
5

0.1 0.0 0.0 0.0 0 0 0 10189.7 726.7 907.8
0.2 0.0 0.3 0.1 0 0 0 23489.7 5005.2 6754.3
0.3 8.9 7.7 1.0 0 0 0 9065186.1 93530.0 105290.0
0.4 4.2 61.8 8.9 0 0 0 2756575.9 721947.8 768299.8
0.5 130.5 266.3 69.1 5 2 1 26782892.2 2697309.7 3127829.9
0.6 208.1 194.5 38.6 10 0 0 17936777.2 1981494.8 2216573.8
0.7 243.6 95.3 31.9 12 0 0 17971417.9 993957.4 1774304.9
0.8 139.7 17.9 127.3 3 0 3 42983183.5 181851.7 5421474.2
0.9 256.2 1.7 1.3 14 0 0 3008433.6 18286.5 37857.0

Avg. 110.1 71.7 30.9 4.9 0.2 0.4 13,393,127.3 743,790.0 1,495,476.9

Avg. 54.8 16.4 9.0 2.4 0.2 0.2 8,690,524.7 154,669.0 474,731.3

23



instances. Obviously, the lower this value, the better. Additionally, we state
the number of instances which cannot be solved within the time limit per algo-
rithm. At last, we report the average number of nodes in the search tree required
per algorithm. Hereby, the nodes of an “unsolved” instance are left out in the
averages of all algorithms to allow a comparison of the required “nodes to op-
timality” of each algorithm.

We observe that the additional pruning rules are very strong, having a dra-
matic effect on all three key figures of the DSATUR algorithms. Over all
classes/instances, even a straightforward implementation of the exact pruning
scheme (FLOW) can reduce the runtime from 54.8 seconds down to 16.4 sec-
onds (STD) on average. This decrease is enabled by a drastic decrease in the
node count since STD requires, on average, 56 times more nodes than FLOW
(to solve an instance to optimality). However, it is clear that the time required
per node in the search tree of FLOW is larger than the one of STD, as the
former has to solve multiple flow problems in each of them and has to sustain
additional data structures for evaluating these problems.
In comparison to FLOW, COMB is more lightweight, which results in a further
decrease in solution time, down to 9.0 seconds per instance on average. Since
COMB only evaluates a part of the criterion’s of the flow problem, it requires
more nodes than FLOW, but this trade-off appears to be beneficial for the
overall solution time.
A further improvement of FLOW, respectively COMB over STD is the greatly
increased stability of the algorithm. While STD cannot solve, on average 2.4
instances (out of 200) within the time limit, both extended algorithms can solve
all but 0.2 of the instances. This is especially remarkable for the instance class
n = 60 and p = 0.9, for which STD cannot solve 20 instances whereas FLOW
(COMB) can solve all (but one of) the instances.

While, in general, the extended algorithms can greatly improve on STD, we
remark that this trend does not hold for every instance class. For example, for
n = 65 and p = 0.4, both extended algorithms require more time (61.8, respec-
tively 8.9 seconds) compared to STD (4.2 seconds). Nevertheless, the overall
improvements are substantial, indicating the strength and the importance of
the pruning rules described in this work.

5.3 Large Instances

In this subsection, we give some concluding comments on how our algorithms
behave for larger instances. In particular, we consider random instances with
n = 70. For detailed results, we refer to Table 3. What we can see, in comparison
to the smaller instances, compare Table 2, is that FLOW is not faster than STD
anymore, whereas COMB is still the best algorithm. This is due to the problem
size, which requires larger flow problems to be initialized and to be solved which
is relatively more time consuming. However, COMB still outperforms the other
two algorithms, both with respect to time and with respect to the number of

24



40 45 50 55 60 65 70
0

100

200

300

Node size of the random instances.

