Skip to main content
Log in

Basic theoretical foundations and insights on bilevel models and their applications to power systems

  • Original-Survey or Exposition
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Decision making in the operation and planning of power systems is, in general, economically driven, especially in deregulated markets. To better understand the participants’ behavior in power markets, it is necessary to include concepts of microeconomics and operations research in the analysis of power systems. Particularly, game theory equilibrium models have played an important role in shaping participants’ behavior and their interactions. In recent years, bilevel games and their applications to power systems have received growing attention. Bilevel optimization models, Mathematical Program with Equilibrium Constraints and Equilibrium Problem with Equilibrium Constraints are examples of bilevel games. This paper provides an overview of the full range of formulations of non-cooperative bilevel games. Our aim is to present, in an unified manner, the theoretical foundations, classification and main techniques for solving bilevel games and their applications to power systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Another problem is the ambiguity on the leader’s decision because of the multiplicity of solutions (Leyffer and Munson 2010). This issue is analyzed in Sect. 6.4.

  2. The Nash equilibrium may be referred as global Nash equilibrium or global NEP solution in order to differentiate it from local Nash equilibrium.

References

  • Al-Khayyal, F. A., Horst, R., & Pardalos, P. M. (1992). Global optimization of concave functions subject to quadratic constraints: An application in nonlinear bilevel programming. Annals of Operations Research, 34(1), 125–147.

    Article  Google Scholar 

  • Arrow, K. J., & Debreu, G. (1954). Existence of an equilibrium for a competitive economy. Econometrica: Journal of the Econometric Society, 22(3), 265–290.

    Article  Google Scholar 

  • Arroyo, J. (2010). Bilevel programming applied to power system vulnerability analysis under multiple contingencies. IET Generation, Transmission and Distribution, 4(2), 178–190.

    Article  Google Scholar 

  • Bakirtzis, A., Ziogos, N., Tellidou, A., & Bakirtzis, G. (2007). Electricity producer offering strategies in day-ahead energy market with step-wise offers. IEEE Transactions on Power Systems, 22(4), 1804–1818.

    Article  Google Scholar 

  • Baldick, R., Grant, R., & Kahn, E. (2004). Theory and application of linear supply function equilibrium in electricity markets. Journal of Regulatory Economics, 25(2), 143–167.

    Article  Google Scholar 

  • Baldick, R., & Hogan, W. (2001). Capacity constrained supply function equilibrium models of electricity markets: Stability, non-decreasing constraints, and function space iterations. Technical Report, University of California Energy Institute.

  • Bard, J. F., & Falk, J. E. (1982). An explicit solution to the multi-level programming problem. Computers and Operations Research, 9(1), 77–100.

    Article  Google Scholar 

  • Bard, J. F., & Moore, J. T. (1990). A branch and bound algorithm for the bilevel programming problem. SIAM Journal on Scientific and Statistical Computing, 11(2), 281–292.

    Article  Google Scholar 

  • Barroso, L., Carneiro, R., Granville, S., Pereira, M., & Fampa, M. (2006). Nash equilibrium in strategic bidding: A binary expansion approach. IEEE Transactions on Power Systems, 21(2), 629–638.

    Article  Google Scholar 

  • Birge, J., & Louveaux, F. (2011). Introduction to Stochastic Programming. Springer Series in Operations Research and Financial Engineering. Berlin: Springer.

  • Cardell, J., Hitt, C., & Hogan, W. (1997). Market power and strategic interaction in electricity networks. Resource and Energy Economics, 19(1), 109–137.

    Article  Google Scholar 

  • Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel optimization. Annals of Operations Research, 153(1), 235–256.

    Article  Google Scholar 

  • Conejo, A., Carrión, M., & Morales, J. (2010). Decision making under uncertainty in electricity markets. Berlin: Springer.

    Book  Google Scholar 

  • Contreras, J., Klusch, M., & Krawczyk, J. (2004). Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets. IEEE Transactions on Power Systems, 19(1), 195–206.

    Article  Google Scholar 

  • Datta, R. (2010). Finding all Nash equilibria of a finite game using polynomial algebra. Economic Theory, 42(1), 55–96.

