Skip to main content
Log in

Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network

  • Data Mining and Analytics
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

No-shows are becoming a major problem in primary care facilities, creating additional costs for the facility while adversely affecting the quality of patient care. Accurately predicting no-shows plays an important role in the overbooking strategy. In this study, a hybrid probabilistic prediction framework based on the elastic net (EN) variable-selection methodology integrated with probabilistic Bayesian Belief Network (BBN) is proposed. The study predicts the “no-show probability of the patient(s)” using demographics, socioeconomic status, current appointment information, and appointment attendance history of the patient and the family. The proposed framework is validated using ten years of local pediatric clinic data. It is shown that this EN-based BBN framework is a comparable prediction methodology regarding the best approaches found in the literature. More importantly, this methodology provides novel information on the interrelations of predictors and the conditional probability of predicting “no-shows.” The output of the model can be applied to the appointment scheduling system for a robust overbooking strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramson, B., Brown, J., Edwards, W., Murphy, A., & Winkler, R. L. (1996). Hailfinder: A Bayesian system for forecasting severe weather. International Journal of Forecasting, 12(1), 57–71.

    Article  Google Scholar 

  • Aickelin, U., & Li, J. (2007). An estimation of distribution algorithm for nurse scheduling. Annals of Operations Research, 155(1), 289–309.

    Article  Google Scholar 

  • Alaeddini, A., Yang, K., Reddy, C., & Yu, S. (2011). A probabilistic model for predicting the probability of no-show in hospital appointments. Health Care Management Science, 14(2), 146–157. doi:10.1007/s10729-011-9148-9.

    Article  Google Scholar 

  • Bean, A. G., & Talaga, J. (1995). Predicting appointment breaking. Journal of Health Care Marketing, 15(1), 29–34.

    Google Scholar 

  • Bunn, C. C., Du, M., Niu, K., Johnson, T. R., Poston, W. S. C., & Foreyt, J. P. (1999). Predicting the risk of obesity using a Bayesian network. In Proceedings of the 1999 AMIA Symposium (pp. 1035), American Medical Informatics Association.

  • Burnside, E. S., Rubin, D. L., Fine, J. P., Shachter, R. D., Sisney, G. A., & Leung, W. K. (2006). Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results: Initial experience. Radiology, 240(3), 666–673.

    Article  Google Scholar 

  • Cayirli, T., & Veral, E. (2003). Outpatient scheduling in health care: A review of literature. Production and Operations Management, 12(4), 519–549.

    Article  Google Scholar 

  • Chickering, D. M., Heckerman, D., & Meek, C. (2004). Large-sample learning of Bayesian networks is NP-hard. The Journal of Machine Learning Research, 5, 1287–1330.

    Google Scholar 

  • Cho, S., Kim, K., Kim, Y. J., Lee, J. K., Cho, Y. S., Lee, J. Y., et al. (2010). Joint identification of multiple genetic variants via elastic-net variable selection in a Genome-Wide Association analysis. Annals of human genetics, 74(5), 416–428.

    Article  Google Scholar 

  • Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3), 462–467. doi:10.1109/Tit.1968.1054142.

    Article  Google Scholar 

  • Cinicioglu, E. N., Shenoy, P. P., & Kocabasoglu, C. (2007). Use of radio frequency identification for targeted advertising: A collaborative filtering approach using bayesian networks. In European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (pp. 889–900). Berlin. Heidelberg: Springer.

  • Cinicioglu, E., & Shenoy, P. (2012). A new heuristic for learning Bayesian networks from limited datasets: A real-time recommendation system application with RFID systems in grocery stores. Annals of Operations Research, 1–21, doi:10.1007/s10479-012-1171-9.

  • Cinicioglu, E. N., & Büyükuğur, G. (2014). How to create better performing Bayesian networks: A heuristic approach for variable selection. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 527–535). Springer International Publishing.

  • Cinicioglu, E. N., & Yenilmez, T. (2016). Determination of variables for a Bayesian network and the most precious one. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 313–325). Springer International Publishing.

  • Dag, A., Topuz, K., Oztekin, A., Bulur, S., & Megahed, F. M. (2016). A probabilistic data-driven framework for scoring the preoperative recipient-donor heart transplant survival. Decision Support Systems, 86, 1–12.