A
v
er
a
g
e
S
o
lu
ti
o
n
T
im

e
(s
)

STD
FLOW
COMB

Figure 6: Average solution time of STD, FLOW and COMB for increasing
problem size n ∈ {40, . . . , 70}.

solved instances. We refer to Figure 6 for a visualization for the average solution
time for increasing problem size, pointing out that COMB is always the fastest
algorithm.

In the case that even larger instances are to be considered, also compare the
results on the DIMACS instances in Subsection 5.5, the algorithms have to be
adapted as the additional overhead due to the extended pruning rules rises. One
way of doing so is by updating the pruning schemes lazily, as described in the
next Subsection.
In general, when the problem size increases, the necessary data structures and
the time spent updating and searching in these increases as well. This way, cus-
tom implementations, especially tailored for larger networks become necessary.
In this context, COMB could also be adapted to be even more lightweight by
not considering the Pruning Rule (21) as this rule requires substantially more
effort, from a data lookup perspective, than the other rules. All in all, the larger
the problems become, the less likely it is that a single variant/implementation
of an algorithm is equally well fit for both, small and very large problem sizes.
Naturally, the same arguments apply to other parameters such as graph density
as well, the more specific a certain testbed is, the more worthwhile is a custom
implementation of an algorithm.

5.4 Lazy Application

In the previous subsection, we have observed that a DSATUR based algorithm
for the ECP greatly benefits from additional pruning rules. However, such
pruning rules induce additional effort on the computational side, i.e., through
additional data structures which have to be updated or through the flow prob-
lems which have to be solved. In this context, a natural question is whether
the runtime of our extended algorithms can benefit of a lazy application of such

25



Table 3: Statistics for the random instances with n = 70.

p Time (s) # Timeout # Nodes

STD FLOW COMB STD FLOW COMB STD FLOW COMB

0.1 0.1 0.1 0.0 0.0 0.0 0.0 106,795.1 4,809.9 6,041.6
0.2 0.0 0.4 0.1 0.0 0.0 0.0 31,006.6 5,109.0 7,570.1
0.3 0.5 21.4 2.8 0.0 0.0 0.0 320,911.9 222,538.0 237,933.1
0.4 72.6 283.8 48.1 2.0 1.0 0.0 23,949,135.2 2,716,385.9 2,822,804.6
0.5 390.9 533.1 129.9 17.0 5.0 2.0 59,033,446.8 4,557,973.7 4,894,282.7
0.6 443.5 1,468.1 422.0 16.0 31.0 2.0 44,720,718.5 9,962,971.2 11,377,565.5
0.7 275.0 472.9 217.0 11.0 2.0 0.0 37,178,971.1 3,823,696.4 6,857,377.4
0.8 872.9 93.8 112.9 37.0 2.0 2.0 127,179,557.7 520,247.9 2,337,771.0
0.9 108.6 8.8 24.7 6.0 0.0 1.0 295,475.8 83,459.3 165,311.7

avg. 240.5 320.3 106.4 9.9 4.6 0.8 32,535,113.2 2,433,021.3 3,189,628.6

pruning schemes. We elaborate on this in the following.

In general, the additional time investment of the pruning rules depends on two
factors. The first one is the repeated search for an improving clique decomposi-
tion (CD, compare Algorithm 3), the second one is creation and solution of the
flow problems, respectively the evaluation of the combinatorial pruning rules.
In the setting presented above, both actions are performed once per node of the
tree. Therefore, reasonable alternatives are to execute each of the actions only
at every xth (x > 1) node in the search tree.
However, computational experiments show that evaluating the pruning scheme,
that is the combinatorial pruning rules (as in COMB) or the flow problem (as in
FLOW) in such lazy manner significantly worsens the runtime of our algorithms
and even leads to solving fewer instances in the time limit.
Contrasting this, looking for an improving CD, i.e., executing Algorithm 3, only
in every second, third or fifth node can improve the runtime of our algorithms.
We refer to Table 4 for an evaluation of the modified COMB algorithm for the
random instances with n = 60. Note that we do not regard the four instances
which cannot be solved by COMB, thus the figures for COMB are different
to the ones in Table 2. All remaining instances are solved by all the variants
of COMB. As we can see in Table 4, a lazy application of the CD decreases
the runtime of COMB. This trend is more pronounced, the “lazier” the CD is
updated. E.g., for x = 2 (that is updating the CD at every second node in the
tree), the runtime decreases by 25% whereas for x = 5, the reduction exceeds
30 percent. The time saved in calculating the new CD is well worth the increase
(26%) in the number of nodes in the search tree when working with a potentially
worse CD. We point out that the same holds for FLOW, but to a lesser extend.
Note that we did not evaluate any further variants for x > 5 as we speculate
that, at some point, depending on the problem sizes, the improvements diminish
and the algorithm becomes slower again.