    Article  Google Scholar 

  • David, A., & Wen, F. (2001). Market power in electricity supply. IEEE Transactions on Energy Conversion, 16(4), 352–360.

    Article  Google Scholar 

  • Day, C., Hobbs, B., & Pang, J. (2002). Oligopolistic competition in power networks: A conjectured supply function approach. IEEE Transactions on Power Systems, 17(3), 597–607.

    Article  Google Scholar 

  • de la Torre, S., Contreras, J., & Conejo, A. (2004). Finding multiperiod Nash equilibria in pool-based electricity markets. IEEE Transactions on Power Systems, 19(1), 643–651.

    Article  Google Scholar 

  • DeMiguel, V., & Xu, H. (2009). A stochastic multiple-leader Stackelberg model: Analysis, computation, and application. Operations Research, 57(5), 1220–1235.

    Article  Google Scholar 

  • Dempe, S. (2002a). Foundations of bilevel programming. Berlin: Springer.

    Google Scholar 

  • Dempe, S. (2002b). Foundations of bilevel programming. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Dempe, S. (2003). Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization, 52(3), 333–359.

    Article  Google Scholar 

  • Dempe, S., Mordukhovich, B., & Zemkoho, A. B. (2014). Necessary optimality conditions in pessimistic bilevel programming. Optimization: A Journal of Mathematical Programming and Operations Research, 63(4), 505–533.

    Article  Google Scholar 

  • De Wolf, D., & Smeers, Y. (1997). A stochastic version of a Stackelberg-Nash-Cournot equilibrium model. Management Science, 43, 190–197.

    Article  Google Scholar 

  • Ehrenmann, A. (2004a). Manifolds of multi-leader cournot equilibria. Operations Research Letters, 32(2), 121–125.

    Article  Google Scholar 

  • Ehrenmann, A. (2004b). Equilibrium problems with equilibrium constraints and their application to electricity markets. Ph.D. thesis, Citeseer

  • Facchinei, F., Fischer, A., & Piccialli, V. (2007). On generalized Nash games and variational inequalities. Operations Research Letters, 35(2), 159–164.

    Article  Google Scholar 

  • Facchinei, F., & Pang, J. S. (2003). Finite-dimensional variational inequalities and complementarity problems. Springer series in operations research and financial engineering. New York: Springer.

  • Fampa, M., Melo, W. A., & Maculan, N. (2013). Semidefinite relaxation for linear programs with equilibrium constraints. International Transactions in Operational Research, 20(2), 201–212.

    Article  Google Scholar 

  • Fampa, M., & Pimentel, W. (2016). Linear programing relaxations for a strategic pricing problem in electricity markets. International Transactions in Operational Research, 24, 159–172.

    Article  Google Scholar 

  • Fortuny-Amat, J., & McCarl, B. (1981). A representation and economic interpretation of a two-level programming problem. The Journal of the Operational Research Society, 32(9), 783–792.

    Article  Google Scholar 

  • Fudenberg, D., & Tirole, J. (1991). Game theory. Cambridge: MIT Press.

    Google Scholar 

  • Gabriel, S. A., Conejo, A. J., Fuller, J. D., Hobbs, B. F., & Ruiz, C. (2012). Complementarity modeling in energy markets. Berlin: Springer.

    Google Scholar 

  • Gabriel, S. A., & Leuthold, F. U. (2010). Solving discretely-constrained MPEC problems with applications in electric power markets. Energy Economics, 32(1), 3–14.

    Article  Google Scholar 

  • Garcés, L., Conejo, A., García-Bertrand, R., & Romero, R. (2009). A bilevel approach to transmission expansion planning within a market environment. IEEE Transactions on Power Systems, 24(3), 1513–1522.

    Article  Google Scholar 

  • García-Alcalde, A., Ventosa, M., Rivier, M., Ramos, A., & Relaño, G.(2002). Fitting electricity market models: A conjectural variations approach. In 14th power systems computation conference (PSCC 2002).