    Article  Google Scholar 

  • Daggy, J., Lawley, M., Willis, D., Thayer, D., Suelzer, C., DeLaurentis, P.-C., et al. (2010). Using no-show modeling to improve clinic performance. Health Informatics Journal, 16(4), 246–259. doi:10.1177/1460458210380521.

    Article  Google Scholar 

  • Domingos, P., & Pazzani, M. (1996). Beyond independence: Conditions for the optimality of the simple Bayesian classifier. In Proceedings of the 13 \({th}\) International Conference on Machine Learning (pp. 105): Citeseer

  • Eaton, D., & Murphy, K. (2012). Bayesian structure learning using dynamic programming and MCMC. arXiv preprint arXiv:1206.5247.

  • Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statstical Software, 33(1), 1–22.

    Google Scholar 

  • Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29(2–3), 131–163.

    Article  Google Scholar 

  • Friedman, N., & Koller, D. (2003). Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Machine Learning, 50(1–2), 95–125. doi:10.1023/A:1020249912095.

    Article  Google Scholar 

  • Glowacka, K. J., Henry, R. M., & May, J. H. (2009). A hybrid data mining/simulation approach for modelling outpatient no-shows in clinic scheduling. Journal of the Operational Research Society, 60(8), 1056–1068. doi:10.1057/jors.2008.177.

    Article  Google Scholar 

  • Goldman, L., Freidin, R., Cook, E. F., Eigner, J., & Grich, P. (1982). A multivariate approach to the prediction of no-show behavior in a primary care center. Archives of Internal Medicine, 142(3), 563–567. doi:10.1001/archinte.142.3.563.

    Article  Google Scholar 

  • Guo, H., & Hsu, W. H. (2007). A machine learning approach to algorithm selection for mathematical {NP}-hard optimization problems: A case study on the MPE problem. Annals of Operations Research, 156(1), 61–82.

    Article  Google Scholar 

  • Gurol-Urganci, I., de Jongh, T., Vodopivec-Jamsek, V., Atun, R., & Car, J. (2013). Mobile phone messaging reminders for attendance at healthcare appointments. Cochrane Database System Review, doi:10.1002/14651858.CD007458.pub3.

  • Hand, D. J. (1997). Construction and Assessment of Classification Rules. Hoboken: Wiley.

    Google Scholar 

  • Huang, Y., & Hanauer, D. (2014). Patient no-show predictive model development using multiple data sources for an effective overbooking approach. Applied Clinical Informatics, 5, 836–860.

    Article  Google Scholar 

  • Jee, S. H., & Cabana, M. D. (2006). Indices for continuity of care: A systematic review of the literature. Medical Care Research and Review, 63(2), 158–188.

    Article  Google Scholar 

  • Johnson, B. J., Mold, J. W., & Pontious, J. M. (2007). Reduction and management of no-shows by family medicine residency practice exemplars. The Annals of Family Medicine, 5(6), 534–539. doi:10.1370/afm.752.

    Article  Google Scholar 

  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. International Joint Conference on Artificial Intelligence (IJCAI), 14, 1137–1145.

    Google Scholar 

  • Kohavi, R., & Provost, F. (1998). Glossary of terms. Machine Learning, 30(2–3), 271–274.

    Google Scholar 

  • Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. Cambridge: MIT Press.

    Google Scholar 

  • Koller, D., & Sahami, M. (1996). Toward optimal feature selection. Stanford InfoLab.

  • Kristensen, A. R., & Jørgensen, E. (2000). Multi-level hierarchic Markov processes as a framework for herd management support. Annals of Operations Research, 94(1–4), 69–89.

    Article  Google Scholar 

  • Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced training sets: One-sided selection. In International Conference on Machine Learning, (Vol. 97, pp. 179–186). Nashville, Tennessee.

  • Lacy, N. L., Paulman, A., Reuter, M. D., & Lovejoy, B. (2004). Why we don’t come: Patient perceptions on no-shows. Annals of Family Medicine, 2(6), 541–545. doi:10.1370/afm.123.

    Article  Google Scholar 

  • LaGanga, L. R., & Lawrence, S. R. (2007). Clinic overbooking to improve patient access and increase provider productivity. Decision Sciences, 38(2), 251–276.