As mentioned above, evaluating the pruning scheme in a lazy manner has a
negative effect on the overall runtime of the algorithms. Combining this with

26



Table 4: Variants of the COMB algorithm in which the clique decomposition

is only updated every xth node in the tree (random graphs, n = 60).

p
Time (s) # Nodes

COMB
xth node

COMB
xth node

2 3 5 2 3 5

0.1 0.0 0.0 0.0 0.0 816.6 1,252.8 1,277.7 1,381.8
0.2 0.0 0.0 0.0 0.0 7,477.2 8,323.6 8,371.6 8,420.0
0.3 0.2 0.1 0.1 0.1 15,582.7 15,664.9 15,855.1 15,905.5
0.4 1.2 1.2 1.2 1.2 203,785.6 289,188.8 317,299.6 338,332.9
0.5 15.1 12.4 11.6 11.2 1,830,601.6 2,104,865.1 2,282,373.1 2,454,353.4
0.6 7.0 5.3 4.8 4.4 894,788.7 914,285.7 922,575.6 930,235.8
0.7 4.8 3.2 2.7 2.3 256,820.7 265,415.6 273,660.7 290,455.2
0.8 3.3 2.2 1.8 1.5 166,817.1 168,614.1 170,398.9 172,889.7
0.9 0.4 0.3 0.3 0.2 18,270.1 18,461.5 18,694.5 19,028.6
Avg. 3.6 2.7 2.5 2.3 377,127.1 420,535.5 445,469.9 469,957.9

the lazy update of the CD still has an overall negative impact. Thus, the
“best”, with respect to runtime, variation of the STD algorithm is to extend
it with the combinatorial pruning rules and to apply a lazy update of the CD
while explicitly evaluating the pruning rules at every node in the search tree.

5.5 DIMACS Instances

In this subsection, we briefly discuss the behavior of our algorithms on the
instances of the DIMACS challenge. All results of instances solvable within a
time limit of 7, 200 seconds (24 in total) are displayed in Table 5, all remaining
instances cannot be solved by any of the three algorithms within the time limit.
The DIMACS instances are particularly difficult for (standard) graph coloring
problems and, apparently, they are also difficult for the ECP since only a fraction
of the instances can be solved. We point out that in some cases, all algorithms
require the same amount of nodes in the search tree, indicating the weakness of
the (additional) pruning rules.

What we can observe in the table is that, on all instances, FLOW respectively
COMB requires 7, 291 respectively 4, 115 seconds in total (excluding the 7, 200
seconds per unsolved instance), in comparison to the 10, 123 seconds required
by STD. It is important to note that each of STD and FLOW cannot solve a
different group of five instances. COMB cannot solve six instances. In total,
COMB cannot solve all instances FLOW can solve but there are instances which
COMB can solve but FLOW cannot. However, in contrast to the previous
section, the FLOW algorithm seems to be preferable in this setting.

However, the picture is mixed as all algorithms struggle with different and large
parts of the instances. We believe that the weakness of FLOW, respectively

27



Table 5: Statistics for the instances from the DIMCAS challenge (p denotes the
density of the instances).