  • Ghamkhari, M., Sadeghi-Mobarakeh, A., & Mohsenian-Rad, H. (2016). Strategic bidding for producers in nodal electricity markets: A convex relaxation approach. IEEE Transactions on Power Systems (accepted).

  • Gourtani, A., Pozo, D., Vespucci, M. T., & Xu, H. (2014). Medium-term trading strategy of a dominant electricity producer. Energy Systems, 5(2), 323–347.

    Article  Google Scholar 

  • Harker, P. (1991). Generalized Nash games and quasi-variational inequalities. European Journal of Operational Research, 54(1), 81–94.

    Article  Google Scholar 

  • Hasan, E., & Galiana, F. (2008). Electricity markets cleared by merit order? Part II: Strategic offers and market power. IEEE Transactions on Power Systems, 23(2), 372–379.

    Article  Google Scholar 

  • Hasan, E., Galiana, F., & Conejo, A. (2008). Electricity markets cleared by merit order? Part I: Finding the market outcomes supported by pure strategy nash equilibria. IEEE Transactions on Power Systems, 23(2), 361–371.

    Article  Google Scholar 

  • Hayashi, S., Yamashita, N., & Fukushima, M. (2005). Robust Nash equilibria and second-order cone complementarity problems. Journal of Nonlinear and Convex Analysis, 6(2), 283–296.

    Google Scholar 

  • Hobbs, B. (1986). Network models of spatial oligopoly with an application to deregulation of electricity generation. Operations Research, 34(3), 395–409.

    Article  Google Scholar 

  • Hobbs, B. (2002). Linear complementarity models of Nash-Cournot competition in bilateral and POOLCO power markets. IEEE Transactions on Power Systems, 16(2), 194–202.

    Article  Google Scholar 

  • Hobbs, B., Metzler, C., & Pang, J. (2000). Strategic gaming analysis for electric power systems: An MPEC approach. IEEE Transactions on Power Systems, 15(2), 638–645.

    Article  Google Scholar 

  • Hu, J., Mitchell, J. E., Pang, J. S., Bennett, K. P., & Kunapuli, G. (2008). On the global solution of linear programs with linear complementarity constraints. SIAM Journal on Optimization, 19(1), 445–471.

    Article  Google Scholar 

  • Hu, X., & Ralph, D. (2007). Using EPECs to model bilevel games in restructured electricity markets with locational prices. Operations Research, 55(5), 809–827.

    Article  Google Scholar 

  • Jing-Yuan, W., & Smeers, Y. (1999). Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices. Operations Research, 47(1), 102–112.

    Article  Google Scholar 

  • Kannan, A., Shanbhag, U. V., & Kim, H. M. (2013). Addressing supply-side risk in uncertain power markets: Stochastic Nash models, scalable algorithms and error analysis. Optimization Methods and Software, 28(5), 1095–1138.

    Article  Google Scholar 

  • Kazempour, J., Conejo, A., & Ruiz, C. (2011). Strategic generation investment using a complementarity approach. IEEE Transactions on Power Systems, 26(2), 940–948.

    Article  Google Scholar 

  • Kazempour, J., Conejo, A., & Ruiz, C. (2013). Generation investment equilibria with strategic producers—Part I: Formulation. IEEE Transactions on Power Systems, 28(3), 2613–2622.

    Article  Google Scholar 

  • Kirschen, D. S., & Strbac, G. (2004). Fundamentals of power system economics. New York: Wiley.

    Book  Google Scholar 

  • Kreps, D., & Scheinkman, J. (1983). Quantity precommitment and bertrand competition yield Cournot outcomes. The Bell Journal of Economics, 14(2), 326–337.

    Article  Google Scholar 

  • Kulkarni, A. A. (2011). Generalized Nash games with shared constraints: Existence, efficiency, refinement and equilibrium constraints. Ph.D. thesis, University of Illinois at Urbana-Champaign.

  • Kulkarni, A. A., & Shanbhag, U. V. (2012). On the variational equilibrium as a refinement of the generalized Nash equilibrium. Automatica, 48(1), 45–55.