    Article  Google Scholar 

  • Leong, K. C., Chen, W. S., Leong, K. W., Mastura, I., Mimi, O., Sheikh, M. A., et al. (2006). The use of text messaging to improve attendance in primary care: A randomized controlled trial. Family Practice, 23(6), 699–705.

    Article  Google Scholar 

  • Lucas, P. J. F. (2004). Bayesian networks in biomedicine and health-care. Artificial Intelligence in Medicine, 30, 201–214.

    Article  Google Scholar 

  • Meyfroidt, G., Güiza, F., Ramon, J., & Bruynooghe, M. (2009). Machine learning techniques to examine large patient databases. Best Practice & Research Clinical Anaesthesiology, 23(1), 127–143.

    Article  Google Scholar 

  • Mollineda, R., Alejo, R., & Sotoca, J. (2007).The class imbalance problem in pattern classification and learning. In II Congreso Español de Informática (CEDI 2007), 978–984, Citeseer.

  • Olson, D. L., & Delen, D. (2008). Advanced data mining techniques. Berlin: Springer Publishing Company Inc.

    Google Scholar 

  • Oztekin, A., Delen, D., & Kong, Z. J. (2009). Predicting the graft survival for heart-lung transplantation patients: An integrated data mining methodology. international journal of medical informatics, 78(12), e84–e96.

    Article  Google Scholar 

  • Park, T., & Casella, G. (2008). The bayesian lasso. Journal of the American Statistical Association, 103(482), 681–686.

    Article  Google Scholar 

  • Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys, 3, 96–146.

    Article  Google Scholar 

  • Pearl, J. (2014). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Burlington: Morgan Kaufmann.

    Google Scholar 

  • Petrovic, S., & Vanden Berghe, G. (2007). Special issue on personnel scheduling and planning–Preface. Annals of Operations Research, 155(1), 1–4.

    Article  Google Scholar 

  • Reunanen, J. (2003). Overfitting in making comparisons between variable selection methods. Journal of Machine Learning Research, 3(Mar), 1371–1382.

    Google Scholar 

  • Saultz, J. W. (2003). Defining and measuring interpersonal continuity of care. The Annals of Family Medicine, 1(3), 134–143.

    Article  Google Scholar 

  • Sevim, C., Oztekin, A., Bali, O., Gumus, S., & Guresen, E. (2014). Developing an early warning system to predict currency crises. European Journal of Operational Research, 237(3), 1095–1104.

    Article  Google Scholar 

  • Shih, D., Kim, S., Chen, V. P., Rosenberger, J., & Pilla, V. (2014). Efficient computer experiment-based optimization through variable selection. Annals of Operations Research, 216(1), 287–305. doi:10.1007/s10479-012-1129-y.

    Article  Google Scholar 

  • Suits, D. B. (1984). Dummy variables: Mechanics v. interpretation. The Review of Economics and Statistics, 66(1), 177–180.

    Article  Google Scholar 

  • Sun, L., & Shenoy, P. P. (2007). Using Bayesian networks for bankruptcy prediction: Some methodological issues. European Journal of Operational Research, 180(2), 738–753.

    Article  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B-Methodological, 58(1), 267–288.

    Google Scholar 

  • Williams, K., Thomson, D., Seto, I., Contopoulos-Ioannidis, D. G., Ioannidis, J. P. A., Curtis, S., et al. (2012). Standard 6: Age groups for pediatric trials. Pediatrics, 129(Supplement 3), S153–S160. doi:10.1542/peds.2012-0055I.

    Article  Google Scholar 

  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.

    Article  Google Scholar 

  • Zuckermann, A. O., Ofner, P., Holzinger, C., Grimm, M., Mallinger, R., Laufer, G., et al. (2000). Pre- and early postoperative risk factors for death after cardiac transplantation: A single center analysis. Transplant International, 13(1), 28–34.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the two anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Bayram Yildirim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topuz, K., Uner, H., Oztekin, A. et al. Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network. Ann Oper Res 263, 479–499 (2018). https://doi.org/10.1007/s10479-017-2489-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2489-0

Keywords

Navigation