Name |V | p
Time (s) # Nodes

STD FLOW COMB STD FLOW COMB

1-FullIns 3 30 0.23 0.0 0.0 0.0 842 480 679
1-Insertions 4 67 0.10 3,243.5 - - 2,550,140,072 - -
2-FullIns 3 52 0.15 69.6 462.7 118.1 68,439,880 44,908,973 57,865,454
2-Insertions 3 37 0.11 0.0 0.5 0.1 20,240 15,353 15,420
3-Insertions 3 56 0.07 6.9 183.4 28.3 7,016,020 5,579,518 5,619,199
DSJC125.1 125 0.09 2.3 3.1 1.0 1,386,303 111,546 258,735
fpsol2.i.1 469 0.09 0.1 1.4 0.7 5,741 5,741 5,741
inithx.i.1 864 0.05 - 20.2 - - 40,604 -
le450 15a 450 0.08 - 6,061.6 - - 7,086,175 -
le450 25a 480 0.07 - 0.7 0.2 - 3,860 3,860
miles1000 128 0.79 - 0.1 - - 661 -
miles1500 128 0.64 0.0 0.0 0.0 10 5 7
mug100 1 100 0.03 3,867.5 - - 4,159,806,706 - -
mug88 1 88 0.04 840.2 - 2,096.6 1,014,959,534 - 842,473,020
mug88 25 88 0.04 537.8 - 1,779.8 587,847,226 - 463,037,978
mulsol.i.1 197 0.20 0.0 0.2 0.1 1,264 1,264 1,264
myciel4 23 0.28 0.0 0.0 0.0 962 704 802
myciel5 47 0.22 0.5 13.0 1.6 385,726 267,726 269,610
queen6 6 36 0.46 0.0 0.0 0.0 994 655 713
queen7 7 49 0.40 0.0 0.5 0.1 10,352 8,131 8,656
queen8 8 64 0.36 22.0 543.6 88.7 9,842,600 7,315,675 7,920,200
queen9 9 81 0.65 1,532.9 - - 583,479,058 - -
school1 nsh 352 0.24 - 0.7 0.4 - 918 918
zeroin.i.1 211 0.19 0.0 0.2 0.1 1,857 1,796 1,857

COMB, in comparison to the findings in the previous section is due to the size
and the low density of the regarded instances. In the case of large and sparse
instances, the additional data structures required by FLOW (COMB) are rather
time consuming to maintain. At the same time they yield little benefit as the
pruning scheme is rather weak.
All in all, it is clear that for the DIMCAS instances, more sophisticated imple-
mentations of the pruning rules become necessary as the feasibility of “one size
fits all” approaches diminishes due to the problem size. Still, we believe that
additional pruning rules are central for a successful algorithm regarding these
instances.

6 Conclusion

In this work, we have presented a flow based scheme for the generation of pruning
rules for EQDSATUR. The scheme includes state of the art pruning rules as
presented in [13] and extends them. The pruning decision is encoded in the flow
problem, based on which further combinatorial pruning rules (formulae) have
been devised.
To evaluate our results, we added the new pruning rules to the EQDSATUR al-
gorithm. We considered two variants, in the first, the flow problem is evaluated
explicitly (FLOW), in the second we only consider a selection of combinatorial

28



pruning rules (COMB). In our experiments, we have observed that, even a naive
implementation of the pruning scheme via a flow problem (FLOW) is already
sufficient for time competitiveness. However, an algorithm which relies on the
combinatorial pruning rules (COMB) usually outperforms the naive approach,
yielding the overall fastest algorithm. In all our random test instances COMB
was the fastest, most stable algorithm. However, the DIMACS instances prove
to be very difficult, respectively too large, for the ECP. There, the additional
overhead of the pruning rules could not pay off, such that COMB, respectively
FLOW could not significantly improve over the standard EQDSATUR algo-
rithm (STD). In any case, the potential in the reduction of necessary nodes in
the search tree is tremendous.