    Article  Google Scholar 

  • Kulkarni, A. A., & Shanbhag, U. V. (2013). On the consistency of leaders’ conjectures in hierarchical games. In 2013 IEEE 52nd annual conference on decision and control (CDC) (pp. 1180–1185). IEEE.

  • Kulkarni, A. A., & Shanbhag, U. V. (2014). A shared-constraint approach to multi-leader multi-follower games. Set Valued and Variational Analysis, 22(4), 691–720.

    Article  Google Scholar 

  • Kulkarni, A. A., & Shanbhag, U. V. (2015). An existence result for hierarchical Stackelberg v/s Stackelberg games. IEEE Transactions on Automatic Control, 60(12), 3379–3384.

    Article  Google Scholar 

  • Lee, K., & Baldick, R. (2003). Solving three-player games by the matrix approach with application to an electric power market. IEEE Transactions on Power Systems, 18(4), 1573–1580.

    Article  Google Scholar 

  • Leyffer, S., & Munson, T. (2010). Solving multi-leader-common-follower games. Optimization Methods and Software, 25(4), 601–623.

    Article  Google Scholar 

  • Liu, Y., Ni, Y., & Wu, F. (2004). Existence, uniqueness, stability of linear supply function equilibrium in electricity markets. In IEEE power engineering society general meeting, Denver (pp. 249–254).

  • Luo, Z., Pang, J., & Ralph, D. (1996). Mathematical Programs with equilibrium constraints. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Monderer, D., & Shapley, L. (1996). Potential games. Games and Economic Behaivor, 14, 124–143.

    Article  Google Scholar 

  • Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 36(1), 48–49.

    Article  Google Scholar 

  • Neuhoff, K., Barquin, J., Boots, M. G., Ehrenmann, A., Hobbs, B. F., Rijkers, F. A. M., et al. (2005). Network-constrained Cournot models of liberalized electricity markets: The devil is in the details. Energy Economics, 27(3), 495–525.

    Article  Google Scholar 

  • Pang, J., & Fukushima, M. (2005). Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Computational Management Science, 2(1), 21–56.

    Article  Google Scholar 

  • Pozo, D., & Contreras, J. (2011). Finding multiple Nash equilibria in pool-based markets: A stochastic EPEC approach. IEEE Transactions on Power Systems, 26(3), 1744–1752.

    Article  Google Scholar 

  • Pozo, D., Contreras, J., & Sauma, E. (2013a). If you build it, he will come: Anticipative power transmission planning. Energy Economics, 36, 135–146.

    Article  Google Scholar 

  • Pozo, D., Sauma, E. E., & Contreras, J. (2013b). A three-level static MILP model for generation and transmission expansion planning. IEEE Transactions on Power Systems, 28(1), 202–210.

    Article  Google Scholar 

  • Pozo, D., Sauma, E. E., & Contreras, J. (2014). Impacts of network expansion on generation capacity expansion. In 18th Power systems computation conference (PSCC 2014). Wroclav, Poland.

  • Pozo, D., Sauma, E., & Contreras, J. (2017). When doing nothing may be the best investment action: Pessimistic anticipative power transmission planning. Applied Energy (under review).

  • Ralph, D., & Smeers, Y. (2006). EPECs as models for electricity markets. In Power systems conference and exposition (PSCE’06), Atlanta, GA, USA (pp. 74–80).

  • Ralph, D., & Smeers, Y. (2011). Pricing risk under risk measures: An introduction to stochastic-endogenous equilibria. Available at SSRN 1903897.

  • Ralph, D., & Wright, S. (2004). Some properties of regularization and penalization schemes for MPECs. Optimization Methods and Software, 19(5), 527–556.

    Article  Google Scholar 

  • Rockafellar, R., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–42.

    Article  Google Scholar 

  • Rosen, J. (1965). Existence and uniqueness of equilibrium points for concave n-person games. Econometrica: Journal of the Econometric Society, 33(3), 520–534.

    Article  Google Scholar 

  • Ruiz, C., & Conejo, A. (2009). Pool strategy of a producer with endogenous formation of locational marginal prices. IEEE Transactions on Power Systems, 24(4), 1855–1866.