All in all, the here presented pruning rules greatly expand the ones already
known in the literature and can benefit the existing algorithmic approaches.
That is, they can directly be incorporated into enumerative algorithms and can
as well be used as cutting planes for MILP approaches, compare [11]. We ad-
vise to use them wherever applicable. However, with respect to the enumerative
algorithms considered here, for large instances, more sophisticated implementa-
tions become necessary to avoid too costly operations for evaluating the pruning
rules.

Acknowledgement This work is partially supported by the German Federal Ministry
of Education and Research (BMBF grant 05M13PAA, joint project 05M2013 - VINO:
Virtual Network Optimization) as well as the Undergraduate Funds of the Excellence
Initiative.

We thank our student assistants Sven Förster and Duc Thanh Tran for their work,

especially regarding implementations and testing.

References

[1] A. V. Goldberg, A new max-flow algorithm, Laboratory for Computer
Science, Massachusetts Institute of Technology, 1985.

[2] A. J. Hoffman, Some recent applications of the theory of linear inequal-
ities to extremal combinatorial analysis, Proc. Sympos. Appl. Math. 10
(1960), 113-127.

[3] W. Meyer, Equitable Coloring, Amer. Math. Monthly 80 (1973), 920-922.

[4] A. Tucker, Perfect Graphs and an Application to Optimizing Municipal
Services, SIAM Review 15 (3) (1973), 585-590.

[5] D. Brélaz, New methods to color the vertices of a graph, Comm. ACM
22 (1979), 251-256.

[6] R. K. Ahuja, T. L. Magnati, and J. B. Orlin, Network Flows, 1993,
Prentice-Hall.

29



[7] D. de Werra Restricted coloring models for timetabling, Disc. Math. 165
(1997), 161-170.

[8] D. de Werra On a multiconstrained model for chromatic scheduling, Disc.
Appl. Math. 94(1) (1999), 171-180.

[9] H. A. Kierstead, A.V. Kostochka, M. Mydlarz, and E. Szemerédi, A
fast algorithm for equitable coloring, Combinatorica 30, Issue 2 (2010),
217-224.

[10] I. Méndez-Dı́az, G. Nasini, and D. Seveŕın An exact DSATUR-based al-
gorithm for the Equitable Coloring Problem, Electron. Notes Disc. Math.
44 (2013), 281-286.

[11] I. Méndez-Dı́az, G. Nasini, and D. Seveŕın A polyhedral approach for the
Equitable Coloring Problem, Disc. Appl. Math. 164(II) (2014), 413-426.

[12] I. Méndez-Dı́az, G. Nasini, and D. Seveŕın A tabu search heuristic for
the Equitable Coloring Problem, LNCS 8596 (2014), 347-358.

[13] I. Méndez-Dı́az, G. Nasini, and D. Seveŕın A DSATUR-based algorithm
for the Equitable Coloring Problem, Computers & Operations Research
57 (2015), 41-50.

[14] J. Siek, L. Lee, and A. Lumsdaine, Boost Graph Library,
http://www.boost.org/libs/graph, June (2015).

30

http://www.boost.org/libs/graph

	1 Introduction
	2 Definitions and Related Work
	3 Flows and Partial Colorings
	3.1 Modeling Extendability via Network Flows 
	3.2 Decomposing the set of uncolored vertices
	3.2.1 A direct and fast approach
	3.2.2 Strong decompositions
	3.2.3 A mixed approach


	4 Extendability and Hall Conditions
	4.1 Selecting vertices with a positive contribution
	4.2 Selecting vertices with a negative contribution

	5 Computational Study
	5.1 Setting
	5.2 Random Graphs
	5.3 Large Instances
	5.4 Lazy Application
	5.5 DIMACS Instances

	6 Conclusion