    Article  Google Scholar 

  • Ruiz, C., Conejo, A., & Smeers, Y. (2012). Equilibria in an oligopolistic electricity pool with stepwise offer curves. IEEE Transactions on Power Systems, 27(2), 752–761.

    Article  Google Scholar 

  • Sauma, E. E., & Oren, S. S. (2006). Proactive planning and valuation of transmission investments in restructured electricity markets. Journal of Regulatory Economics, 30(3), 261–290.

    Article  Google Scholar 

  • Schwartz, A.(2011). Mathematical programs with complementarity constraints: Theory, methods and applications. Ph.D. thesis, Institute of Applied Mathematics and Statistics, University of Wrzburg.

  • Sherali, H. D. (1984). A multiple leader Stackelberg model and analysis. Operations Research, 32(2), 390–404.

    Article  Google Scholar 

  • Siddiqui, S., & Gabriel, S. A. (2013). An SOS1-based approach for solving MPECs with a natural gas market application. Networks and Spatial Economics, 13(2), 205–227.

    Article  Google Scholar 

  • Smeers, Y. (1997). Computable equilibrium models and the restructuring of the European electricity and gas markets. The Energy Journal, 18(4), 1–32.

    Article  Google Scholar 

  • Song, Y., Ni, Y., Wen, F., Hou, Z., & Wu, F. (2003). Conjectural variation based bidding strategy in spot markets: Fundamentals and comparison with classical game theoretical bidding strategies. Electric Power Systems Research, 67(1), 45–51.

    Article  Google Scholar 

  • Su, C. (2005). Equilibrium problems with equilibrium constraints: Stationarities, algorithms, and applications. Ph.D. thesis, Stanford University.

  • Ventosa, M., Baillo, A., Ramos, A., & Rivier, M. (2005). Electricity market modeling trends. Energy policy, 33(7), 897–913.

    Article  Google Scholar 

  • von Stackelberg, H. (1934). Marktform und gleichgewicht. Vienna: J. Springer.

    Google Scholar 

  • Weber, J. D., & Overbye, T. J. (1999). A two-level optimization problem for analysis of market bidding strategies. IEEE power engineering society summer meeting, Edmonton, AB, Canada (pp. 682–687).

  • Wogrin, S., Centeno, E., & Barqun, J. (2011a). Generation capacity expansion in liberalized electricity markets: A stochastic MPEC approach. IEEE Transactions on Power Systems, 26(4), 2526–2532.

    Article  Google Scholar 

  • Wogrin, S., Hobbs, B., Ralph, D., Centeno, E., & Barquin, J. (2011b). Open versus closed loop capacity equilibria in electricity markets under perfect and oligopolistic competition. Mathematical Programming (Series B), 140(2), 295–322.

    Article  Google Scholar 

  • Xu, H. (2005). An MPCC approach for stochastic Stackelberg-Nash-Cournot equilibrium. Optimization, 54(1), 27–57.

    Article  Google Scholar 

  • Xu, H., & Zhang, D. (2013). Stochastic Nash equilibrium problems: Sample average approximation and applications. Computational Optimization and Applications, 55(3), 597–645.

    Article  Google Scholar 

  • Yang, Y., Zhang, Y., Li, F., & Chen, H. (2012). Computing all Nash equilibria of multiplayer games in electricity markets by solving polynomial equations. IEEE Transactions on Power Systems, 27(1), 81–91.

    Article  Google Scholar 

  • Zerrahn, A., & Huppmann, D. (2014). Network expansion to mitigate market power: How increased integration fosters welfare. Report.

  • Zhang, X. (2010). Restructured electric power systems: Analysis of electricity markets with equilibrium models. IEEE press series on power engineering. New york: Wiley.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pozo.

Additional information

This research has been partially supported by the CONICYT, FONDECYT/Regular 1161112 Grant and by the Programa CSF-PAJT, Brazil, under Grant 88887.064092/2014-00.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozo, D., Sauma, E. & Contreras, J. Basic theoretical foundations and insights on bilevel models and their applications to power systems. Ann Oper Res 254, 303–334 (2017). https://doi.org/10.1007/s10479-017-2453-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2453-z

Keywords

Navigation